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Abstract

Methods such as wavelets and M-stationary process have been developed

to analyze the time-frequency properties of a process where frequency changes

with time. In certain circumstances, when the frequencies of a process change

systematically either monotonically increasing or monotonically decreasing across

time, another approach is to apply an appropriate Box-Cox transformation to

the time axis for the given signal in order to obtain a new stationary data set.

This new data set can be analyzed by standard methods. Processes which are

transformed to a stationary process after Box-Cox transformation on the time

scale are called G(λ)-stationary processes, where λ is the corresponding param-

eter of the Box-Cox transformation. The method is illustrated with analysis of

both simulated and real data. Finally, it is shown that such processes can be

transformed to stationarity by sampling properly.
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1 Introduction

Time varying frequencies are quite common in speech, biological data, geophysical

processes and so on. Traditional Fourier analysis under the assumption of stationarity

may not be applicable to these processes since the frequency content is evolving over

time. The idea of time deformation was introduced to transform the time axis in order

to change these non-stationary processes to stationary processes. Stock (1987, 1988)

formalized a time deformation model and captured cyclical behavior of some macroe-

conomic data by using the deformed time modeling, that was not detected in the

original equally spaced calendar time modeling. Meanwhile, Gray and Zhang (1988)

developed continuous multiplicative-stationary(M-stationary) processes for the pur-

pose of analyzing non-stationary data with cyclical behavior changing approximately

linearly in time. A continuous M-stationary process can be transformed to a con-

tinuous weakly stationary process, which is referred to as the dual process, through

a logarithmic time transformation. One type of M-stationary process, the continu-

ous Euler process, whose corresponding dual is the continuous autoregressive(AR)

processes, was proposed by Gray and Zhang (1988). Since these processes are con-

tinuous, the model was never applied to data even though the process has remained

of some theoretical interest. Gray, Vijverberg and Woodward (2004) extended the

M-stationary processes to the case of discrete data and developed the corresponding

discrete Euler process. Choi (2003) defined the continuous and discrete mixed M-

stationary Euler(p, q) processes, whose duals are the usual continuous and discrete

ARMA processes respectively. Compared to the Euler model, the Euler(p, q) model

typically has fewer parameters.

In Gray, Vijverberg and Woodward (2004), it was shown that when the period

of a process is increasing approximately linearly with time and the process has clear
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cyclic behavior, M-stationary models give a better fit from both the spectral analysis

and forecast performance points of view than traditional methods.

The objective of the current article is to apply the Box-Cox transformation to

the time axis and then introduce a new class of processes, G(λ)-stationary processes,

based on this transformation. This class is quite flexible and can represent processes

with a wide range of time-varying frequency behavior. The stationary processes and

the M-stationary process are simply two special cases of the G(λ)-stationary process,

i.e., the cases λ = 1 and λ = 0, respectively.

The outline of this article is as follows. The G(λ)-stationary process will be

introduced in Section 2. The instantaneous period and instantaneous frequency of

the G(λ)-stationary process will be discussed in Section 3. The G(λ)-autoregressive-

moving average (G(p, q; λ)) process will be introduced in Section 4, and a sampling

method for continuous G(λ)-stationary processes will be discussed in Section 5. In

Section 6, the instantaneous spectrum of G(λ)-stationary processes is defined. The

origin problem and equally spaced sampling from G(p, q; λ) processes will be discussed

in Section 7. In Section 8, we discuss the estimation of the parameter, λ, of the Box-

Cox transformation and the origin offset of the data, Λ. Two application examples

will be shown in Section 9; and in Section 10 we give concluding remarks.

2 G(λ)-Stationary Processes

Hannan (1965) considered the concept of stationarity under a general group compo-

sition law, i.e. E((X(t) − µ)(X(t ◦ τ) − µ)) = CX(τ), where “◦” denotes a group

composition law. If we let f(t, τ) = t ◦ τ , this general stationarity can be written

as E((X(t) − µ)(X(f(t, τ)) − µ)) = CX(τ). Different group composition laws re-
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late to different types of time-changing frequency or periodic behavior. The usual

notion of stationarity, of course, assumes that the group composition law is addi-

tion, which corresponds to the processes with fixed periods and frequencies over

time. For the M-stationary process, the composition law is multiplication, which

results in periodic behavior that changes linearly in time. Given the general sta-

tionary process, the time deformation technique proposed here attempts to find the

transformation function, g, between the general group composition law and the usual

additive composition law, i.e., g(f(t, τ)) = g1(t) + g2(τ), where g1 and g2 are two

functions. For the M-stationary process, f(t, τ) = tτ and g(t) = g1(t) = g2(t) =ln(t).

The G(λ)-stationarity proposed here is based on another group composition law,

f(t, τ) = (tλ + τλ)
1
λ , where λ ∈ (−∞,∞). We use the Box-Cox transformation

function g, defined by g(t) = g1(t) = tλ−1
λ , and g2(τ) = τ . The definition follows.

Definition 2.1 Let X(t) be a stochastic process defined for t ∈ (0,∞) such that for

any (tλ + τλ) ∈ (0,∞), and constant λ ∈ (−∞,∞),

(i) E[X(t)] = µ,

(ii) var[X(t)] = σ2 < ∞,

(iii) E[(X(t)− µ)(X((tλ + τλ)
1
λ )− µ)] = BX(τ ; λ).

Then X(t) will be called a G(λ)-stationary process.

Remark: throughout this paper, “stationary” means “weakly stationary”, but we

take the word “weakly” as understood. BX(τ ; λ) here will be referred to as the G(λ)-

autocovariance so that var(X(t)) = BX(0; λ). The G(λ)-autocorrelation is defined

by

ρX(τ ; λ) =
BX(τ ; λ)

var(X(t))
.
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When λ = 1, BX(τ ; λ) = E[(X(t)− µ)(X(t + τ)− µ)]. Note that X(t) here has the

covariance properties associated with a stationary process in the usual sense. The

only difference is that X(t) is restricted to t > 0. In practice, we only observe the

stationary process at t > 0, i.e., t ∈ (0,∞). Then a G(λ)-stationary process with

λ = 1 can be considered to be an “observable stationary process.” Since

lim
λ→0

BX(τ ; λ) = E[(X(t)− µ)(X(teτ )− µ)] = RX(eτ ) = RX(ς),

where ς = eτ , the limiting case λ = 0 corresponds to an M-stationary process. We

will refer to the limiting case as λ = 0. The usual autocovariance is

CX(h; t) = E[(X(t)− µ)(X(t + h)− µ)] = BX(
(t + h)λ − tλ

λ
; λ).

