
Kernel Smoothers: An overview of curve estimators  
for the first graduate course in nonparametric statistics 

William R. Schucany, Department of Statistical Science, SMU, Dallas TX, July 19, 2004 
 

SUMMARY 
An introduction to nonparametric regression is accomplished with selected real data sets, 

statistical graphics, and simulations from known functions.  It is pedagogically effective for many 
to have some initial intuition about what the techniques are and why they work.  Visual displays of 
small examples along with the plots of several types of smoothers are a good beginning.  Some 
students benefit from a brief historical development of the topic, provided that they are familiar 
with other methodology, such as linear regression.  Ultimately, one must engage the formulas for 
some of the linear curve estimators.  These mathematical expressions for local smoothers are more 
easily understood after the student has seen a graph and a description of what the procedure is 
actually doing.  In this article there are several such figures.  These are mostly scatterplots of a 
single response against one predictor.  Kernel smoothers have series expansions for bias and 
variance. The leading terms of those expansions yield approximate expressions for asymptotic 
mean square error.  In turn these provide one criterion for selection of the bandwidth.  This choice 
of a smoothing parameters is done a rich variety of ways in practice.  The final sections cover 
alternative approaches and extensions.  The survey is supplemented with citations to some 
excellent books and articles.   These provide the student with an entry into the literature, which is 
rapidly developing in traditional print media as well as on line.  
 

1. INTRODUCTION 
 Nonparametric curve estimators are valuable tools in statistical practice.  There are a rich 
variety of such curves and surfaces.  A very basic curve estimator is one for a continuous density 
function. Histograms are widely used rough estimates of probability density functions (pdf).  
These blocky displays have a venerable history.  They also have some deficiencies relative to 
estimators that have the same continuity as an assumed model pdf,  f(x).  See Sheather (2004). 

The dynamic graphics that are available on line (http://www.stat.sc.edu/rsrch/gasp/) 
provide a nice introduction to the issue of bin size for histograms.  The java script by Webster 
West demonstrates the effect of user-controlled continuous variation of bin widths for the Old 
Faithful data.  The 107 times between eruptions of the geyser in Yellowstone Park are evidently 
bimodal. The student can visualize a smoothly changing array of bin sizes from large enough to 
hide the two modes to small enough to produce spikes at each of the data points. These graphics 
for the distributions of univariate observations have been extended to higher dimensions.  These 
topics are covered well in Scott (1997).  Next we change to curves for patterns of association. 
 

Figure 1. Histogram of Eruption Time Intervals 
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 The same tensions exist for a curve that models the association between a response Y and 
predictor X.  One may visualize the relationship in scatterplots of the yi against the xi.  When there 
is no sound reason to force a simple straight line, then we may let the data speak for themselves.  
Figure 2 displays some real data in which a nonlinear association is obvious. The scatterplot is 
Figure 1.1. in Wand and Jones (1995) of data from Ullah (1985).  Chu and Marron (1991) use this 
same example in their introduction to kernel regression.  The validity of a feature such as the dip 
in the forties is a challenge to curve estimation methodology. (As always, one must be wary of 
selection bias in any cross-sectional study.) 
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Figure 2. Scatterplot of log (income) versus age for 205 Canadian Workers. The ordinary least-
squares line is dashed.  The solid curve is a local-linear fit with the biweight kernel (dotted and 
arbitrarily centered at 33), whose bandwidth h =7.14 is optimal in a sense explained in Section 6. 

  
There are several alternatives for producing a smooth curve to model some characteristic 

of the distribution of Y given each value of x.  Typically we are interested in the regression 
function  

m(x)  =  E[ Y | X=x ]. 
 
