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Abstract

In this paper we introduce a new approach for filtering data whose periodic

structure changes approximately monotonically in time. The paper focuses

primarily on the linear case, i.e. the case in which periods change approxi-

mately like at + b.

The linear case depends on a class of processes referred to as Euler

processes, introduced by Gray and Zhang (1988) and more recently extended

by Gray, Vijverberg, and Woodward (2004). Filtering in the more general

case is based on the G(λ) processes introduced by Jiang, Gray and Wood-

ward (2004), i.e. for data whose frequencies change asymptotically in time

like αtβ. Some simulated and real data examples are given.
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1. Introduction

Gray and Zhang (1988) introduced continuous M -stationary processes for

the purpose of analyzing long memory data. Their work has been recently

extended by Vijverberg (2002) and Gray, Vijverberg, and Woodward (2004).

In those papers it is shown that M -stationary processes are very good models

for data whose periodic structure changes approximately linearly or equiva-

lently, processes whose frequencies change like (at + b)−1. Examples of such

data include bat echolocation signals, whale calls, and many other physical

signals. Several approaches for analyzing data with time varying frequencies

such as wavelets, short term Fourier transforms (SFT), Wigner distributions

(WD), etc., have been proposed in the literature. In this paper we show that

the method of time deformation when applied to M -stationary processes

and their generalization, G(λ) processes, is particularly useful for filtering

applications when the realization has a monotonically changing frequency

structure.

In Section 2 we briefly review some of the properties of M -stationary

processes and their dual processes. In Section 3 we describe techniques for

filtering M -stationary processes and demonstrate the procedure using exam-

ples. Although our focus is on M -stationary processes we also show how the

method can be extended to processes whose frequencies change like αtβ. In

Section 4 we briefly discuss G(λ) processes and provide examples to illustrate

filtering in this more general setting. Software for M -stationary and G(λ)

modeling is available at http://faculty.smu.edu/hgray/research.htm.
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2. The Discrete M-Stationary Process

Definition 1: A continuous stochastic process, {X(t); tε(0,∞)} is said to

be multiplicative stationary (M -stationary) if the following hold for every

τ ∈ (0,∞):

i) E[X(t)] = µ

ii) Var(X(t)) = σ2 <∞

iii) E[(X(t) − µ)(X(tτ) − µ)] = RX(τ)

Examples of continuous processes that are M -stationary include

X(t) = A cos(β ln t+ φ), (1)

where t ∈ (0,∞) and φ ∼ U(0, 2π) and the pth order Euler process

tpX(p)(t) + φ1t
p−1X(p−1)(t) + ...+ φp(X(t) − µ) = ε(t) (2)

where ε(t) is M -white noise (see Gray and Zhang, 1988).

Definition 2: Let X(t) be an M -stationary process. Then the process

{Y (u) : −∞ < u < ∞}, where Y (u) = X(t), with t = eu is called the dual

of X(t).

It is easily shown that X(t) is M -stationary if and only if Y (u) is station-

ary, and that the dual of the Euler process in (2) is a continuous pth order

autoregressive (AR) process,

Y (p)(t) + α1Y
(p−1)(t) + ...+ αp(Y (t) − µ) = a(t). (3)

See Gray and Zhang (1988) .
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Remark: The derivatives in (2) and (3) are considered formally as is the

usual treatment for continuous AR processes. These statements can be made

mathematically more rigorous by introducingX(t) as a general linear process,

but this approach is not as attractive from an instructive or physical perspec-

tive. See Priestley (1981).

Definition 3: Let h > 1 and S = {t : t = hk, k = 0,±1,±2, ...}. Then the

discrete stochastic process {X(t) : tεS} is said to be a discrete M -stationary

process if X(t) satisfies Definition 1 for every t ∈ S and τ ∈ S.

Definition 4: The discrete process Yk = X(hk), k = 0,±1,±2, ... is called

the dual of X(hk) = X(t).

If CY (k) denotes the autocovariance of Y , then CY (k) = RX(hk) and

{X(t) : t ∈ S} is M -stationary if and only if {Yk; k = 0,±1, . . .} is stationary.

From this observation we see that RX(hk) = RX(h−k).

Examples of discrete M -stationary processes are

X(hk) = cos(β ln hk + φ) (4)

where φ ∼ Uniform(0, 2π), k = 0,±1, . . ., and

(X(hk) − µ) − φ1(X(hk−1) − µ) . . .− φp(X(hk−p) − µ) = a(hk), (5)

k = 0,±1, . . .

The process in (5) is called a discrete pth order Euler process and its dual,

Yk, is the pth order discrete autoregressive process given by

(Yk − µ) − φ1(Yk−1 − µ) − . . .− φp(Yk−p − µ) = Zk, (6)
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where Zk = a(hk). Henceforth, we will take µ = 0. For more details see

Gray, Vijverberg and Woodward (2004).

In Vijverberg (2002), it was shown that the limit, with probability one,

as h → 1 of a discrete Euler process is the continuous Euler process defined

by (2). Additionally in Choi, Gray, and Woodward (2003), it was shown that

if one samples a continuous Euler process at t = hk, the resulting process is

a mixed discrete Euler process. However if this process is invertible it can

then be well represented by a discrete Euler process. In the remainder of

this paper we will therefore consider only the discrete process, but it should

be kept in mind that the discrete Euler process will be viewed as a sampled

continuous process.

Definition 5: The discrete M -spectrum is defined as the discrete Mellin

transform of RX(hk), i.e.