So the autocovariance of a G(λ)-stationary process depends on both time and lag

when λ 6= 1. Therefore, the G(λ)-stationary process with λ 6= 1 is non-stationary in

the usual sense.

Definition 2.2 Let Y(u) be a stationary stochastic process over (−∞,∞). Let u =

g(t) and X(t) = Y (u) on t ∈ (0,∞). Then {Y (u); u ∈ (−∞,∞)} will be called the

stationary dual process of {X(t); t ∈ (0,∞)}.

For a G(λ)-stationary process, we have u = g(t) = tλ−1
λ , and the dual process is a

stationary process Y (u) such that Y (u) = X(t) on t ∈ (0,∞), i.e., for

u ∈




(− 1
λ
,∞) if λ ≥ 0

(−∞,− 1
λ
) if λ < 0

.

The function g(t) will be referred to as the transformation function.

Theorem 2.1 X(t), t ∈ (0,∞), is G(λ)-stationary if and only if it has a stationary

dual Y (u) with the transformation function u = g(t) = tλ−1
λ .
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Proof: Clearly, properties (i) and (ii) concerning constant mean and constant finite

variance hold for X(t) if and only if they hold for Y (u).

Since u = tλ−1
λ , then t = (uλ + 1)

1
λ and therefore

t ∈ (0,∞) ⇐⇒




u ∈ (− 1
λ
,∞) if λ ≥ 0,

u ∈ (−∞,− 1
λ
) if λ < 0.

=⇒ If X(t) is G(λ)-stationary and BX(τ ; λ) is the G(λ)-autocovariance, then BX(τ ; λ) =

E[(X(t)− µ)(X((tλ + τλ)
1
λ )− µ)], where t > 0 and tλ + τλ > 0. Let Y (u) = X(t).

If λ = 0, we have u =ln(t) and

CY (τ) = E[(Y (u)− µ)(Y (u + τ)− µ)]

= E[(X(eu)− µ)(X(eu+τ )− µ)]

= E[(X(eu)− µ)(X(eueτ )− µ)]

= RX(eτ ),

where u ∈ (−∞,∞) and τ ∈ (−∞,∞). Since X(t) is M-stationary, CY (τ) = RX(eτ )

does not depend on t, and Y (u) is the stationary dual of X(t). If λ > 0, letting

Y (u) = X(t), where u = tλ−1
λ , we have

CY (τ) = E[(Y (u)− µ)(Y (u + τ)− µ)]

= E[(X(t)− µ)(X((tλ + τλ)
1
λ )− µ)]

= BX(τ ; λ),

where u ∈ (−1/λ,∞) and τ ∈ (−1/λ − u,∞). Then Y (u); u ∈ (−∞,∞) is the

stationary dual of X(t). The results for λ < 0 are similar.

⇐= If Y (u) is stationary and CY (τ) is the corresponding autocovariance, then for

6



any t > 0 and tλ + τλ > 0, we have

BX(τ ; λ) = E[(X(t)− µ)(X((tλ + τλ)
1
λ )− µ)]

= E[(Y (
tλ − 1

λ
)− µ)(Y (

tλ − 1 + τλ

λ
)− µ)]

= E[(Y (
tλ − 1

λ
)− µ)(Y (

tλ − 1

λ
+ τ)− µ)]

= CY (τ).

Hence, BX(τ ; λ) only depends on τ . Therefore X(t) is a G(λ)-stationary process.

Property 2.1 Let X(t) be a G(λ)-stationary process, and let Y (u) be its dual. The

following hold:

(i) BX(τ ; λ) =





CX(τ) λ = 1

RX(eτ ) λ → 0

(ii) BX(−τ ; λ) = BX(τ ; λ) for all values of λ.

Proof:

(i) If λ = 1,

BX(τ ; λ) = E[(X(t)− µ)(X((tλ + τλ)
1
λ )− µ)]

= E[(X(t)− µ)(X(t + τ)− µ)]

= CX(τ),

and thus in this case, the G(λ)-autocovariance is the usual autocovariance function.

If λ → 0, under condition that CX(h; t) is continuous for any t > 0,

lim
λ→0

BX(τ ; λ) = lim
λ→0

E[(X(t)− µ)(X((tλ + τλ)
1
λ )− µ)]

= E[(X(t)− µ)(X(lim
λ→0

(tλ + τλ)
1
λ )− µ)]

= E[(X(t)− µ)(X(teτ )− µ)]

= RX(eτ ),
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and so the G(λ)-autocovariance is the M-autocovariance.

(ii) Letting τ > 0 and s = (tλ − τλ)1/λ > 0, then

BX(−τ ; λ) = E[(X(t)− µ)(X((tλ − τλ)1/λ)− µ)]

= E[(X((sλ + τλ)1/λ)− µ)(X(s)− µ)]

= BX(τ ; λ).

Definition 2.3 Let ε(u) be a white noise process, i.e., E[ε(u)] = 0 and

E[ε(u)ε(u + τ)] = Cδ(τ),

where C is a positive constant and δ is the dirac delta function. Also let a(t) =ε( tλ−1
λ )for

t > 0. Then we shall refer to a(t) as “G(λ)-white” noise.

Theorem 2.2 For a G(λ)-white noise process, a(t),

Ba(τ ; λ) = E[a(t)a((tλ + τλ)1/λ)] = Cδ(τ).

Proof: The result is obvious.

Definition 2.4 Let X(t) be a G(λ)-stationary process. Then the G(λ)-spectrum is

GX(f ; λ) =
∫ ∞

−∞
e−2πifτBX(τ ; λ)dτ.

Thus, the G(λ)-spectrum is the Fourier transformation of the G(λ)-autocovariance.