In addition one may be willing to impose some smoothness constraints on this unknown m(⋅) and 
an additive error model for the n pairs,  
 

Yi = m(xi) + εi ,    i = 1, .., n.  (1) 
  
The conventional approach is to treat the εi as independent and identically distributed.  The 
assumption of constant variance can be relaxed to allow a variance function, σ (xi). See Ruppert, 
Wand, and Carroll (2003) for more on heteroscedastic models and extensions to mixed models.   
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An accessible introduction to the basic ideas of nonparametric regression may be found in 
Altman (1992).  The introductory sections of books that I recommend to beginning students are 
Chapter 1, Eubank (1999); Sections 2.1-2.3, Hart (1997); Section 5.1-5.6 Wand & Jones (1995).  
The book by Fan and Gijbels (1996) is a thorough treatment of kernel methods for local 
polynomials from one perspective.  Loader (1999) provides another perspective on several basic 
issues.  These two perspectives will come into focus in Sections 2.1 and 2.2.  Extensions beyond 
the univariate case and others are briefly described in Section 6. 
 A great deal of understanding may be gleaned from simply reading books and articles.  
Many students absorb quite a lot in the passive comprehension of text, formulas, and graphs.  
Even so, more is added by an activity that involves running the computer routines.  In my 
experience such statistical procedures are more completely grasped by actually doing them.  
Instructors and students have greater insight into nonparametric regression after getting a real set 
of data, plotting the pairs, using one of the available smoothers, and adding the resulting curve to 
the scatterplot.  For the data in Figure 2 one may examine a rich variety of optional fits.  In the 
present introduction there is a brief treatment of what, who, when, and why. 
 
What: The essential idea is local averaging.  Thus it is sensible to restrict our attention to linear 
combinations of the responses. The parallel linear filters in engineering and physics provide some 
support for this approach.  The size of the local neighborhood is called the bandwidth. We will 
consider broader classes of local models in subsequent sections, as well as relaxing the view that 
neighborhoods are finite windows.  
Elementary Illustration:  The data in Figure 3 are simulated from (1) with the mean function 
m3 (x) =  4.26 [e –9.75x – 4 e –19.5x    + 3 e –29.25x ] evaluated on an equally spaced grid of 100 x’s.  
Such a linear combination of three exponentials as m3 (⋅) has been used to simulate a function with 
changing curvature since Wahba and Wold (1975).  It resembles the familiar “motorcycle data” 
used by Fan and Gijbels (1996) to motivate the challenge of local modeling.  To simplify the task 
of understanding analytical properties we will consider the Priestly and Chao (1972) (PC) 
estimator in detail in Section 2.1.  There are two distinctly different versions of this elementary 
scatterplot smoother, known as Nadaraya-Watson (Nadaraya (1964) and Watson (1964)) and 
Gasser-Müller (1979) (GM).  All three are asymptotically equivalent.  The Nadaraya-Watson 
(NW) estimator is the special case of fitting a constant locally at any x0.  Here we assume without 
loss of generality that the x’s are confined to the unit interval, x ∈ [0,1].  The NW estimate of 
m(x0) based on n pairs,  (x1, y1),…, (xn , yn ) is  
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where w (xi –x0) = K (xi –x0, h (xi)).  The details of the kernels, K, the bandwidths, h, and the 
design, { xi }, will be developed in Section 2.  This is clearly a linear combination of the yi.   All of 

the smothers in this paper will have the form .  The weights, l∑
=

n

i
ii yl

1
i , are determined in several 

ways in practice.  Figure 3 displays a specific evaluation of the weighted average in (2) at x0 = 2/3 
using the biweight kernel, K(z) ∝ (1-z2)2 , and bandwidth h = .1. 

 3



X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

 
Figure 3.  Fitting a local constant with NW in (2), data from m3 plus normal noise (σ=.065), 

n =100, x0 = 2/3, bandwidth h = 0.1, and a biweight kernel (in red). 
 

Two Kinds of Windows: The kernel weights, K, are calculated under two distinct approaches; 1) 
a fixed window width as in Figure 3 and 2) a fixed fraction of the data.  In the first approach the 
bandwidth is typically denoted by h.  When the generic kernel has compact support, e.g. uniform 
on (-1, 1), triangular, quadratic, or biweight, the estimator depends only on those pairs whose xi are 
in the interval (x0 – h,  x0 + h).  In this formulation the bandwidth (or smoothing parameter) is a 
scale parameter.  When the kernel is a pdf such as the standard normal, h is the standard deviation. 