GX(f ∗) =
∞∑

k=−∞
h−2πif∗kRX(hk),

=
∞∑

k=−∞
e−2πif∗k lnhRX(hk) (7)

where h > 1, |f ∗ ln h| ≤ 1
2
, and f ∗ is referred to as M -frequency.

Since CY (k) = RX(hk), it is clear from (7) that GX(f ∗) = SY (f), where

f = f ∗ ln h and SY (f) is the usual spectrum of the dual process Yk.

IfX(t) is a discrete Euler process, from (6) it follows that the M -spectrum

is given by

GX(f ∗) =
σ2

a

|φ(e−2πif∗ lnh)|2

=
σ2

a

|1 − φ−2πif∗ ln h
1 − . . .− φpe−2πipf∗ lnh|2

, (8)
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and the M -spectral density is

gX(f ∗) =
σ2

a

σ2
X |φ(e−2πif∗ lnh)|2 (9)

where φ(B) = 1 − φ1B − . . .− φpB
p is the autoregressive operator.

In addition to the M -spectrum and M -frequency, f ∗, for processes with

time-varying frequencies we are most often interested in the instantaneous

period, instantaneous frequency and instantaneous spectrum, i.e., the period,

frequency and spectrum at any given t.

To this end Jiang, Gray, and Woodward (2004) and Gray, Vijverberg

and Woodward (2004) introduce the instantaneous period, instantaneous fre-

quency and instantaneous spectrum of a G(λ) process and an M-stationary

process respectively. Their definitions are such that the instantaneous period,

frequency and spectrum are precisely the period, frequency, and spectrum at

any given instant. In Jiang, Gray and Woodward (2004), it is shown that

for M -stationary processes these definitions yield a more accurate represen-

tation of the period, frequency, and spectrum at a given time than do similar

notions resulting from the common practice by the engineering community

of defining the instantaneous frequency to be the derivative of the phase.

Jiang, Gray, and Woodward (2004) then extend these notions to the instan-

taneous frequency and spectrum of G(λ) processes. In that paper they show

that such processes furnish a good model for data whose frequencies change

asymptotically like αtβ, for α > 0 and −∞ < β <∞. We will return to this

in Section 4.

Definition 6: A function, g(t), is said to be M -periodic over I with multi-

plicative period (M -period), δ, if δ > 1 is the minimum value of δ ∈ I such
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that g(t) = g(tδ) for all t ∈ I. The associated M frequency, f ∗, is given by

f ∗ = (ln δ)−1 which gives δ = e1/f∗
.

As an example consider g(t) = cos(β ln t). In this case δ = e2π/β since

g(tδ) = cos(β ln(te2π/β)) = cos(β ln t+ 2π) = g(t). Also f ∗ = β/2π.

From the definition, it follows that for each fixed t, anM -periodic function

returns to the value g(t) at the distance tδ − t = t(δ − 1). Thus when

viewed on the “regular time” scale, g(t) has a linearly lengthening period.

For a discrete Euler process, it can be shown that for each complex root of

the characteristic equation of the dual process, the M -autocorrelation has a

damped (undamped if the root is on the unit circle) periodic component that

elongates linearly. A similar result can be shown for the continuous case.

Before formally defining the instantaneous frequency and spectrum of an

M -stationary process, we need to introduce one more concept. It should be

noted that in our application, the origin of the process, zero, will not usually

be the origin of the observations. Therefore if t′ denotes the actual time

(from the origin), t0 denotes the origin of the observations, and t denotes

the distance from t0 to t′, then t0 + t = t′. The observation origin, t0, will

be called the offset, t′ will be called the process index and t will be called

the observation index. In the discrete case we will typically observe data at

equally-spaced time points. Thus, we observe values at hj + il, i = 1, . . . , n,

where hj +nl = hjhn. For a given sample multiple h, we will denote the offset

by ∆ = hj −1 and the observation Euler index by hk, where the observations

are obtained by interpolation at hj+k, k = 1, . . . , n. In general the offset will

not be known and must be estimated.
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Note that in the discrete case, if we denote the M -period by δ = hm, and

note that f ∗ = (ln δ)−1 = (ln hm)−1. Then hm = e1/f∗
as in the continuous

case. We now give the following definition first given by Gray, Vijverberg

and Woodward (2004).

Definition 7. The instantaneous period, P, and instantaneous frequency,

f , at hk with offset ∆ of a discrete M -stationary process are defined as

P(hk; f ∗, hj) = hjhk(e1/f∗ − 1)

and

f(hk; f ∗, hj) = [hjhk(e1/f∗ − 1)]−1, (10)

where hj and hk are as defined in the above.

From Definition 7 and (9) we can define the instantaneous spectrum given

in Jiang, Gray and Woodward (2003) and Gray, Vijverberg and Woodward

(2004). Definition 7 is extended to the continuous case by replacing hj+k by

t0 + t. Solving for f ∗ in (10) in terms of f, hj and hk leads to the following

definition.

Definition 8: The instantaneous spectrum, S(f ; hk, hj), of a discrete M -

stationary process {X(hk)} is defined by

S(f ; hk, hj) = GX(f ∗), (11)

where

f ∗ =

[
ln

(
1 + fhjhk

fhjhk

)]−1

. (12)

If the process is continuous the instantaneous spectrum is defined by

S(f ; t; t0) = GX(f ∗)
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where

f ∗ =

[
ln

(
1 + (t0 + t)f

(t0 + t)f

)]−1

.