If λ = 1, the G(λ)-spectrum is the usual spectrum of X(t). If λ → 0, from Property

2.1, BX(τ ; 0) = RX(eτ ) and given h = eτ ,

GX(f ; 0) =
∫ ∞

−∞
e−2πifτBX(τ ; λ)dτ

=
∫ ∞

−∞
e−2πifτRX(eτ )dτ

=
∫ ∞

0
h−2πifRX(h)dlnh

=
∫ ∞

0
h−2πif−1RX(h)dh.
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then GX(f ; λ) is the Mellin transform of RX(h), the M-autocovariance of X(t). So

the G(λ)-spectrum with λ = 0 is the M-spectrum of X(t). The G(λ)-spectral density

is defined by

MX(f ; λ) =
GX(f ; λ)

BX(0; λ)
=

GX(f ; λ)

var(X(t))
.

Actually, the G(λ)-spectrum of a G(λ)-stationary process, X(t), is equal to the usual

spectrum of the dual process Y(u), i.e., GX(f ; λ) = SY (f).

Example 2.1

Let t ∈ (0,∞), φ∼Uniform(0, 2π), λ ∈ (−∞,∞), A and β be constant, and let a(t)

be G(λ)-white noise. Then the process

X(t) = Acos(2πβ(
tλ − 1

λ
) + φ) + a(t),

is G(λ)-stationary. The dual is Y (u) = Acos(2πβu + φ) + ε(u), which is of course

well known to be stationary. Figure 1 illustrates the periodic behavior of this G(λ)-

stationary process for different values of λ. The periods elongate over time when λ is

0 and 0.5; the process appears stationary in the usual sense with a fixed period when

λ = 1; the periods contract in time when λ is 2. In the following section, we define a

measure of the variation of the period or frequency of a process.

3 Instantaneous Period and Instantaneous Frequency

of a G(λ) process

For non-stationary signals, whose spectral content vary with time, the frequency at

a particular time will be described by the concept of instantaneous frequency (IF).
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We consider first a simple sinusoidal signal of the form

X(t) = Acos(φ(t)), (1)

where A is constant and φ is the cumulative phase of the signal. A common definition

(Boashash, 1992) of the instantaneous frequency(IF) is

f(t) =
φ′(t)
2π

.

Although the IF shows the rate of change of φ(t) per 2π units, it does not specify

how many cycles there are for a given time interval, which may be our real interest

in practice. Moreover, given a signal, in order to get its IF, we have to find the

analytic signal using a Hilbert transformation, which is difficult to calculate. For

some processes, the definition of IF may not have physical interpretation (Boashash,

1992). Therefore, we give a new definition of IF and a definition of the instantaneous

period for G(λ) processes.

Definition 3.1 Let f be a function such that f(t) = f(g−1(g(t)+τ)) for any t, where

g is any monotonic function. Then f is said to be a G-periodic function with the

G-period τ , and the general instantaneous period (GIP ) of the function f , denoted

`(t; g, τ), is defined by

`(t; g, τ) = |g−1(g(t) + τ)− t|.

Definition 3.2 The general instantaneous frequency (GIF ) of a function g(t) is

f(t; φ, τ) =
1

`(t; g, τ)
.

Note that when g is a monotonically increasing function,

`(t; g, τ) = g−1(g(t) + τ)− t,
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and `(t; g, τ) is the length of the cycle starting at t. When g is a monotonically

decreasing function,

`(t; g, τ) = t− g−1(g(t) + τ),

and `(t; g, τ) is the length of the cycle ending at t. If `(t; g, τ) is increasing over time

then this indicates elongation of the cyclical behavior. For a G(λ)-stationary process

such as the one given in Example 2.1 with a single periodic component, it is easy to

show that the GIP of the G(λ)-stationary process is

`(t; g, τ) =





(tλ + λτ)
1
λ − t λ 6= 0,

t(eτ − 1) λ → 0
(2)

and the corresponding GIF is

f(t; g, τ) =





1/((tλ + λτ)
1
λ − t) λ 6= 0,

1/t(eτ − 1) λ → 0,
(3)

where τ is the G-period of the G(λ)-stationary process X(t). Actually, τ is also the

period of the dual process of g(t). We will refer to the GIP and GIF of the G(λ)-

stationary processes using the notation `(t; λ, τ) and f(t; λ, τ) since λ is the only

parameter of the function g. If λ = 1, `(t; 1, τ) = τ and f(t; 1, τ) = 1/τ . The GIP

is a constant value 1/τ for any t > 0. This is consistent with the standard result

that a weakly stationary process has fixed periods. When λ = 0, then eτ and 1/τ

become the M-period and M-frequency respectively defined by Gray, Vijverberg and

Woodward (2004). The GIP for λ = 0 is linear in time.

As already described in Section 2, different values of λ result in different periodic

behavior of the process. Figure 2 describes how the GIP changes over time for different

λ’s. If 0 < λ < 1, the GIP is a monotonically increasing concave function, while for

λ < 0, it is monotonically increasing and convex. If λ > 1, the GIP is monotonically
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decreasing and convex. Since GIF is defined as the reciprocal of GIP, the pattern for

GIF is clear. Therefore, the class of G(λ)-stationary processes is quite flexible and

can represent processes with a wide range of time-varying frequency behavior.

Although the definitions of GIF and IF are clearly not the same, there is an

important relationship.

Theorem 3.1 When φ is a monotonically continuous function, IF is the first order

of the Taylor series approximation to the GIF. For G(λ)-stationary processes, IF =

GIF if λ = 1, and IF → GIF as t →∞ if λ 6= 1.

Given a sinusoidal signal of the form X(t) = Acos(φ(t)) where A is constant, the

IF is

f1(t) =
1

2π
φ′(t),

and the GIP is given by

l2(t; φ, 2π) = φ−1(φ(t) + 2π)− t, (4)

where we assume φ(t) is a monotonically increasing function on t. The corresponding

GIF is

f2(t; φ, 2π) =
1

l2(t; φ, 2π)
.

Using Taylor expansion of φ−1(y + 2π) about y, we obtain

φ−1(y + 2π) = φ−1(y) +
∞∑

n=1

(2π)n (φ−1)(n)(y)

n!
.