The second approach uses the k nearest neighbors to x0.  That is, the pairs with xi closest to 
x0 influence the estimate regardless of how distant xi may be from x0.  These two distinct avenues 
yield either 1) a random number of xi within the fixed width h or 2) a fixed number k within an 
interval of random width.  For equally spaced x’s these two are equivalent. When the spacings 
between the x’s are not constant, the estimates and their properties differ.  The symbol for kernel 
functions, K, is not to be confused with the integer k for the number of nearest neighbors. For 
loess, an alternative implementation of local-linear smoothing in S-Plus, the definition of span is 
the fraction k / n.  Even though the default value (span = 2/3) may seem rather large, one may find 
that the results for n=100 bivariate normals with ρ = .6 can be surprisingly nonlinear.  The 
remainder of this paper will focus only on the first approach with a bandwidth h. 

 
History: Loader (1999) gives a thorough coverage of the origins of local fitting, tracing it to the 
late 19th and early 20th century.  Notably, the early contributions in actuarial science were 
extensive and were in widespread use.  A dataset and a linear smoother from Spencer (1904) 
address what was then known as the problem of “graduation”.  
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Early contributors to the kernel density estimation alternatives to histograms are Rosenblatt 
(1956) and Parzen (1962).  For a scatterplot the parallel to the histogram is a set of piecewise 
constants over intervals of equal length called a regressogram by Tukey (1961).  See Kotz, 
Johnson, and Read (1988) for a brief introduction. Figures 1.3 through 1.5 in Eubank (1999) 
illustrate a regressogram fit to simulated data using a partition with 7 bins.  Tukey’s title phrase 
“Curves as parameters...” anticipates the point of view that is essential to functional data analysis 
(FDA) introduced by Ramsay and Silverman (1997).  



 The monograph by Wand and Jones (1995) is a comprehensive coverage of both kernel 
density estimation and kernel regression.  They treat the entire class of kernel-type estimators of a 
regression function known as local polynomial kernel estimators.  These estimate m(x0) by fitting 
a polynomial of degree p by weighted least squares.  The class was introduced by Stone (1977), 
studied by Cleveland (1979), and many of the properties established by Müller (1987) and Fan 
(1992).  The importance of the special case p=1, or local linear kernel regression, is due in part to 
its simplicity.  Local linear kernel regression has better properties than NW at the boundaries and 
asymptotically. Such large-sample bias comparisons are deferred to the next section. 
 

Local linear smoothers, derived in Section 2.2, share the advantage of being local with 
estimators such as NW.  In Section 2 one may get some insight into the properties that make p=1 
the recommended polynomial degree.  It may be easy to overlook the fact that one is fitting a 
different straight line at every point. The curve estimator  is a continuous function of x)(ˆ 0xm 0.  
One of the elementary concepts in differential calculus asks a student to think of the smoothly 
progressing sequence of tangent lines.  Here the smooth transition of lines fit at x0 is for a different 
purpose, but the analogy may help some.  

This smooth curve goes well beyond the illustration in Figure 4, which displays the smaller 
collection of .  The simulation is an illustration patterned on a 30/70 
mixture of two normal pdfs with scales that differ by a factor of two. Specifically, 

)(ˆ,),(ˆ),(ˆ 21 nxmxmxm K

m2(x) =  .3 exp{ -64(x – .25)2 } + .7 exp{ -256(x - .75)2 }I(0, 1) ( x).  Again there is a grid of 100 equally 
spaced x’s and additive normal noise with σ  ≅ .04 = 5%(range of m2 ). 
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Figure 4. Data from m2(x) on a grid of n =100 with local linear estimates of m(x1),…m(xn) 
at those x’s. 

Motives:  A natural question in the minds of many is why do we do nonparametric regression?  
There are several good reasons for producing such curves. One is as a descriptive statistic.  In 
other words, a data analyst can accomplish something by graphing an estimate of the unknown m 
on the scatterplot.  Another more valuable one is for testing a simple parametric model, such as the 
dashed straight line in Figure 2.  The comparison of the fits under the two models allows us to 
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consider lack-of-fit tests, which is a compelling reason for those who appreciate George Box’s 
saying: “All models are wrong, but some are useful.”   A third application is the flexible 
adjustment for covariates.  This process of inference about the parameters of a model in the face of 
a nonparametric nuisance is known as semiparametric.  An elementary example might involve a 
one-way layout of subject’s responses, Yij = µ  + βj  + m(xij) + εij    in which the effect of age, x, 
could be controlled without imposing a linearity condition. 