Remark: From (10) and (11), it should be clear that the instantaneous

spectrum gives the spectrum at any given t. Thus it shows the contribution

to the variance by each frequency at any given time.

Example 1. To demonstrate the previous results, consider a realization of

length n = 400 generated from the Euler(4) model

φ1(B)φ2(B)X(hk) = a(hk) (13)

where

φ1(B) = 1 − 1.97B + .98B2

φ2(B) = 1 − 1.7B + .99B2, (14)

σ2
1 = 1, h = 1.005 and the offset hj = 15.

Using the author’s GWS software, which can be downloaded from

http://faculty.smu.edu/hgray/research.htm, an AR(18) and an Euler(11) were

chosen as the best AR and Euler models respectively when 0 ≤ p ≤ 20. For

the Euler(11) model, ĥ = 1.0082 and ĥj = 15.

Remark: Throughout this paper the procedure will be to determine

the “best” AR(p) fit to the dual, from which we obtain the corresponding

Euler(p) as our M -stationary model. In later sections, we however generalize

this to G(λ)-process which will be defined in Section 4.

The residuals of the Euler(11) passed a Ljung-Box test for white noise

while the AR(18) did not. Figure 1 shows a plot of the data, the sample au-

tocorrelations (ACF), as well as the sample spectrum and an AR(18) spectral
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estimate. From the data there appears to be some cyclic nature to the data,

although it is not suggested from the sample ACF or either the sample spec-

trum or the AR(18) spectral estimate. This is not surprising since, from the

data, it is clear that the frequencies are changing with time to a degree that

stationary methods seem inappropriate.

Table 1 shows the factors of the Euler(11) model. That is, we show the

irreducible first and second order factors of the Euler(11) model fit to the

data. Additionally, the table shows |r−1
i | where the ri is the root of the

characteristic equation associated with the i-th factor. The closer |r−1
i | is

to unity, the higher the power associated with the corresponding frequency,

and therefore the spectrum will tend to be quite peaked at frequencies for

which |r−1
i | is close to unity. One can see from the table that most of the

power or variance is contained in the M -frequencies 17.42 and 3.223 which

are associated with the factors

φ̂1(B) = 1 − 1.234B + .968B2

φ̂2(B) = 1 − 1.918B + .945B2. (15)

It should be noted that the M -frequencies associated with the factors φ1(B)

and φ2(B) in (14) are 17.44 and 3.19 respectively which are quite close to the

estimates shown in Table 1. As a result (11) will yield an excellent estimate

of the instantaneous spectrum.
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Table 1. Factors of the Euler(11) Model fit to the data in Figure 1(a)

Absolute M - Dual
Reciprocal Frequency Frequency Factors
0.984 17.42 0.142 1 - 1.234B + 0.968B2

0.972 3.22 0.026 1 - 1.918B + 0.945B2

0.802 48.07 0.392 1 + 1.250B + 0.643B2

0.787 35.65 0.291 1 + 0.400B + 0.619B2

0.770 61.28 0.5 1 + 0.770B
0.646 6.17 0.050 1 - 1.227B + 0.417B2

Figure 2 shows the dual data and again a strong periodic appearance

is seen. Moreover, unlike the sample spectrum and AR(18) spectral esti-

mate, the sample M -spectrum and Euler(11) spectral estimates show two

very strong peaks, one at f ∗
1 = 17.42 and the other at f ∗

2 = 3.22 as is sug-

gested in Table 1. Therefore the dual does have a strong cyclic nature and

hence the autocorrelations of the dual have a slowly damped periodic nature

that is reflected by the sample ACF of the dual shown in Figure 2.

The Euler(11) spectrum shown in Figure 2 indicates that the original

data should exhibit a frequency behavior that varies like (a + bt)−1. This

can be clearly seen by the instantaneous spectrum shown in Figure 3. The

estimated instantaneous frequency is shown for t ∈ (0, 400). Figure 4 shows

“snapshots” of the estimated instantaneous spectrum at t = 1, 200, 300, and

400. The decreasing frequency structure is again apparent.

Although the changing period and frequency are properties of the auto-

correlation, for roots as close to the unit circle as these, this same behavior

is to a great degree imposed on the data. In that regard it is interesting to

estimate the instantaneous frequency, using Figure 3 or Equation 12, and

observe the extent to which these cycles are present in the data. That is,
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from (12) we can write

f̂ ∗ =

[
ln

(
1 + f̂ ĥjĥk

fĥjĥk

)]−1

,

so that

f̂ =
1

ĥjĥk(e1/f̂∗ − 1)
. (16)

Note that ĥjĥk ∼ ĥj +t where t is the observation index of the equally spaced

data. So, denoting f̂ by f̂(t; f ∗) to emphasize that f̂ is a function of t for

each f ∗, we have

f̂(t; f ∗) ∼ 1

(ĥj + t)(e1/f̂∗ − 1)
(17)

where ĥj = 15 mentioned previously. We will examine the low frequency com-

ponent to determine to what degree this changing frequency can be observed

in the data. From (16) we see that f̂(1; 3.22) = 1/5.8, f̂(7, 3.22) = 1/8,

and f̂(150, 3.22) = 1/60. Thus at the beginning of the realization the auto-

correlation has a period between 5 and 6 while by t = 150 that period has

lengthened to 60. Figures 5a and 5b show the data from 1 to 25 and 150

to 209. The data are clearly very representative of the correlation, as can

be seen from these figures. That is in Figure 5a we count 6 points in what

appears to be the first cycle associated with this frequency, while we count

8 points in the second cycle as predicted by f̂ . Similarly in Figure 5b it

appears that the 60 points is approximately a cycle. Thus the instantaneous

spectrum seems to describe the changing cyclic nature of the data quite well.