Letting y = φ(t), then we have (φ−1)′(y) = (φ−1)′(φ(t)) = 1/φ′(t), (φ−1)(2)(y) =

(φ−1)(2)(φ(t)) = − φ(2)(t)
(φ′(t))3 and (φ−1)(3)(y) = (φ−1)(3)(φ(t)) =

3φ(2)(t)−φ(3)(t)φ′(t)
(φ′(t))5 . There-

fore,

φ−1(φ(t) + 2π) = t + 2π
1

φ′(t)
− (2π)2

2!

φ(2)(t)

(φ′(t))3
+

(2π)3

3!

3φ(2)(t)− φ(3)(t)φ′(t)
(φ′(t))5

+ . . . .
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Then from Equation (4)

l2(t; φ, 2π) = 2π
1

φ′(t)
− (2π)2

2!

φ(2)(t)

(φ′(t))3
+

(2π)3

3!

3φ(2)(t)− φ(3)(t)φ′(t)
(φ′(t))5

+ . . . .

If we use the first order Taylor expansion, then we obtain l2(t; φ, 2π) ≈ 2π/φ′(t)

and f2(t; φ, 2π) = 1/l2(t; φ, 2π) ≈ φ′(t)/2π = f1(t). If φ(t) is a linear function of

t, i.e., φ(t) = at + b, then φ(n)(t) = 0 for n ≥ 2. We have l2(t; φ, 2π) = 2π/φ′(t),

and f2(t; φ, 2π) = 1/l2(t; φ, 2π) = φ′(t)
2π

= f1(t). For φ(t) = tλ−1
λ

, when λ 6= 1, then

l2(t; φ, 2π) → 2π
φ′(t) as t →∞ and f2(t; φ, 2π) = 1

l2(t;φ,2π)→ f1(t) as t →∞.

For deterministic signals such as the simple sinusoidal signal mentioned previously,

the GIP can be obtained empirically by peak detection. Figure 3(a) shows data from

the model

X(t) = 10cos(6πln(t)). (5)

In Figure 3(a), t1 is the location of a peak, and a1 is the length between two consec-

utive peaks starting at t1. So, a1 is the GIP at t1. Also, a2 is the GIP at t2. Figure

3(b) shows the plot of locations of peaks vs the corresponding GIP. This graph is a

straight line which we expect due to the form of the GIP when λ = 0. However, for

multicomponent signals, the notion of a single-valued GIP becomes meaningless, and

a break-down into its components is needed. As with the definition of the spectrum

of a stationary process, the GIP of a stochastic process is defined based on its auto-

covariance instead of the process itself (Jiang, 2003). If the periodic behavior in the

process is very clear, the peak detection is still a valid method, and we also refer to

results obtained in this manner as empirical general instantaneous periods (EGIP).

Figure 3(c) shows a realization of the model

X(t) = A1 cos(2πβ1
(t + Λ)λ − 1

λ
) + A2 cos(2πβ2

(t + Λ)λ − 1

λ
) + a(t), (6)
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where A1 = 10, A2 = 5, β1 = 5, β2 = 4.5, λ = 0.5, Λ = 100 and a(t) ∼N(0,1), and

Figure 3(d) shows its EGIP obtained by peak detection. Although the model describes

a process with two frequency components, and we can still obtain the pattern of

GIP based on the EGIP. For the above example, theoretically, λ = 0.5, and the GIP

corresponding to each component should be a monotonic increasing concave function.

The EGIP in Figure 3(d) follows this pattern very well.

4 G(p, q; λ) Processes

A typical class of G(λ)-stationary processes is G(p, q; λ) processes.

Definition 4.1 The process X(t) defined by

p∏

i=1

(t1−λD − αi)X(t) =
q∏

j=1

(t1−λD − βj)a(t), (7)

where t > 0, D is the differential operator, αi and βj are constants, λ ∈ (−∞,∞),

p, q = 1, 2, 3, . . ., and a(t) is G(λ)-white noise, is referred to as the continuous

G(p, q; λ) process. The equation

p∏

i=1

(r − αi) = 0

is referred to as the characteristic equation of X(t).

Remark: We will take the derivative here to be in the mean square sense. Equation

(7) has a unique G(λ)-stationary solution and more correctly we define X(t) to be that

solution. The G(λ)-stationarity or stability condition for the continuous G(p, q, λ)

processes are that p > q ≥ 0 and that the real parts of the αi’s are negative. For a

G(λ)-stationary process, X(t), the time domain must be greater than 0, i.e. t > 0.
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When λ = 1, a G(p, q; λ) process, X(t), is actually a subset of a regular continuous

ARMA(p, q) process with t > 0. In practice, we only observe and analyze processes

at t > 0. We then call X(t) in the case the “observable” continuous ARMA(p, q)

process. When λ = 0, X(t) is the continuous Euler(p, q) process defined by Choi,

Gray and Woodward (2003). The G(λ)-spectrum of X(t) is

GX(f ; λ) = σ2
a

∏q
j=1 |(βj − i2πf)|2

∏p
k=1 |(αk − i2πf)|2 ,−∞ < f < ∞.

The stationary dual to X(t) is given by Y (u) = X(t), where

u =





ln(t) if λ = 0,

tλ−1
λ

otherwise.

and Y (u) satisfies

p∏

i=1

(D − αi)Y (u) =
q∏

j=1

(D − βj)ε(u), u ∈ (−∞,∞),

i.e., Y (u) is a continuous ARMA(p, q) process.

When q = 0, we define Equation (7) be
∏p

i=1(t
1−λD − αi)X(t) = a(t). Then

G(p, 0; λ) processes are referred to G(p; λ) processes. If λ = 1, the G(p; λ) process

can be considered to be the “observable” classical continuous AR(p) process; if λ = 0,

it is the continuous pth-order Euler process (Gray and Zhang, 1988). Since the dual

is given by Y (u) = X(t), where u = tλ−1
λ , we have

p∏

i=1

(D − αi)Y (u) = ε(u).

Also, we have following theorem:

Theorem 4.1 If X(t) is a continuous G(p; λ) process such as

p∏

i=1

(t1−λD − αi)X(t) = a(t), t > 0,
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then the G(λ)-autocovariance of X(t), denoted by BX(τ ; λ), satisfies the differential

equation
p∏

i=1

(D − αi)BX(τ ; λ) = 0.