2. MEANS AND VARIANCES FOR LOCAL SMOOTHERS 
As with kernel density estimators (see Silverman (1986)) we can produce approximations 

for the mean and variance of .  A Taylor series expansion of the unknown mean function is 
the classic approach to an analytical approximation of the large sample properties.  The leading 
terms of these expansions yield asymptotic expressions for the bias and the variance of kernel 
estimators, .  The role of K as a symmetric pdf is apparent in the expansion (5).  

)(ˆ 0xm

)(ˆ 0xm
2.1 Weighted Average: The more intuitive local average by Priestley-Chao (PC) will aid our 
understanding of these properties, which are more rigorously demonstrated by Benedetti (1977).  
Assume here without loss of generality that 0 ≤ x1 ≤ x2  ≤ x3 ≤…≤ xn ≤ 1, known as a fixed design.  
The PC estimator is  
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where K is a kernel constrained to be a unimodal pdf supported on (-1, 1) and symmetric about 
zero.  Approximating sums by integrals may make it more apparent that these estimators are 
convolving K(⋅) with m(⋅).  The estimator in (3) is asymptotically normal and the convolution is 
consistent, provided that the scale parameter h becomes vanishingly small.

The equation that follows derives from an elementary application of the expectation of the 
Yi  from model (1).  For these approximations to hold requires an infinitesimal h as n gets large, 
technically hn→0 as n→∞, which also brings the xi closer together. Approximating the sum over i 
by an integral with respect to x,  
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A change of variable, z = ( x0 - u)/ h  so that u =  x0 – zh,  yields 
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Using a Taylor series expansion of m(⋅) about x0, the integral in (4) is approximately  
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for sufficiently small h.  For the normal kernel the integral is over (-∞,∞).  Thus formally 
 

)](ˆ[ 0xmE PC   = m(x0) ∫ K(z) dz - h m′(x0)  ∫ z K(z) dz + (h2/2) m″(x0) ∫ z2 K(z) dz - …  (5) 
 
Since K is a pdf, which is symmetric about zero, the leading term of the bias expansion is  
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with the obvious notation for the second moment.  Similar approximations for small h lead to  
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See Fan and Gijbels (1996), Section 3.7 for a derivation of such asymptotic bias and variance 
expressions for more general designs and a larger class of estimators.  
Optimal Bandwidths:  Notice that the bias in (6) is small for small h and the variance in (7) is 
small for large h, so a proper choice of h involves the usual bias-variance tradeoff.  A reasonably 
standard way to accomplish this tradeoff is to minimize the leading term of the expansion of the 
asymptotic mean square error at x0.  Therefore as n→∞ so that hn→0 in a manner such that nh→∞, 
summing the variance and the square of the bias yields (introducing some obvious new notation) 
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The large-sample approximations here hold only for values of x0 that are not within one bandwidth 
of either end of the range.  In the limit hn becomes small enough that x0 will not be too close to 0 
or 1.  When that close proximity to either end of the range occurs, there is a boundary bias that is 
not captured by the expression in (6).   

 Differentiating (8) with respect to h and setting it to zero yields ,03
2 =+− Bh

nh
A  

which implies h5 = A/Bn. Thus the asymptotically optimal bandwidth is h
*
(x0) = [A/Bn] 1/5.   

 Substituting this h
*
(x0) into (8) yields 5/4
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Therefore the rate of convergence to zero is of order n –4/5, slower than the rates of order n-1 that 
are typical for optimal parametric estimation.  That there is a penalty for the more difficult task of 
nonparametric function estimation should not surprise anyone.  This fraction is specific to the 
model assumptions. 
 In addition to formalizing the optimal rate of convergence there is something quite 
noteworthy in the expression for the optimal bandwidth 
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As with many optimal quantities, this depends on the unknown regression function, m(⋅).  
Specifically, it depends on the curvature of m(⋅) at x0 as measured by the second derivative, m″(x0).  
The fact that except for σ  the ingredients of h*(x0) are known has enticed a line of research to 
produce estimates of m″(x0) and substitute these into h*(x0).  These so-called “plug-in” rules are 
discussed in Section 6.  
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 Recall that the dominant term of the bias expansion is  m″(x0) µ2(K) h2/ 2 for any h>0.  
This implies that the bias is most severe near peaks and troughs, where m″(⋅) is greatest.  
Furthermore it will be positive in any trough and negative at any peak.  This explains why these 
estimators tend to fill in valleys and undershoot peaks regardless whether one is using an optimal 
h*(x0).  See Figures 4 and 5 for illustrations of this. 
 
