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ABSTRACT

Categorical time series are time sequenced data in which the values at each time point are

categories rather than measurements. A categorical time series is considered stationary if the

marginal distribution of the data is constant over the time period for which it was gathered

and the correlation between successive values is a function only of their distance from each

other, and not of their position in the series. However, there are many examples of categorical

series which do not fit this rather strong definition of stationarity. Such data show various

non-stationary behavior, such as a change in the probability of the occurrence of one or

more categories. In this paper we introduce an algorithm which corrects for nonstationarity

in categorical time series. The algorithm produces series which are not stationary in the

traditional sense of its definition often used for stationary categorical time series. The

form of stationarity is weaker, but still useful for parameter estimation. Simulation results

show that this simple algorithm applied to a DAR(1) model can dramatically improve the

parameter estimates in some cases.

1. INTRODUCTION

Categorical time series are serially correlated data for which an observation at a time

point is recorded in terms of a state (or a category). Some such series are continuous series

which one can analyze as categorical ones, for example a sequence of rainfall data in which

successive days were recorded as “wet” or “dry” (Chang, Kavvas, and Delleur, 1984 a,b).

Other series are truly categorical in nature. Examples include geomagnetic reversals in the

polarity of the earth from “normal” polarity to “reverse” polarity (Negi, et. al., 1993), and
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records of brain waves during a person’s sleep using an EEG, where readings are classified

into one of six possible states (Stoffer et. al. , 1988). Regardless of the origin of the series, it

is clear such series are in fact quite common, although they have received much less attention

in the literature than continuous variable time series.

A categorical time series {X1, X2, . . . , Xt} is considered to be stationary if any two n-

tuples, say {X1, . . . , Xn} and {X1h
, . . . , Xn+h}, have the same distribution for every n ≥ 1

and h ≥ 0. (Jacobs and Lewis, 1978a,b) . This definition is too strong for most applications,

as it involves strict assumptions on the joint distribution of consecutive sequences. Another

possible definition, implied in Stoffer, et. al. , 1993, is such that P (Xt = cj) is constant

in t = 1, 2, 3, . . . , for every j = 1, 2, . . . , C, where C is the number of possible categories.

One presumes that the correlation between two values is not dependent on the position

of the values in the series; only on their distance from each other. More precisely, that

P (Xt = cj

⋂

Xt+h = ck) = fj,k(h), where we define Cov(Xt, Xt+h) = f(h). The latter

definition is analogous to “weak” stationarity in numerical time series.

Many categorical time series are not stationary in either the strong or the weak sense.

As an example, the top panel of Figure 1 shows El Niño data gathered from 1525 to 1987

(Quinn, et. al., 1987). In this series, 1 indicates presence of the El Niño and 0 indicates its

absence. There is a distinct change in probability of El Niño occurrences around time value

290. This change in probability could be due either to better recording of events after this

point (time 290 is roughly the year 1815), or to a real change in probability due to a change

in weather patterns. Since the probability of an El Niño year changes quite abruptly, it is

clear that these data do not fit the definition of stationarity used in categorical time series.

The bottom panel shows data indictating the winner of Major League Baseball’s All-Star

Game from 1950 to 2005. An American League win is coded as 1, and a National League

win is coded as a 0. The data exhibit clear signs of non-stationarity: the National League

dominated until roughly the 1980’s or 1990’s, and the American League has dominated in

the last fifteen years or so. Another example (not shown) is data dealing with geomagnetic

reversals of the polarity of the earth from North polarity to South polarity (Negi, et. al.,
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1993). In that article, the authors state that they are unable to use all of the data that they

have because it is clearly nonstationary. Instead, they choose to use a portion of the data

that looks stationary, according to a time plot.

The focus of this work is examining the effects of non-stationarity on parameter estimation

in categorical time series and introducing an algorithm to induce a form of stationarity in

nonstationary series. In Section 2, a simple flipping algorithm is introduced, which can be

applied to certain non-stationary categorical time series to make them stationary. Simulation

results, which show that the correlation parameter estimator from a stationary model can

be dramatically improved after applying the algorithm, are given in Section 3. However,

the stationarity resulting from the flipping algorithm is not distributional stationarity, but

something weaker. We define this form of stationarity and discuss its properties in Section

4. In Section 5, the detrending algorithm is illustrated with data from the sequence of league

wins in Major League Baseball’s All–Star game from 1950 to 2005.