X(t) is G(λ)-stationary if the real parts of the αi’s are less than zero.

Proof: The result follows at once from Theorem 2.1 and the standard result.

5 Discretizing the Continuous G(λ)-Stationary Pro-

cess

Physical phenomena that are continuous stochastic processes are frequently observed

at discrete time periods. From the observed data, inference is made regarding the

underlying continuous process. The problem of discrete sampling from the usual

continuous stationary process has been studied by Bartlett (1946) and Phadke and

Wu (1974). They both showed that discretization of a continuous ARMA(p, q) process

at an equally spaced sampling intervals results in a discrete ARMA(p, p− 1) process.

For the G(λ)-stationary process, similar results can be obtained.

Theorem 5.1 If the data set X(tk) is sampled from a G(λ)-stationary process X(t)

at the time points tk, i.e., tk = ((k + ζ)∆λ + 1)1/λ, where k=0,1,2,. . ., with ∆ > 0

and ζ > − 1
∆λ

, then Zk = X(tk) is a discrete stationary process. Also, CZ(h) =

BX(h∆; λ), where CZ and BX are the usual autocovariance of the process Zk and

G(λ)-autocovariance of the continuous process X(t), respectively. Zk will be referred

to as the discrete dual of X(t) at the sample rate ∆.

Proof: Since Zk = X(tk), then E(Zk) = E(X(tk)) = µ, var(Zk)=var(X(tk)) = σ2

and CZ(h) = E[(Zk−µ)(Zk+h−µ)] = E[(X(tk)−µ)(X(tk+h)−µ)]. Letting s = tk =
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((k + ζ)∆λ + 1)1/λ, we have k =sλ−1
∆λ −ζ and

tk+h = ((k + h + ζ)∆λ + 1)1/λ

= (h∆λ + sλ)1/λ.

Then, from Definition 2.1, we can obtain CZ(h) = E[(X(tk) − µ)(X(tk+h) − µ)] =

E[(X(s)− µ)(X((h∆λ + sλ)1/λ)− µ)] = BX(h∆; λ), which only depends on h given

∆. Therefore, Zk is a stationary process.

Corollary 5.1 If Y (u) is the continuous dual of X(t), then CZ(k) = CY (k∆).

Remark: tk here is referred to as G(λ)-time scale. Since

k =
tλk − 1

∆λ
− ζ,

we also refer to it as the discrete Box-Cox transformation for tk. Physically, t0 =

(ζ∆λ + 1)1/λ is the time of the first sampled data value. When λ = 1, then tk =

k∆+(ζ∆+1), and thus sampling is at equally spaced time intervals ∆. When λ = 0,

then X(t) is a continuous Euler(p, q) process, and tk = limλ→0((k + ζ)∆λ + 1)1/λ =

e(k+ζ)∆ = e∆ζ(e∆)k. Letting h = e∆ and A = e∆ζ , then the G(λ) time scale is

tk = Ahk, (8)

where A > 0. Note that when ζ is an integer, the G(λ)-time scale for λ = 0 is

the Euler time scale, and A = e∆ζ and h = e∆ are referred to as the offset and the

sampling rate of the discrete M-stationary process, respectively (Gray, Vijverberg

and Woodward, 2004).

For a G(λ)-stationary process X(t) and its stationary dual Y (u), the discrete dual

Zk of X(t) can be also considered to be the equally spaced sample obtained from Y (u)

at interval ∆.
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When the data are sampled from a continuous stationary process at an equally

spaced interval ∆, the frequency fN = 1
2∆

is called the Nyquist frequency and is the

highest frequency that can be detected by the sample. The Nyquist frequency of

the discrete dual corresponds to a G(λ)-Nyquist frequency for the G(λ)-stationary

process.

Definition 5.1 If the data are sampled from the G(λ) stationary process X(t) at

tk = ((k + ζ)∆λ + 1)1/λ, then fN(∆; λ) = 1/2∆ is called the G(λ)-Nyquist frequency.

When λ = 1, the G(λ)-Nyquist frequency is the usual Nyquist frequency. When

λ = 0, the corresponding G(λ)-Nyquist frequency is fN(∆; 0) = 1/2∆ = 1/(2lnh),

where h is the sample rate for the Euler process(Gray, Vijverberg and Wooward,

2004).

Theorem 5.2 When the G(λ)-Nyquist frequency is greater than the highest frequen-

cies corresponding to the characteristic equation of a G(p, q; λ) process, X(t), where

0 ≤ q < p, the discrete dual of X(t) at a G(λ)-sampling interval ∆ is a discrete

ARMA(p, p − 1) process. The coefficients of the discrete ARMA(p, p − 1) model de-

pend both on the G(p, q; λ) model and the G(λ)-sampling interval, ∆.

Proof: The result follows at once from Theorem 2.1 and the result in Phadke and

Wu (1974).

Remark: Given a G(p, q; λ) process, the coefficients of the discrete dual process

depend on the G(λ)-sampling interval, ∆. The discrete dual process is a discrete

ARMA(p, r) process, where 0 ≤ r ≤ p− 1.
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Example 5.1

Consider the continuous stationary process

(t1−λD − α1)(t
1−λD − α2)X(t) = (t1−λD − β)a(t), t > 0,

where var(a(t)) = σ2
a. If we sample data from X(t) at time points tk = ((k + ζ)∆λ +

1)1/λ, then the corresponding discrete ARMA(2,1) model is given by

Xk − φ1Xk−1 − φ2Xk−2 = εk − θεk−1,

where φ1 = eα1∆ + eα2∆, and φ2 = −e(α1+α2)∆, and θ is defined as





θ = 0 if φ1γ0 + (φ2 − 1)γ1 = 0

θ2 − (φ1 + γ0−φ1γ1−φ2γ2

φ1γ0+(φ2−1)γ1
)θ + 1 = 0, |θ| < 1 otherwise.