Optimal Kernels:  Still another interesting thing may be learned from these asymptotic 
expressions for the minimized amse in (9).  The factor that depends on the kernel, K, is .  It 
follows that the kernel that is best in this sense minimizes the scale-invariant product  
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subject to K(z) ≥ 0 for every z,  
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 The solution due to Hodges and Lehmann (1956) is familiar to students of 
nonparametrics using ranks.  Hodges and Lehmann were seeking this density as a worst-case pdf 
for the ARE of the Wilcoxon rank sum to the two-sample Student t.  They obtained their optimal 
result in a somewhat different context.  However, in both settings the goal is to identify functional 
extremes for asymptotic efficiencies.  Their classical finding is 
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This best kernel function has a scale parameter a, which may be set to a2 = 1/5 for convenience.  
The simple quadratic, K*(z) = .75[1 – z2] I (-1, 1)(z) is often called the Epanechnikov kernel due the 
derivation by Epanechnikov (1969) in the density estimation context. However, earlier credit may 
be due to Bartlett (1963).  Wand and Jones (1995) show this holds more generally than for (9).  
With the concept of canonical kernels they demonstrate a decoupling of K and h, rewriting (8) as 
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Design Considerations: Essentially the same large sample results hold for local linear fitting.  
Explicit expressions for local polynomial estimators are given in Wand and Jones (1995).  They 
derive details for a special case of local linear for fixed equally-spaced x’s in Section 5.3, which is 
outlined here in the next section.  The more general development for local polynomials is in the 
book by Fan and Gijbels (1996).  These latter authors investigate a breadth of material including 
estimating rth derivatives, m(r) (⋅), random designs, (X1 …, Xn), bandwidth selection, and effective 
kernels. 
 There is an important feature that Fan and Gijbels (1996) call design adaptation.  The 
term suggests a property of adapting to either fixed or random design.  This valuable characteristic 
of local polynomial fits is not shared by some other kernel methods.  Specifically, these local 
polynomial bias and variance expressions for the fixed design are identical to those for the random 
design.  This is not true for Gasser-Muller estimators (GM) for example, which has a variance that 
is greater by a factor of 1.5 for random designs.  A balanced comparison of these two approaches 
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appeared in Chu and Marron (1991).  They carefully investigate properties of two distinct curve 
estimators, “evaluation weights” represented by NW in (2) and GM “convolution weights” 
represented by  

        (11) ∑ ∫
=

−

−=
n

i

s

s
jGM

j

j

dttxKYxm
1

0

1

,)()(ˆ

where si = (xi + xi+1)/2,  x0 = -∞ , and xn+1 = +∞.   At that time the authors and discussants agreed 
that kernel methods were worthy candidates for improvement.  In the process they identify several 
distinct philosophical points of view that data analysts can bring to the task of smoothing. Fan and 
Gijbels (1996) make a convincing case that local polynomials eliminate these and other 
deficiencies of kernel fits of local constants.  They do so from an asymptotically small h 
perspective. 
2.2 Local Polynomial Fitting: 
 This is weighted least squares estimation of β = (β0, β1, …, βp)T, the  p+1 coefficients of 
a polynomial of degree p.  The objective is to minimize 
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where Kh(t) = K(t/h) / h. The standard solution is the (p+1) × 1 estimator 
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provided that the matrix is nonsingular.  Here Y is the n × 1 vector of responses, 
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is the n × (p+1) design  matrix, and W0 =diag[Kh(x1 – x0), …, Kh(xn – x0)] is the n × n diagonal 
matrix of weights. 
 With this centering on x0, when evaluated at x0, the estimate,  is the 
intercept term, where e

,ˆ);(ˆ 10 βeTpxm =

1 is the (p+1) × 1 vector (1, 0, 0, …,0)T.  When p = 0 this gives NW in (2) 
and when  p = 1 an explicit formula for local linear (LL) is  
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where , j = 1, 2.  This form in (11) is obviously linear in Y.  Loader 