Finally, Figure 6 shows the forecasts of the last 20 points using an AR(18)

model and an Euler(11). The Euler(11) forecasts are dramatically better as

would be expected. The AR(18) forecasts emphasize the fact that ignoring
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the fact that the frequencies seem to be changing in time and proceeding

with standard methods can result in exceedingly poor results.

3. Filtering M-Stationary Processes

In this section we introduce a new approach to filtering processes with time

varying frequencies that change like (at+b)−1. First we introduce the discrete

M -linear process.

Gray and Zhang (1988) defined the continuous causal M -linear process

{X(t)} by

X(t) − µ =
∫ ∞

1
h(u)a(

t

u
)d(ln u), (18)

where a(t) is M -white noise. This definition is extended by Gray, Vijverberg

and Woodward (2004) to the discrete M -linear process by the following

X(t) − µ =
∞∑

j=0

ψja(
t

hj
) =

∞∑

j=0

ψjahk−j , (19)

for k = 0,±1, ..., and where at is white noise with E(at) = 0 and Var(at) =

σ2
a < ∞. We generalize X(t) in (18) and (19) by replacing a(t) and ahk by

M -linear processes. In that case we will refer to X(t) in (18) as a continuous

M -linear filter and to X(t) in (19) as a discrete M -linear filter. To be specific

we have the following definition.

Definition 9. Let h > 1 and t ∈ S, where S = {t : t = hk, k = 0,±1, . . .},

and let {X(t)} and {Z(t)} be discrete M -linear processes. Then we define

X(t) to be a discrete M -linear filter if

X(hk) − µ =
∞∑

j=0

ψjZ

(
hk

hj

)
=

∞∑

j=0

ψjZ(hk−j). (20)
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The dual process of X(t) is then defined by Yk = X(hk). Thus

Yk − µ =
∞∑

j=0

ψjWk−j = ψ(B)Wk, (21)

where Wk = Z(hk) is the dual of Z. Now let SU denote the power spectrum

or spectral density of a process {U(t)}. Then it is well known that

SY (f) = |ψ(e−2πif )|2SW (f). (22)

As mentioned earlier, GX(f ∗) = SY (f) where f = f ∗ ln h and where Xt is an

M -stationary process and Y is its dual. So, for {X(t)} defined by Equation

(20), it follows that

GX(f ∗) = SY (f) = |ψ(e−2πif)|2SW (f)

= |ψ(e−2πif∗ ln h)|2SW (f)

= |ψ(e−2πif∗ ln h)|2GZ(f ∗). (23)

From (22) and (23) it follows that an M -stationary process can be filtered

by using standard methods to filter its stationary dual. The result in (23) can

easily be shown to hold when the corresponding input and output processes

are continuous. Finally it should be remarked that when the roots of the

characteristic equation associated with the dual in (6) lie outside the unit

circle, X(t) in (19) can always be written as a convergent M -linear process.

In this section we will demonstrate the application of the previous results

to filtering. In general it is our intent to demonstrate that standard filtering

methods can be employed once the proper time transformation is made. For a

discussion of filtering methods based on stationarity see Shumway and Stoffer

(2000) and Hamming (1998). However, ignoring the time transformation and
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applying such methods may lead to unacceptable results. Of course one could

also apply a window-based filtering method. However here we focus on time

transformation methods which, when the frequencies change monotonically

like a power function, tend to out-perform window-based methods. See Gray,

Vijverberg and Woodward (2004) and Jiang, Gray, and Woodward (2004).

In Section 4 we will give similar examples for a more general class of time

transformations. We will first give two simulated examples and then apply

the results to a well studied bat echolocation signal.

Example 2. Consider once again the process in Example 1. That is we

consider a realization of length 100 (shown in Figure 1) generated from the

discrete Euler model

φ1(B)φ2(B)X(hk) = a(hk),

with E[a(hk)] = 0 and φ1(B) and φ2(B) given in (14). From the spectrum

in Figure 1, the data appear to be primarily low frequency. To remove the

higher frequencies one would assume that one could apply a low-pass filter.

We now use the ideas presented above to low-pass filter the data in Figure

1 by first applying a low-pass filter to the dual data in Figure 2. From the

M -sectrum in Figure 2 and Table 1, it is clear that it would be reasonable

to pass the dual data through a low-pass filter with cutoff .08. The dual

data were therefore passed through a 4th order Butterworth filter (see eg.

Hamming, 1998) to obtain a filtered dual data set, which in turn produces

a filtered M -stationary process at ĥk. These values are then interpolated to

give the filtered equally spaced observations from the underlying continuous

process. The result is shown in Figure 8b. The filter has essentially extracted
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only that part of the signal associated with f ∗ = 3.22, i.e. the lower of the

two dominant M -frequencies.

To illustrate the problems associated with applying standard filters di-

rectly to the data in Figure 1, we applied several different fourth order But-

terworth filters (Hamming, 1998) with cutoff frequencies .06, .07, .08 and .09.