The variance of εt is then given by

σ2
ε =





φ1γ0+(φ2−1)γ1

θ
if θ 6= 0,

γ0 − φ1γ1 − φ2γ2 if θ = 0,

and

γk = γ(k∆) =
α2

1 − β2

2α1(α2
2 − α2

1)
eα1|k|∆ +

β2 − α2
2

2α2(α2
2 − α2

1)
eα2|k|∆.

According to Theorem 5.2, if the continuous model is G(2; λ), the corresponding

discrete stationary dual is still a discrete ARMA(2,1) process. The coefficients of the

MA term of the continuous processes only affect the white noise variance and the

value of the MA term in the discrete stationary dual. Note that here we have

φ2
1 + 4φ2 = (eα1∆ + eα2∆)2 − 4e(α1+α2)∆

= (eα1∆ − eα2∆)2.
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So, if α1 and α2 are complex conjugates, then φ2
1 + 4φ2 = (eα1∆ − eα2∆)2 < 0, in

Region I of Figure 4, and the characteristic function of the discrete process has two

complex roots. If α1 and α2 are both negative real number (since the continuous

process is stationary, real parts of α1 and α2 must be negative), then φ2
1 + 4φ2 =

(eα1∆ − eα2∆)2 ≥ 0, in Region II of Figure 4, and the characteristic function of the

discrete process has two positive real roots.

The following example shows how to obtain the corresponding continuous ARMA(2,1)

model, i.e., the G(2,1;1) process, of the discrete ARMA(2,1) model.

Example 5.2

Given the stationary discrete model

Xk − φ1Xk−1 − φ2Xk−2 = εk − θεk−1, (9)

the autocovariance function is

γk = C1G
|k|
1 + C2G

|k|
2 , (10)

where G1 and G2 are given by

φ1

2
±

√
φ2

1 + 4φ2

2
,

C1 and C2 are given by C1 = γ1−γ0G2

G1−G2
and C2 = γ0 − C1, and

γ0 =
(φ2 − 1)(θ2 + 1) + 2φ1θ

(φ2 + 1)(φ2
1 − (φ2 − 1)2)

σ2
ε

and

γ1 =
(φ1 − θ)(φ1θ − 1)− φ2

2θ

(φ2 + 1)(φ2
1 − (φ2 − 1)2)

σ2
ε .
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Assuming the discrete process is obtained by sampling the continuous process,

X(t), at equally spaced interval ∆ and γ(u) is the autocorrelation function of X(t),

then we have

γ(k∆) = γk = C1G
|k|
1 + C2G

|k|
2 .

Under the assumption that the continuous process and its discrete sample have

the same autocorrelation structure, for any lag u, the autocorrelation function, γ(u),

of X(t) can be written as

γ(u) = C1e
ln(G1)

∆
|u| + C2e

ln(G2)

∆
|u|. (11)

Letting α1 = ln(G1)
∆

and α2 = ln(G2)
∆

, then we get

γ(u) = C1e
α1|u| + C2e

α2|u|. (12)

For different values of φ1 and φ2, we have the following four cases:

(i) φ2
1 + 4φ2 < 0: φ1 and φ2 lie in Region I of Figure 4.

In this case, G1 and G2 are complex conjugates, i.e.,

G1 = a− bi,

G2 = a + bi.

G1 and G2 can be expressed in polar form as G1 = R(cosω + icosω) = Reiω and

G2 = Re−iω, where tanω = b/a and R =
√

a2 + b2. In our case, R =
√

a2 + b2 =
√

G1G2 =
√−φ2 and cosω = a√

a2+b2 =
φ1

2
√−φ2

. Then we have lnG1 =lnR + iω,

lnG2 =lnR− iω and

α1 =
lnR + iω

∆
,

α2 =
lnR− iω

∆
.
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Substituting into Equation (12), we get

γ(u) = C1e
lnR+iω

∆
|u| + C2e

lnR−iω
∆

|u|.

From the standard result, this is the autocorrelation function of the continuous

ARMA(2,1) process, i.e.,

(D − α1)(D − α2)X(t) = (D − β)a(t), (13)

where a(t) is continuous white noise. Since the discrete process (9) is stationary,

R =
√−φ2 < 1. So, the real parts of α1 and α2 are negative, and the continuous

process (13) is stationary. The spectrum G(f) of the process (13) is known to

be

G(f) =
|i2πf − β|2

|(i2πf − α1)(i2πf − α1)|2σ2
a, (14)

where σ2
a is the variance of a(t). Since G(f) is also the Fourier transform of

γ(u), we have

G(f) =
∫ ∞

−∞
γ(u)e−i2πfudu

= C1

∫ ∞

−∞
eα1|u|e−i2πfudu + C2

∫ ∞

−∞
eα2|u|e−i2πfudu

= C1

∫ ∞

−∞
eα1|u|−i2πfudu + C2

∫ ∞

−∞
eα2|u|−i2πfudu

=
−C1

α1 + i2πf
+

−C1

α1 − i2πf
+

−C2

α2 + i2πf
+

−C2

α2 − i2πf

= −2(C1α1 + C2α2)
|i2πf +

√
C1α1α2

2+C2α2α2
1

C1α1+C2α2
|2

|(i2πf − α1)(i2πf − α2)|2 . (15)

Comparing Equation (14) and Equation (15), we can get β = −
√

C1α1α2
2+C2α2α2

1

C1α1+C2α2

and σ2
a = −2(C1α1 + C2α2). Note that to have a one-to-one correspondence

between model (13) and the spectrum (14), it is necessary that the real part of

β be nonpositive.
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(ii) φ2
1 + 4φ2 ≥ 0, φ2 ≤ 0 and φ1 ≥ 0: φ1 and φ2 lie in Region II of Figure 4.

In this case, both G1 and G2 are positive real numbers, Equation (12) can be

written as

γ(u) = C1e
ln(|G1|)

∆
|u| + C1e

ln(|G2|)
∆

|u|.

This is similar to case (i). The corresponding continuous process is ARMA(2, 1),

i.e., model (13) with α1 = ln(|G1|)
∆

|u|, α2 = ln(|G2|)
∆

|u|, β = −
√

C1α1α2
2+C2α2α2

1

C1α1+C2α2
and

σ2
a = −2(C1α1 +C2α2). Since both α1 and α2 are real numbers, X(t) here does

not have periodic behavior.