(1999) examines LL relative to local quadratic and cubic alternatives from a nearest-neighbor 
finite-sample perspective including valuable advice on residual plots and effective degrees of 
freedom. 
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 Large sample normality for this entire class of linear smoothers is immediate for a fixed 
value of h.  Even so, when we let the data guide the choice of bandwidth to be denoted by , there 
is still a legitimate sampling distribution for .  Clearly the normal approximation may now 

ĥ
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be quite inadequate.  Nonetheless, there are ways to construct approximate confidence intervals, 
which are the subject of Section 7.  This capability to use a data-based value, , is an essential 
feature of kernel smoothers. For us to move beyond an arbitrarily fixed h, any reasonable choice is 
necessarily data dependent. 

ĥ

 
 

3. BANDWIDTH SELECTION 
 The selection of appropriate values for h is the most challenging aspect of nonparametric 
regression.  This is true for kernel smoothing as well as for any of the other methods, which all 
have a smoothing parameter of some sort.  There are numerous approaches to this task of adapting 
to the level of the noise and the amount of structure in the data set at hand.   The efficiency of the 
estimator is far more sensitive to the value of h than it is to the choice of K.  Movies that teach 
lessons about local polynomial smoothing by J. S. Marron, D. Ruppert, E. K. Smith and G. Conley 
are online at http://www.stat.unc.edu/faculty/marron/Movies/locpoly_movies.html. 
 
Plug-in Estimators: This approach addresses efficiency through the asymptotic mean square error 
but attempts a direct estimate of the optimal h* in (10).   Substituting estimates of unknown 
quantities in that formula produces a variety of plug-in estimates, have worked well in local linear 
regression in some settings.  See Wand and Jones (1995) for a description of these bandwidth 
selectors and citations to the relevant literature.  Fan and Gijbels (1996) give the details of some of 
these and implement both constant, also known as global, and variable bandwidths.  They 
elaborate on the basic concept and elucidate the more sophisticated applications of the plug-in 
principle. 
 
Cross Validation: Other “classic” approaches estimate the finite sample MSE(x0) or any other 
information measure and then minimize this.  The basic idea behind cross validation (CV) is to 
hold out part of the sample with which to evaluate the performance of a predictor.  A common 
practice is to leave one out; here that is ( xi , Yi) for each   i = 1, .., n.  The predictor of the unused 
Yi based on the other n-1 pairs may be denoted by .   These n prediction errors are 
summarized in least squares CV by  
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There are justifications relating the expectation of this criterion to the MSE averaged over the n 
design points.  The CV estimate of the bandwidth that is optimal in this sense is the minimizer of 
(13).  Alternatives that leave out nonoverlapping fifths or tenths of the sample are mainstays for a 
wide spectrum of nonparametric regression estimators and other prediction and classification rules 
in Hastie, Tibshirani, and Friedman (2001). 
 In Hart (1997) risk estimation and generalized cross validation (GCV) are covered along 
with his “one-sided” CV.  A recent article by Hart and Lee (2004) presents convincing evidence of 
the relatively undesirable variability of leave-out-one CV bandwidths. This paper offers both an 
empirical and a theoretical basis for CV’s tendency to produce unrealistically small estimates of h.  
The relative merits of such classical methods versus plug-in rules are explored in depth in Chapter 
10 of Loader (1999).  Signorini and Jones (2004) provide a thorough examination of these 
selection methods for both NW and LL in the special case of binary responses.  
 
Information: The Akaike Information Criterion (AIC) was originally designed for parametric 
models as an approximately unbiased estimate of the expected Kullback-Leibler information.  For 
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linear regression and time series models Hurvich and Tsai (1989) showed that the bias of AIC can 
be large in small samples.  This leads to over-fitting, especially as the dimension of the candidate 
model approaches the sample size.  One may think of AIC as a maximized log likelihood plus a 
penalty for the number of parameters. They proposed a corrected version, denoted by AICC, which 
is less biased than AIC.  Hurvich, Simonoff, and Tsai (1998) investigate the use of AICC to choose 
smoothing parameters.  They show that using AICC avoids the large variability and the tendency to 
undersmooth (compared to the actual minimizer of average squared error) that is typical for other 
classical approaches such as GCV or AIC.   