2. THE FLIPPING ALGORITHM

In this section, we introduce a simple algorithm which takes a non-stationary series and

transforms it to one that is stationary. For simplicity, the initial focus is on series with a

binary outcome, where we arbitrarily denote the categories by 0 and 1. The flipping scheme

assumes that one of the categories is more common at the beginning of the series, and that

there is then a transition so that by the end of the series the other category is more common.

Without loss of generality, the category that is more common at the beginning of the series

will be labeled the 0 category. For simplicity, we will examine in detail only the case with one

transition, from (0 → 1), although the algorithm can be extended to multiple transitions.

The algorithm is as follows:

1. Denote the original non-detrended series by X1, X2, . . . , XT .

2. Create T new series where the kth series is created by “flipping” observations X1, X2, . . . , Xk.

For example, the first series would be the same as the original series, except that the

first observation would be changed from 0 to 1 (or 1 to 0). The next series would result
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from flipping the first two observations, etc. The last series would be the complete

opposite of the original series.

3. Count the number of ones in each of the T + 1 series (the original series and the T

“new” ones).

4. The series with the highest number of ones is the detrended series. In case of a tie

for the highest number of ones, choose the first series in the sequence with the highest

number of ones (that is, the one with the fewest flips).

As a simple example, consider the sequence 0, 1, 0, 0, 1, 0, 1, 1. There are nine sequences

to consider: the original one, and the eight new ones generated by flipping as above. The

sequences are given in Table 1 . The first row of the table gives the original sequence, and the

next eight rows the generated sequences obtained from the original. There are two sequences

with the maximum number of 1’s, the k = 4 and k = 6 sequences, obtained by flipping the

first four and first six respectively. Both of these sequences have six ones. By convention the

tie is broken by using the earlier sequence (k = 4), as it is the “least disturbed” compared

to the original one.

In general one would apply this algorithm to sequences which exhibit a trend in the

number of ones. That is, sequences for which there exists a point k such that 0’s are more

common than 1’s for t < k and 1’s more common than 0’s for t > k. By design this algorithm

will then produce a sequence where 1’s are more common than 0’s both for t < k and t > k,

and hence one can say the trend has been removed.

We can also extend the algorithm to series with more than two categories in the following

manner. Suppose there are three categories, 1, 2 and 3. In this situation, without loss of

generality, one can label the category that is most likely early in the sequence as category 1

and the category that is most likely at the end of the sequence as category 3. We assume

there are either two transitions in terms of the most likely category, (1 → 2 → 3), or one

transition (1 → 3). It would also be possible to extend the idea to more than one transition

using a similar scheme to the one described below.
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To transform the series to a stationary sequence, we create a new sequence such that

category 3 is most likely everywhere. To do this, we define two cut points k1 and k2 such

that k1 ≤ k2 and k1, k2 are chosen from 0, . . . , n. If the sequence is of length n there are then
(

n+2

2

)

choices for (k1, k2). For each pair of cutpoints (k1, k2) create a new sequence where if

t ≤ k1 then flip categories 1 and 3, but leave 2 unchanged, if k1 < t ≤ k2 then flip categories

2 and 3, but leave 1 unchanged, and if k > t we leave the categories unchanged. Now

for each sequence count the number of category 3 responses, and choose as the detrended

sequence the one with the highest number of 3’s. To break any tie choose the sequence with

smallest k2 and then smallest k1. Extensions to a greater number of categories than three

are possible, but the algorithm becomes much more computationally demanding.

3. NONSTATIONARY SERIES AND THE EFFECT OF THE FLIPPING ALGORITHM

Simulation results given in this section show the effects of non-stationarity and the flip-

ping algorithm on the fit of the Discrete Autoregressive Model (DAR) model of Jacobs and

Lewis (1978a, b). The DAR model is used as an illustration of a simple stationary model,

without implying that this model is necessarily the best one to use for categorical data in

general. The primary motivation here is to show that non-stationarity can seriously com-

promise the fit, but detrending, while not a panacea, can help. First, we describe the DAR

model, then give the simulation results.

The sequence {Xt} has a binary DAR structure when it is formed according to the

probabilistic linear model

Xt = ItXt−1 + (1 − It)Yt, t = 1, 2, 3, . . . .

where {Yt} is a sequence of independent binary random variables with P (Yt = 1) = pt, and

{It} is a sequence of independent binary random variables, also independent from {Xt} and

{Yt}. Let P (It = 1) = q, where 0 ≤ q ≤ 1 is fixed. Typically one assumes that X1 = Y1. Note

that Xt is also binary, and it is a simple matter to show that if pt = p then P (Xt = 1) = p,

and hence {Xt} is a stationary series.