(iii) φ2
1 + 4φ2 ≥ 0, φ2 > 0: φ1 and φ2 lie in Region III of Figure 4.

In this case, G1 and G2 are both real numbers. Since G1G2 = φ2 < 0, we

let G1 < 0 and G2 > 0. since ln(G1)=ln(|G1|) + iπ or ln(G1)=ln(|G1|) − iπ,

Equation (12) can be written as

γ(u) = C1e
ln(G1)

∆
|u| + C2e

ln(G2)

∆
|u|

=
C1

2
e
ln(|G1|)−iπ

∆
|u| +

C1

2
e
ln(|G1|)+iπ

∆
|u| + C2e

ln(G2)

∆
|u|.

Letting α11 = ln(|G1|)−iπ
∆

, α12 = ln(|G1|)+iπ
∆

and α2 = ln(G2)
∆

, the corresponding

continuous process is a continuous ARMA(3,2) process, i.e.,

(D − α11)(D − α12)(D − α2)X(t) = (D − β1)(D − β2)a(t)

=
d2a(t)

dt2
+ b0

da(t)

dt
+ b1a(t), (16)

where b0 = −(β1 + β2) and b1 = β1β2. The spectrum, G(f), of the continuous

process (16) is known to be

G(f) =
|(i2πf − β1)(i2πf − β2)|2

|(i2πf − α11)(i2πf − α12)(i2πf − α2)|2σ2
a

=
(2πf)4 + (b2

0 − 2b1)(2πf)2 + b2
1

|(i2πf − α11)(i2πf − α12)(i2πf − α2)|2σ2
a (17)
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Since G(f) is also the Fourier transform of γ(u), we have

G(f) =
∫ ∞

−∞
γ(u)e−i2πfudu

=
C1

2

∫ ∞

−∞
eα11|u|e−i2πfudu +

C1

2

∫ ∞

−∞
eα12|u|e−i2πfudu + C2

∫ ∞

−∞
eα2|u|e−i2πfudu

=
C1

2

∫ ∞

−∞
eα11|u|−i2πfudu +

C1

2

∫ ∞

−∞
eα12|u|−i2πfudu + C2

∫ ∞

−∞
eα2|u|−i2πfudu

=
−C1

2

α11 + i2πf
+

−C1

2

α11 − i2πf
+

−C1

2

α12 + i2πf
+

−C1

2

α12 − i2πf

+
−C2

α2 + i2πf
+

−C2

α2 − i2πf

= −(C1α11 + C1α12 + 2C2α2)[
(2πf)4

|(i2πf − α11)(i2πf − α12)(i2πf − α2)|2

+
(

C1α2
2(α11+α12)+C1(α11+α12)α11α12+2C2α2α11α12

C1α11+C1α12+2C2α2
)(2πf)2

|(i2πf − α11)(i2πf − α12)(i2πf − α2)|2

+

C1(α11+α12)α11α12α2
2+C2α2α2

11α2
12

C1α11+C1α12+2C2α2

|(i2πf − α11)(i2πf − α12)(i2πf − α2)|2 ]

Comparing it with (17), we can get σ2
a = −(C1α11 + C1α12 + 2C2α2),

b1 =

√
C1(α11 + α12)α11α12α2

2 + C2α2α2
11α

2
12

C1α11 + C1α12 + 2C2α2

and

b0 =

√
C1α2

2(α11 + α12) + C1(α11 + α12)α11α12 + 2C2α2α11α12

C1α11 + C1α12 + 2C2α2

+ 2b1.

Note that the frequency corresponding to the complex roots, α11 and α12, of

the continuous process, X(t), is f0 = 1
2π

π
∆

= 1
2∆

, which is equal to the Nyquist

frequency 1
2∆

.That is, if the Nyquist frequency is equal to highest frequency

corresponding to the complex roots of the continuous process, sampling the

continuous ARMA(3,2) then results in a discrete ARMA(2,1) process.
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(iv) φ2
1 + 4φ2 ≥ 0, φ2 ≤ 0 and φ1 < 0: φ1 and φ2 lie in Region IV of Figure 4.

In this case, both G1 and G2 are negative, and Equation (12) can be written as

γ(u) =
C1

2
e
ln(|G1|)−iπ

∆
|u| +

C1

2
e
ln(|G1|)+iπ

∆
|u|

+
C2

2
e
ln(|G2|)−iπ

∆
|u| +

C2

2
e
ln(|G2|)+iπ

∆
|u|.

The corresponding continuous process then is a continuous ARMA(4,3) process

(Jiang, 2003), and the two frequencies corresponding to the complex roots of

the continuous process are both equal to the Nyquist frequency 1
2∆

.

From Example 5.2, if the G(λ)-Nyquist frequency is equal to the highest frequency

corresponding to the complex roots of the characteristic equation of the G(p, q; λ)

process, then we have following results.

Theorem 5.3 Let X(t) be a G(p, q; λ) process and let f0 be the highest frequency

corresponding to the complex roots αi’s of characteristic equation of X(t). Then

sampling X(t) at G(λ) time scale with G(λ)-Nyquist frequency equal to f0 results in

a discrete ARMA(p − m
2
; p − m

2
− 1) process, where m is the number of the complex

roots αi.

Proof: The result follows at once from Theorem 2.1 and we replace the continuous

ARMA(2, 1) process in Example 5.2 by the continuous G(p, q; λ) process.

Remark: In this article, we only consider G(λ)-sampling interval ∆ such that

f0 ≤ 1
2∆

, where f0 is the highest frequency corresponding to the complex roots the

characteristic function of continuous processes. From a practical viewpoint, the as-

sumption that f0 is not greater than the Nyquist frequency or G(λ)-Nyquist frequency

in G(λ)-stationary processes is trivial, since a properly planned data collection would

invariably have ∆ small enough so that f0 ≤ 1
2∆

. Under the assumption, for a given
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G(λ)-time scale and a given discrete ARMA(p,q) model, there is a unique continuous

G(λ)-stationary process. This implies that for the continuous G(λ)-stationary pro-

cess, modeling can be based on the discrete dual. The realization of the continuous

G(p, q; λ) process can be approximated by the realization of its discrete dual process

with a small G(λ)-sampling interval. Given a G(p, q; λ) process, different G(λ)-sample

intervals results in different discrete dual process. The following theorem shows the

relationship between the system frequency of the original G(p, q; λ) processes and

that of the discrete dual processes.