Figure 7 shows the results. Note that none of these filters successfully fil-

tered out the higher frequency over the entire record. Comparison of Figure

7a with the data in Figure 1 shows that the cutoff was too low to pass what

appears to be the first 3 cycles. On the other hand increasing the cutoff to

.09 does not really help because by n = 300 the higher frequency component

has decreased to the point that it is below the filter cutoff and thus both

frequencies pass through the filter. This can be seen in Figure 7d. In Figure

7d the front end of the data is filtered better in that the higher frequency

is removed without removing the entire signal. However inspection of that

figure shows that while the beginning may be a bit better, the end is worse,

in that now the higher frequency component has decreased to the point that

it is below the cutoff threshold. Similar problems occur with high pass filters,

band-pass-filters, etc. Thus standard filtering procedures cannot successfully

remove the frequencies associated with f ∗ = 17.42.

The source of the problem with the above filtering can be vividly seen in

Figures 3 and 4. Note that at t = 400 the higher instantaneous frequency

has been reduced to .04 which is substantially below the lower frequency,

.17 at t = 1. Thus, any low pass filter applied to the data must either pass

frequencies associated with f̂ ∗ = 17.42 near t = 400 or it must filter out

frequencies associated with f ∗ = 3.22 near t = 1. So if the goal is to filter
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out the signal associated with f ∗ = 17.42, it cannot be done using any filters

based on stationarity.

The M -filtering procedure is summarized below. Filtering data to remove

frequencies associated with specified M -frequencies, i.e. frequencies varying

in time like (a+ bt)−1, will be referred to as M -filtering.

M-Filtering Summary

1. Estimate h, the offset, and the best M -stationary process,

φ̂(B)X̂(ĥk −X) = a(hk).

See Vijverberg (2002) or Gray, Vijverberg and Woodward (2004) for

details. See also http://faculty.smu.edu/hgray/research.htm.

2. Let Yk = X(ĥk) −X to obtain the dual.

3. Filter the dual by an appropriate filter. Denote the resulting filtered

dual data as {F (Yk)}.

4. Define F (X(hk)) = F (Yk).

5. Interpolate {F (X(hk))} to obtain {F (Xk)}, i.e. the M -filtered data at

the original time points.

Steps 1 and 2 can be accomplished by making use of the authors’ available

software. This will produce the dual data which can then be filtered by

stationary methods to obtain {F (X(hk)}. Then {F (Xk)} can be obtained

by interpolation. In this paper we have used linear interpolation.
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Example 3. Consider now a realization from the M -stationary continuous

process {X(t)} given by

X(t) = cos(36π(ln(t+ 175) + ψ)) + .5 cos(100π ln(t+ 175) + ψ) + .1n(t)

where n(t) = N(0, 1) and ψ ∼ Uniform [0, 2π]. See Gray and Zhang (1988).

Figure 9a shows a realization of length 400 from this process where ψ = 0.

There it can be seen that the data show two time-varying frequencies, a lower

frequency component associated with cos(36π ln t) and a higher frequency

component associated with cos(100π ln t). Figure 10a shows the correspond-

ing estimated M -spectrum based on an Euler(18) fit to the data. Figures 9c

and 9d show the results of applying a 4th order Butterworth lowpass filter

with cutoffs .12 and .3 respectively. As in the previous example, it is clear

that the two signals cannot be separated by filtering the data using stationary

methods since the frequencies corresponding to the cos(36π ln t) term at the

beginning of the realization are higher than the frequencies associated with

cos(100π ln t) at the end of the data. This can be clearly seen from Figures

10b and 10c that show the instantaneous spectra based on the Euler(18) fit

and snapshots of the instantaneous spectrum respectively. Finally, Figure 9b

shows the original data filtered by transforming time and filtering the dual.

Note that except for a small amount of noise in the amplitude, the signal

cos(36π ln t) is almost perfectly recovered except at the end points. This is

due to the Butterworth filter since no effort was made to window the data.

This will be the case in all of our examples, i.e. we will not window the dual

in any way.
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Example 4. In this example, we consider echolocation data from a large

brown bat. The data were obtained courtesy of Al Feng of the Beckman

Institute at the University of Illinois. The entire data set is shown in Figure

11a while close-ups of the first 100 and the last 60 points are shown in Figure

11b and 11c, respectively. The data consist of 381 data points taken at 7-

microsecond intervals with a total duration of .00266 seconds. Unlike the

previous examples, the instantaneous period does not visually appear to be

linear over the entire signal. In fact, the signal appears to be made up of

possibly two different signals. However, numerous studies have confirmed

that such bat signals as this have a frequency structure that changes with

time like (a+bt)−1 (e.g. Masters, Jacobs, and Simmons, 1991). Thus the data

appear to be a good candidate for modeling as an M -stationary process. In

fact among the class of models whose frequencies change asymptotically as tβ

(see Section 4), the GWS software selects β = −1, i.e., the M -stationary case,

as the best model. We will therefore consider the application of the Euler

model to this data set and compare its usefulness with the autoregressive

model. Based on the AIC, an AR(20) was fit to the data using standard

methods, and using the methodology described here, an Euler(11) with offset

equal to 203 was determined to be the best Euler model. In each case a

maximum model of order 20 was considered. Tables 2 and 3 show the factors

of the AR(20) and Euler(11) models along with the corresponding frequencies

and their proximity to the unit circle. Figures 12a and 12b show the sample

ACF and the AR(20) spectral estimator while Figures 12c and 12d show

the sample M -ACF and Euler(11) spectral estimator for the bat data. The

lack of an indication of a periodic component in the sample ACF and AR(20)
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spectral estimator are quite surprising in view of the cyclic appearance of the

data. This is due to the fact that although there clearly is a cyclical nature

to the data, the cycle is lengthening slightly with time. As a result the usual

spectrum is spread and the correlation is lengthening slightly with time.