Figure 2 shows data simulated from a DAR(1) model with three different values of q.
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Note that the value of q controls the probability of Xt staying in the same state (0 or 1).

As the figures show, if q is very large, it is very likely that Xt = Xt−1, and long runs in the

series dominate.

Our primary interest here is in estimation of q, as that is the most useful parameter in

one-step forecasting, and in the non-stationary cases p has no clear meaning. Indeed it is

easy to show that if one assumes the stationary DAR model then cor(Xt, Xt−1) = q. A

simple method of moments estimator of q would then be the lag one correlation between

successive observations.

The data for the simulations consist of series of length 200 generated from a DAR(1)

model with one transition at a chosen point k where the probability of a 1 changes from p to

1 − p. The value of q, the correlation parameter, was one of q = 0.1, 0.3, 0.5, 0.7. The value

of p was chosen to be either 0.1, 0.3, or 0.5. Values less than 0.5 were chosen because of the

way the detrending algorithm is defined. It is assumed that the 0 category is the most likely

category before the transition point, and that the most likely category transitions from 0 to

1. The transition point was chosen as either k = 50, 100, or 150. The simulation model is the

most favorable for the flipping algorithm, however, simulations from other models, described

in Section 4, also show good performance for the algorithm.

For each value of p, q, and k, one thousand sequences of length two hundred were gener-

ated. The method of moments estimate of q under the DAR(1) model was calculated. Next

mean squared errors (MSE’s) for the estimates of q for each of these forty-five combinations

of the parameters were calculated. Table 2 gives these MSE’s, multiplied by 1000. Only the

results for k = 100 are shown because the results for k = 50, 100 are similar.

The simulation error, on the scale given in the table, is around 1 for the smallest MSE’s

and 5 for the largest MSE’s. The MSE’s for the estimation of q for the raw data (not

detrended) are given in the top row for each value of p. The MSE’s in bold-face type are

those from the detrended series. Maximum likelihood estimates were also calculated, but

the results are not shown because they are very similar to the ones given here.

From the table one can make several observations. First, non-stationarity has a serious
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effect on the estimate of q, particularly when q is small, which would be more typical for real

data. Second, flipping the non-stationary series produces much better estimates of q. Further

examination of the estimates shows that bias is a serious problem with non-stationarity. For

example, if p = q = 0.1 and k = 100, the average value of q̂ was 0.60. With flipping the

average value fell to 0.09, an almost total reduction in bias. (For a less extreme example,

when p = 0.1, q = 0.7, and k = 100, the average value of q without detrending was 0.88.

With flipping it was 0.63). This illustrates the potential value of the algorithm.

4. WEAKLY STATIONARY CATEGORICAL TIME SERIES

The detrending algorithm produces a series which is stationary, but not in the strong

sense described in the introduction. The output of the detrending algorithm is a series such

that the identity of the most common category is the same over time, although its probability

could change. We will term this type of stationarity categorical, or modal, stationarity, and

it will be denoted by C(1). In general, one could have a series for which the identity of the

J − 1 most likely categories remained the same, with all the others changing. This would be

C(J) stationarity.

For completeness, we simulated 1000 C(1) stationary categorical time series of length 200

and estimated q without applying the detrending algorithm. We also did the same for a non-

stationary series where pt = P (Yt = 1) changes linearly with time. That is, pt = β0 +β1t. By

choosing different values of β0 and β1 one can control how rapidly pt changes with t and what

range of values are observed across the sequence. Further, we simulated strongly stationary

series (which we term distributionally stationary, denoted by D(1)) and obtained estimates

of q without applying the detrending algorithm.

The results are given in Table 3. Clearly, trying to estimate q from a nonstationary series

results in poor estimates. Distributional stationary series produce good estimates of q, as

the DAR model itself is distributional stationary. Estimates of q from categorical stationary

series are better than those from nonstationary series. Detrending a nonstationary series to

C(1) using the flipping algorithm results in better estimates for q than does starting with a

pure C(1) stationary series, except for large values of q.
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It is interesting that even though the estimation procedure for q assumes strong station-

arity, parameter estimates from a weakly stationary series are a great improvement over

estimates from series that are completely nonstationary. In turn, parameter estimates from

series resulting from the flipping algorithm give estimates that are almost as good as esti-

mates from D(1) stationary series.