Consider the same simulation of m3 (x) as in Figure 3.  Here in Figure 5 is an evaluation of 
the entire curve estimate (11) with the same value of h = .045 throughout. This small h is 
apparently not a good choice for x > .4, because of the numerous oscillations associated with 
undersmoothing . 
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 Figure 5. Local linear curve estimate (solid line) for the same data as Figure 3 with h = 
.045. The biweight kernel (dotted) is displayed at three selected places and the fitted lines are 
dashed in the corresponding shaded bands. 
 
Recursive Partitioning:  For nonparametric regression problems with complicated structure a 
single global smoothing parameter is unsatisfactory.  Specifically, kernel estimators can be 
improved by adapting to local curvature.  There has been some progress with piecewise constant 
bandwidths for local linear fitting and AICC.  One new approach uses a recursive partitioning (RP) 
to simultaneously determine both the intervals in the explanatory variable and the bandwidths used 
throughout the intervals. The result is a regression tree with separate  values used over 
adaptively selected regions in the predictor variable.  We denote these bandwidths by h

ĥ
RP. 

 
Consider local linear regression estimates of m = (m(x1), …, m(xn))T, the regression 

function at each of the observed predictors x = (x1, …, xn)T.  It has been noted by Hurvich, 
Simonoff and Tsai (1998), that local linear regression is a linear smoother, i.e., 

, where y = (yym )()(ˆ RPRP hHh = 1, …, yn)T is the response vector and  is the smoother (or )( RPhH
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hat) matrix resulting from evaluating (12) at each xi . Thus we have, what one may think of as 
expected log likelihood plus a penalty for the effective number of parameters, 
 

))},(({)ˆlog( 2
RPnC hHtrAIC ψσ +=       (14) 

 
where is the mean squared error (MSE) of the residuals at the observed predictors and Ψ2σ̂ n(t) = 
[1+t/n] / [1–(t+2)/n] for 0< t < n-2 and  = ∞ otherwise, is the penalty function applied to the trace 
of the smoother matrix.  In an obvious parallel with linear regression, the quantity tr(H) can be 
interpreted as an effective number of parameters, a measure of model complexity.  See Section 7.6 
of Hastie, Tibshirani, and Friedman (2001).  This reflects the “roughness” of the estimated curve 
in the sense of a more complex basis.  As the global bandwidth decreases, decreases and the 
estimates are less biased, whereas the tr(H(h)) and 

2σ̂
))}(({ hHtrnψ increase as the estimated curves 

become less smooth.  Pitblado (2000) demonstrated this behavior of AICC for global bandwidth 
choice.  Figure 6 illustrates one such result. 
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Figure 6. The true regression function m2 (dashed) and the local linear fit (solid) with the 

AICC minimizing global bandwidth (shaded region along the x axis) 
 

Consider curve estimates using simulated data from the function m2, , which was defined in 
Section 3.  Figure 6 shows the true regression function and the local linear fit with a global 
bandwidth.  The estimated curve with a global bandwidth h = 0.040 exhibits undersmoothing of 
the left half and oversmoothing of the right mode. 

 
     How do variable bandwidths, in particular piecewise constant bandwidths, help us 

in this respect?  Some improvements are obvious in the estimated curve with variable bandwidths 
in Figure 7.  The new method found a partition of two with a split at x = 0.66 and a variable 
bandwidth hRP = (h1, h2), where h1 = 0.078 is for the left subinterval and h2 = 0.033 is for the right 
sub-interval.  Regression trees are a recognized feature of the nonparametric landscape.  Recursive 
partitioning for appropriate variable bandwidths is a successful new branch.  For a full description 
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of the methodology see Jia and Schucany (2004).  They also report the results of a Monte Carlo 
study of the effects of curvature change, sample size, and signal-to-noise ratio. 
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Figure 7. The true regression function m2 (dashed) and the local linear fit (solid) with two 
bandwidths, hRP, (shaded regions along the x axis) determined by recursive partitioning. 