Thus, the correlation changes with time resulting in the sample estimates

shown in Figures 12a and 12c. It should be pointed out that even though

the Euler process has an elongating period, the M -ACF does not depend on

time, nor does the M -spectrum. Figures 12c and 12d clearly indicate the

cyclic behavior of the data on the log scale. It is important to note that

the energy in the signal is primarily concentrated at approximately the M -

frequencies 53k, k = 0,1,2,3. We will refer to the cases k = 1, 2, and 3 as the

fundamental and its M -harmonics. Figures 13a and 13b show the residuals.

Clearly most of the variation in the data has been accounted for in the case

of the EAR(11), unlike the AR(20) fit.

Table 2: Factor Table for AR(20) Fit for Large Brown Bat Data

Absolute
Reciprocal Frequency Factors
.997 .0 1-.997B
.960 .149 1-1.141B+.922B2

.950 .097 1-1.557B+.903B2

.930 .178 1-.817B+.864B2

.919 .500 1+.919B

.905 .258 1+.094B+.819B2

.892 .225 1-.274B+.795B2

.890 .299 1+.540B+.792B2

.887 .441 1+1.652B+.787B2

.884 .389 1+1.357B+.782B2

.878 .341 1+.952B+.771B2
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Table 3: Factor Table for Euler(11) Fit for Large Brown Bat Data

Absolute M - Dual
Reciprocal Frequency Frequency Factors
.997 53.2 .148 1-1.195B+.993B2

.996 105.8 .294 1+.539B+.991B2

.970 0.0 .0 1-.97B

.955 156.7 .435 1+1.753B+.911B2

.706 61.1 .170 1-.684B+.498B2

.658 135.9 .377 1+.944B+.433B2

Figure 14 shows the instantaneous spectral estimate, Ŝ(f, hk; hj), for

0 ≤ f ≤ .5 associated with the G(11, 0; 0) model. Again, the instantaneous

frequencies appear to be decreasing, indicating that the periods are length-

ening. Thus at the beginning of the data the major source of the variation

is at frequencies .26 and above while at the end of the data the variation is

concentrated at frequencies .27 and below. In this regard it is interesting to

note that the instantaneous frequency, .26, associated with f ∗ = 53 at the

initial observation is almost exactly equal to the instantaneous frequency, .27,

associated with f ∗ = 157 at the final data point t = 381. Also it should be

noted that the sampling rate is not quite fast enough at the beginning of the

data. That is, the Nyquist frequency for the equally spaced data obtained

at ∆ = 7 microsecond units is 1/2∆, so the highest instantaneous frequency

that can be detected at a given t, is f = f(hk, f ∗) ≤ 1/2. It can be shown

that at t = 9 the instantaneous frequency associated with f ∗ = 106 is ap-

proximately .5 so that beginning at about the 9th data value, we can detect

the M -frequency f ∗ = 106 . This is visually displayed in Figure 11 in the

sense that initially we cannot visually detect the frequencies associated with

M -frequencies 106 and 157. However, by the 9th data point we begin to see
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the appearance of f ∗ = 106. Also, the instantaneous frequency associated

with f ∗ = 157 cannot be fully detected until about the 100th observation

in Figure 11. This explains the unusual appearance of the data beginning

around the 100th data point. Up to this point, this highest frequency of the

underlying signal has been too high to detect at this sample rate, and as a

result has been completely aliased.

In Figure 15a we show the modulus of the continuous wavelet transform,

in Figure 15b we show the Gabor transform, and in Figure 15c we show the

Wigner-Ville time frequency distribution. Figures 15 a and b were obtained

using The Rwave package, and involve transformed versions of the time and

frequency axes. In the case of the wavelet transform the vertical axis is based

on “scale” which is an inverted version of frequency. These window-based

presentations of the time-varying spectral content also tend to show a por-

tion of the fundamental frequency and its “harmonics.” However, in these

representations, the periodic behavior toward the beginning and end of the

realization are not seen and the zero frequency is not visible. However, as

described above, examination of the data shows that the instantaneous spec-

trum does an excellent job of describing the frequency behavior throughout

the entire realization. The improvement is obtained since, in contrast to the

window-based methods, M -stationary analysis uses the entire data set to

estimate spectral information at each frequency.

Finally suppose we wish to filter the data to remove the aliased data, i.e.

the data associated with the M -frequency 157. There is no way to accomplish

this with stationary-based methods. From Figure 12d it is clear that the M -

filtering, i.e. filtering the dual and reinterpolating, should be effective in
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this case. As mentioned earlier, one could alternatively apply window-based

methods. However, the time deformation approach is preferred here since

these data are so well modeled as M -stationary. Figure 16b shows the result

of applying a fourth order low-pass Butterworth filter to the dual using a

cutoff of .4 which is suggested by the Euler(11) M -spectrum in Figure 12d.

Clearly the high M -frequency behavior has been removed and the data are

no longer aliased.