5. DETRENDING THE ALL–STAR DATA

Since 1933, Major League Baseball has played an All–Star game, where the best and

most popular players from the American and National Leagues play against each other. The

All–Star Game was not played in 1945, and two games were played each year between 1959

and 1962. The data were gathered from the Major League Baseball web site (www.mlb.com)

for the years 1950 to 2005.

This time period was the focus largely for the simplicity of illustrating a series with only

one transition. The result for the 2002 game was omitted because the game resulted in a tie.

For the years where two games were played, the winner for that year was taken to be the

league that scored the most combined runs against the other. A plot of the data was given

in Figure 1(b), and a decadal summary of the data is displayed in Table 4.

The series was detrended using the scheme outlined in the section 3. The detrended

series is the opposite of the original series until the year 1985, in other words the detrending

algorithm picked 1985 as the year that superiority switched from the National League to the

American League.

Assuming a stationary DAR model, the value of q was estimated by the sample lag-one

correlation for both the original and detrended series. The estimate for q for the original

series is 0.39, and for the detrended series is 0.19. This is a substantial reduction and shows

that detrending can have a large impact on estimates of q.

6. DISCUSSION

In this paper, we introduce an algorithm for inducing a type of stationarity in categorical

time series data. The algorithm does not really detrend the series in the traditional sense,
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because the kinds of examples we consider have an abrupt change in the probability that

a particular category occurs, rather than a trend in the probability of the occurrence of a

category. The algorithm uses mild assumptions on the data, and produces a series which is

stationary, but not in the strong sense. We term this weaker form of stationarity “categorical

stationarity”.

Using a simple strongly stationary model, it was shown via simulation that fitting a

strongly stationary model to non-stationary data can result in poor estimates of the cor-

relation parameter, but that the estimate can be dramatically improved by first using the

flipping algorithm. Additional simulations show that fitting a model which assumes strong

stationarity of the data to a series which is category stationary (without flipping) gives esti-

mates which are less biased than the estimates would have been if the non-stationary data

were fit.

It is clear that the most widely accepted definition of stationarity in categorical time

series is too strong for some real categorical time series data. Such data typically have

changepoints where the probability of the most likely category changes (or the most likely

category itself changes). However, many models for categorical time series, such as the DAR

and DARMA models, and other methods, such as spectral estimation (Stoffer, 1991; McGee

& Ensor, 1998) were developed under the assumption that the series is strongly stationary.

Additional work is needed to ascertain whether the use of methods intended for strongly

stationary categorical time series would still be valid for categorically stationary categorical

time series. Further extensions and improvements to the flipping algorithm are also left for

future work.
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Table 1: Sequences for example

Number flipped, k Sequence Number of 1’s

0 0 1 0 0 1 0 1 1 4

1 1 1 0 0 1 0 1 1 5

2 1 0 0 0 1 0 1 1 4

3 1 0 1 0 1 0 1 1 5

4 1 0 1 1 1 0 1 1 6

5 1 0 1 1 0 0 1 1 5

6 1 0 1 1 0 1 1 1 6

7 1 0 1 1 0 1 0 1 5

8 1 0 1 1 0 1 0 0 4

Table 2: MSE times 1000 for the methods of moments estimate of q for models which are

not detrended (top row) and detrended (bottom row - bold face type).

True Value of q

0.1 0.3 0.5 0.7

pt = 0.1 331 198 99 35

9 14 18 25

pt = 0.3 26 17 9 4

5 6 5 5

pt = 0.5 5 4 4

6 5 4
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Table 3: MSE times 1000 for the estimate of q for different degrees of stationarity.

Model True Value of q

0.1 0.3 0.5 0.7

non-stationary pt varies 90 55 30 11

D(1) stationary pt = 0.5 4 5 4 3

pt = 0.75 5 6 6 5

C(1) stationary pt varies 15 11 8 5

Detrended to C(1) pt varies 9 8 6 7

Table 4: Decadal summary of National League and American League Wins in the All–Star

game from 1950 to 2005.

Decade Wins by NL Wins by AL

1950’s 6 4

1960’s 9 1

1970’s 9 1

1980’s 6 4

1990’s 3 7

2000’s 0 5
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Figure 1: El Niño and All-Star Data. Note clear shifts in the probability that each series takes on

the value 1.
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Figure 2: Simulated Stationary DAR(1) models with p = 0.5 and q = 0.1 (top), q = 0.5 (middle),

and q = 0.9 (bottom).
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