 
 

4. CONFIDENCE INTERVALS 
 All of the linear statistics that we have considered, NW in (2), PC in (3), and LL in (11) 
may be put in the form .  With nh sufficiently large  is approximately normal 

with mean E [ ] and Var [ ] = 

i
i

i Yhxu ),( 0∑ )(ˆ 0xm

)(ˆ 0xm )(ˆ 0xm ∑
i

iu 22σ .  In some settings this would be enough to 

produce approximate 1-α confidence intervals.  Unfortunately for nonparametric curve estimation 
the large-sample correctness of this does not hold. 
 
 Suppose that model (1) holds with constant variance, σ2.  The naïve interval 
 

         (14) 
2/1

1
0

2
2/0 )(ˆ)(ˆ ⎥

⎦

⎤
⎢
⎣

⎡
± ∑

=

n

i
i xuzxm σα

 
with σ̂  consistent for σ  may not have the asymptotically correct coverage.  That is, even though 
σ̂  → σ  and  → m(x)(ˆ 0xm 0) when both n → ∞ and nh → ∞, the coverage of (14) need not 
converge to 1-α  as a confidence interval for m(x0).  Hart (1997), Section 3.5,  presents a formula 
for the limiting coverage for an interval based on GM in (11).  The culprit is the large-sample 
behavior of the bias, which is not degenerate and offsets the proper normal interval.  There have 
been several proposals to correct intervals based on a broad class of linear fits.  Section 9.2 in 
Loader (1999) addresses these corrections to obtain both approximate pointwise confidence 
intervals and approximate simultaneous confidence bands.   
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5. OTHER WAYS TO DO THIS 
 There are some parallel and some different challenges in other approaches to fitting 
smooth models for the relationship of y to x.  These others include splines and expansions in terms 
of basis functions, e.g., wavelets or Fourier series, see Ramsay and Silverman (1997) and Hastie, 
Tibshirani, and Friedman (2001).  These alternative techniques involve selecting smoothing 
parameters, whether these are the number of basis functions in an expansion, the number of knots, 
or explicit weights in the bias-variance trade off.  They all have their strengths and weaknesses in 
different settings, depending on the objective, the curvatures present in the unknown model, the 
signal-to-noise ratio, the sample size, the arrangement of the design  points, and so forth. 
However, local linear kernel regression has the most direct interpretation in terms of familiar, 
intuitive, simple functions. 
 

6. EXTENSIONS FOR KERNELS 
Derivatives:  Estimation of the ν th derivative, , is presented by Fan and Gijbels (1996) as 
one of the advantages of using a local polynomial of degree p   In Section 3.3 they analyze 
asymptotic variance as a function of ν and p and recommend that p -ν  be odd.  This is consistent 
with the general desirability of local linear (p=1) for the function m(⋅) for whichν = 0. 

)( 0
)( xm ν

 
Multivariate predictors: Ruppert (1997) proposes a local bandwidth selector for local 
polynomial fits that adapts easily to multidimensional explanatory variables.  Fan and Gijbels 
(1996) devote all of Chapter 7 to multivariate predictors. They discuss local polynomial univariate 
smoothers as the building blocks for a variety of approaches.  Ultimately they provide details for 
the extension of local linear regression to a d-dimensional explanatory, X. 
 
Change-point analyses:  This represents a fertile area for extensions to statistical methodology.  
The prototype model has a jump discontinuity in the mean function, m.  There are obvious 
parallels in higher dimensions, variance functions,  transition probabilities, and abrupt changes in 
the complexity of models, e.g.   ARMA(p, q).  In the prototypical situation a smoother is designed 
not to respond to such jumps.  Wavelets seem to be better suited to reproducing such irregular 
(unsmooth) features.   The use of kernel fits separately on each side of a candidate discontinuity in 
m(x0) has been investigated by Müller (1992), Loader (1996), and Gerard and Schucany (1997). 
 
Dependent data:   Hart and Lee (2004) address deficiencies of CV for bandwidth selection.  
Excellent coverage of the issues that arise for dependent data may be found in Lin, Wang, Welsh, 
and Carroll (2004).  These authors establish a fundamental difference between kernels and splines 
in this setting.  Their key finding is that splines have equivalent kernel representations when the 
additive model (1) has independence, but not when the εi  are dependent.  The essence of the 
difference is their “local” behavior in which kernels are local and splines are not.  Furthermore, 
they conclude that there are compelling reasons to recommend efficient non-local splines for such 
applications.   
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