4. Filtering G(λ)-Stationary Processes

To this point we have focused on M -stationary processses. However, Jiang

(2003) has generalized the M -stationary process to accommodate a wide

range of time deformations. This new class is referred to as G(λ)-stationary

processes, and in this case, the time deformation is the Box-Cox transforma-

tion defined by

uλ(t) =
tλ − 1

λ
, −∞ < λ <∞. (24)

Since limλ→0 uλ(t) = ln t, the limiting case, denoted by λ = 0, is the M -

stationary process. It is shown by Jiang, Gray and Woodward (2004) for

λ < 1, that G(λ) processes have an elongating cycle length while if λ > 1

they have contracting length. If λ = 1 the process is the standard stationary

case, i.e. the frequencies are fixed in time.

Additionally Jiang (2003) shows that the instantaneous frequencies of a

G(λ) processes vary asymptotically like αtβ as t → ∞, where α > 0 and

β = λ − 1. The theoretical development of G(λ) processes represents a

considerable generalization of M -stationary processes, and given a data set,
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the GWS software referenced earlier can be used to find the G(λ; p) model

that best fits the data. A G(λ; p) model is a G(λ) model whose dual is a pth

order autoregressive model. See Jiang (2003).

Just as in the M -stationary case, the first step in processing G(λ; p) sta-

tionary data is to estimate λ and transform to the appropriate dual process.

Thus G(λ) filtering can be performed in the same manner as in the M -

stationary process. Since each transformation defines a different sampling

scheme, the only difference in the filtering is the locations on the time axis

at which the data are sampled.

The steps for G(λ)-filtering are the same as those listed in the previous

summary for M -filtering and the first two steps can be performed with the

GWS software. That is if {Yk(λ)} denotes the dual process, then we filter this

stationary data appropriately to obtain {F [Yk(λ)]} = {F [X(tk(λ)]}. This

produces the filtered data at the points tk(λ) which are then re-interpolated

to obtain the filtered data at the original data points.

As noted in (24), G(λ) processes are based on the Box-Cox transformation

of time. Thus if we let u = uλ(t) we have

u =
tλ − 1

λ
⇒ t = (uλ+ 1)1/λ, t > 0. (25)

Then X(t) = X(uλ + 1)1/λ = Y (u), where Y (u) is referred to as the dual

of X(t) as before. Sampling the dual at (k + ξ)Λ, where ξ is fixed, results

in sampling X(t) at tk(λ; ξ) = [(k − 1 + ξ)Λλ + 1]1/λ (and visa versa) as

mentioned in the above. The quantity ∆ = [ξΛλ + 1]1/λ − 1 is called the

“offset” or “realization origin”. Note if ξ = 0 there is no offset.

The dual is modeled as an AR process (Jiang, 2003). We should also

note the relationship between the frequency, fd(λ), of the dual process and
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the frequency, fG(λ), of the G(λ; p) process. As in the case of the M -

stationary process, the only difference in the spectrum of the dual and the

G(λ)-spectrum is the scale. As noted earlier fd(0) = f ∗ ln h = fG(0). For

λ 6= 0 it can be shown that fd(λ) = f ∗Λ = fG(λ). In the M -stationary case,

clearly Λ = ln h.

Among the more common types of data from G(λ) processes (or at least

asymptotically G(λ) processes) are chirps and Doppler signals. In both cases

the problem of filtering one such signal from a background of several is a

difficult problem of much interest. For example, Xu, Durand, and Pibarot

(2000) describe a new approach, based on the time-frequency representation

of transient nonlinear chirp signals, for modeling the aortic and the pul-

monary components of the second heart sound. They demonstrate that each

component is a narrow-band signal with decreasing instantaneous frequency.

As another example, a Doppler signal results from the back scattering of an

ultrasound beam by moving red blood cells. Flow disturbances and changes

in the velocity waveform result in an increase in Doppler spectral width which

is used to detect atherosclerotic lesions in arteries. Due to time-varying fre-

quencies, current instruments are only marginally effective in detecting such

lesions. See Baston, Fish and Vaz (1999).

These problems can however be addressed by noting that chirp and Doppler

signals are well modeled as G(λ) processes where asymptotically λ = 2, 3 for

a linear and quadratic chirp respectively while λ ∼ −1 for many Doppler-type

signals. In the final two examples we demonstrate how “G(λ)-filtering” can

be used to separate such signals even when their“G-frequencies” are quite

close to each other.
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Example 5. Consider now a realization of size 400 from the quadratic chirp

given by

X(t) = cos[2π(
t

250
+ .25)3] + 2 cos[7π(

t

250
+ .25)3] + .1n(t), (26)

where n(t) is normal (0,1) noise.

Figure 17 shows the data and its two deterministic components while

Figure 18 shows the data along with its sample ACF and sample spectrum

overlaid with an AR(15) Burg spectral estimate. The spectrum is clearly

spread as is typical of chirp signals. It provides little evidence of the fact that

the data are made up of two superimposed chirps and even less suggestion

of how it might be filtered to separate the two signals.

A G(λ) model is fit to the data and we obtain λ̂ = 3, Λ̂ = 81127 and

∆̂ = 60. Therefore the observed data are taken at ∆̂ + 1 = 61, ∆̂ + 2 =

62, . . . , ∆̂ + 400 = 460. But ,

tk(λ; ξ) = [(k − 1 + ξ)Λλ+ 1]1/λ

= [(ξΛλ+ 1)1/λ)λ + (k − 1)Λλ]1/λ

= [(∆ + 1)λ + (k − 1)Λλ)]1/λ.

Therefore

tk(3; ξ̂) = [(∆̂ + 1)λ̂ + (k − 1)Λ̂λ̂]1/λ̂ = [(61)3 + 3(81127)(k− 1)]1/3.

So, since the data are given at 61, 62, ... , 460, we interpolate to obtain

the data at t1(3; ξ̂) = 61, t2(3; ξ̂) = 77.77, t3(3; ξ̂) = 89.37, . . . , t399(3; ξ̂) =

459.62, t400(3; ξ̂) = 460 in order to compute the dual process.

The resulting dual realization is shown in Figure 19a. Also shown in

Figure 19 are the dual sample ACF and the dual sample spectrum overlaid
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with an AR(20) spectral estimator. Note the dual clearly does not exhibit

any time varying frequency behavior. Moreover the data appear to be made

up primarily of two cycles of very distinct frequencies.

Figure 20 shows the instantaneous spectrum and snapshots at t = 1,

100, 200, and 400. From these graphs it can be seen that the data are

made up primarily of two signals with monotonically increasing frequencies.

At t = 1 all the frequencies are near zero while by t = 400 the highest

frequency with significant power is around .15. From the snapshots it is

clear that neither stationarity based high-pass or low-pass filtering will be

effective in identifying and separating the signals since the frequencies with

any power are all below .02 at the beginning and all above .02 by the end of

the data. Figure 21 shows the data alongside the results of using a 4th order

low-pass filter directly on the data at cutoff frequencies .05 and .1 and G(λ)-

filtering using a 4th order Butterworth filter with a .03 cutoff. As predicted

the direct application of the Butterworth filter was totally ineffective. On

the other hand low-pass filtering the dual and reinterpolating to obtain the

filtered data produces Figure 21b which is almost a perfect recovery of the

lower “frequency” chirp, except for the end point effects. Figure 22 shows

similar results for a fourth order high-pass Butterworth filter. Again the

G(λ) method is quite good, but high-pass filtering the data directly gives

poor results as is seen in Figures 22c and d.

Example 6. In this final example we consider a Doppler-type signal of the

form

X(t) = sin
(

840π

t+ 50

)
+ .5 sin

(
2415π

t+ 50

)
+ .05n(t), (27)

where n(t) is normal (0,1) noise.
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Figure 23 shows a realization of size 200 and a plot of the two deterministic

components given in (27), Figure 24 shows the data along with the sample

ACF and the sample spectrum with the AR(8) spectral estimate overlaid.

As in the case of the chirp signal, the spectrum is quite spread and is of no

help in separating the signals. Using a G(λ) analysis we obtain λ̂ = −1.7,

∆̂ = 90, and Λ̂ = 1.1888 × 10−6. Therefore the data were interpolated to

obtain values at

tk(−1.7; ξ̂) = [(∆̂ + 1)λ̂ + (k − 1)Λ̂λ̂]1/λ̂

= [(91)−1.7 − 1.7Λ̂(k − 1)]−1/1.7

tk(−1.7; ξ̂) = 91, 91.23, 91.47, . . . . , 284.83, 290.Figure 25 shows the dual which

appears to have fixed frequencies. This is confirmed by Figure 25 and Table

4 which shows that the dual is primarily composed of signals at the two fre-

quencies .095 and .034 on the dual scale. The remaining part of the spectrum

is mostly side lobes due to the noise. This suggests that the signals can be

separated by low-pass filtering the dual with a cutoff of around .05 to .07.

Table 4. Factor Table for G(−1.7) Fit to Doppler Data in Figure 24(a)

Absolute G(-1.7)- Dual
Reciprocal Frequency Frequency Factors
0.996 79570 .095 1 - 1.6497B + 0.9914B2

0.974 28940 .034 1 - 1.9031B+ 0.9492B2

0.904 150700 .179 1 - 0.7785B + 0.817B2

0.883 374500 .445 1 + 1.6619B + 0.7795B2

0.861 302100 .359 1 + 1.0901B + 0.7414B2

0.857 219500 .261 1 + 0.117B + 0.7345B2

Figure 26a shows the instantaneous spectrum where it can also be seen

that the data are primarily composed of two time varying frequencies. It is
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again of interest to consider the snapshots shown in Figure 26b where it is

very clear that at the beginning of the data almost all of the power in the

spectrum is above the frequency .1 while by t = 100 it is almost all below .1.

For this reason filtering the data by stationary methods “as is” is doomed

to failure. Figure 27 confirms this observation by showing the results of a

low-pass and a high-pass 4th order Butteworth filter applied directly to the

data. As in previous examples, these filtering results are poor. However, if

the data are G(λ)-filtered, i.e. the dual is filtered and transformed back to

original scale, the results are quite good. Figure 28 shows these results where

it can be seen that the two components are almost perfectly recovered.

Finally in order to demonstrate that the G(−1.7; 12) process fit to the

data is, in fact an excellent fit, we show the forecasts obtained by fitting the

best AR(p) to the raw data and the G(−1.7; 12) forecasts. The G(−1.7; 12)

forecasts are in fact quite good, whereas the AR(8) forecasts essentially move

directly to the mean and stay there.

Concluding Remarks

We have shown that the difficult problem of filtering time-varying frequencies

can in many cases be accomplished using time deformation to transform to a

signal with fixed frequencies. Then standard filtering techniques can be used

to remove the desired signal before transforming back to the original time

scale. We have shown how this technique can be successfully applied to data

sets for which frequencies are monotonically increasing or decreasing.
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