Theorem 5.4 Suppose Z1k and Z2k are discrete duals of the continuous G(λ)-stationary

process X(t) at sample rates ∆1 and ∆2, respectively. If both G(λ)-Nyquist frequen-

cies, f1N(∆1; λ) = 1/(2∆1) and f2N(∆2; λ) = 1/(2∆2), are greater than the highest

frequency corresponding to the complex αi’s of the process X(t), then Z1k and Z2k have

the same number of system frequencies, i.e., f1i and f2i, i = 1, 2, . . . , m, where m is

the number of pairs of complex roots of characteristic function of X(t). Moreover,

f1i

∆1
= f2i

∆2
= bi

2π
, where bi is the imaginary part of those complex roots.

Proof: The result follows at once from Theorem 2.1 and the standard result for

continuous ARMA (p, q) processes (Priestley, 1981).

Example 5.3

Consider the continuous G(2, 1; λ) process X(t) such that

(t1−λD − α1)(t
1−λD − α2)X(t) = (t1−λ − β)a(t),

where α1 and α2 are complex conjugates. From Example 5.1, the corresponding

discrete ARMA(2,1) models for Z1k and Z2k are

Z1k − φ11Z1(k−1) − φ12Z1(k−2) = ε1k − θ11ε1(k−1)
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and

Z2k − φ21Z2(k−1) − φ22Z2(k−2) = ε2k − θ21ε2(k−1),

where φ11 = eα1∆1 + eα2∆1 , φ12 = −e(α1+α2)∆1 , φ21 = eα1∆2 + eα2∆2 and φ12 =

−e(α1+α2)∆1 . Then system frequencies associated with Z1k and Z2k are

f11 =
1

2π
cos−1(

φ11

2
√−φ12

)

and

f21 =
1

2π
cos−1(

φ21

2
√−φ22

).

Suppose α1 = a + ib and α2 = a − ib, where a and b are real numbers. Then we

obain

φ11

2
√−φ12

=
eα1∆1 + eα2∆1

2
√

e(α1+α2)∆1

=
eα1∆1 + eα2∆1

2e
α1+α2

2
∆1

=
ea∆1(eib∆1 + e−ib∆1)

2ea∆1
= cos(b∆1),

f11 = b∆1

2π
and f21 = b∆2

2π
. So we have f11

∆1
= f21

∆2
= b

2π
.

Remark: The G(λ)-system frequencies of a G(p, q; λ) process are the system fre-

quency of its continuous dual. When λ = 0, i.e., X(t) is an Euler(p, q) process, then

the system frequencies of the discrete dual divided by the G(λ)-sampling interval

are referred to as M-system frequencies(Gray, Vijverberg and Woodward, 2004) of

the discrete process. If the sampling is sufficiently fast, the M-system frequencies of

the discrete dual process are independent of the sampling rate and are equal to the

M-system frequency—the imaginary part of corresponding complex roots of the char-

acteristic function, of the continuous M-stationary process divided by 2π. Theorem

5.3 thus implies that the G(λ)-system frequency of the G(p, q; λ) can be obtained

from its discrete dual.
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6 Instantaneous Spectrum of G(λ)-stationary Pro-

cesses

The GIP and GIF of a stochastic process measure the periods and the frequencies at

a given time. From Section 1, the G(λ)-autocorrelation of a G(λ)-stationary process

is

ρX(τ ; λ) = E[(X(t)− µ)(X((tλ + τλ)1/λ)− µ)]/var(X(t)).

Let ρ∗X(r, t) be the autocorrelation between X(t) and X(t + r). That is,

ρ∗X(r, t) = E[(X(t)− µ)(X(t + r)− µ)]/var(X(t)).

Letting τ = (t+r)λ−tλ

λ
, we have

ρX(τ ; λ) = E[(X(t)− µ)(X((tλ + τλ)1/λ)− µ)]/var(X(t))

= E[(X(t)− µ)(X(t + r)− µ)]/var(X(t))

= ρ∗X(r, t).

That is,

ρ∗X(r, t) = ρX(τ ; λ) = ρX(
(t + r)λ − tλ

λ
; λ), (18)

which also means that the usual ACF of the G(λ)-stationary process depends not only

on the lag r but also on the time t. For example, if λ = 0, X(t) is an M-stationary

process and

lim
λ→0

ρ∗X(r, t) = lim
λ→0

ρX(
(t + r)λ − tλ

λ
; λ)

= ρX(ln(1 + r/t); 0). (19)

The GIP of G(λ)-staionary process, X(t), at time t is defined as the length of the

first cycle of ρ∗X(r, t).
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Figure 5(a) shows a realization from a G(2,1;0) model with the discrete dual

Xk − 1.732Xk−1 + 0.98Xk−2 = εk, (20)

with sample rate h = 1.0055 and var(εk) = 1. Note that we only show the part of the

realization from t = 101 to t = 300. Figure 5(b) shows the ACF, ρ∗X(r, t), calculated

by Equation (19), of X(t) at time t = 101. Then a1 is the GIP of X(t) at time

t = 101, and f = 1/a1 is the GIF of X(t) at time t = 101. However, if the process

contains several periodic components, it is not easy to observe the GIP and GIF from

the ACF of the process. Figure 6(a) shows a realization from a G(4, 3; 0) model with

discrete dual

(1− 1.4B + 0.98B2)(1− 1.732B + 0.98B2)Xk = εk − 0.6εk−1, (21)

at sample rate h = 1.0055 and var(εk) = 1. Similar to Figure 5(a), we also just show

the part of the realization from t = 101 to t = 300. Figure 6(b) shows its ACF,

ρ∗X(r, t), calculated using Equation (18), of X(t) at time t = 101. As we expect, it

is not easy to observe GIF from the ACF of the process directly. However, there are

two clear peaks shown in the G(λ)-spectrum(Figure 6(c) of the G(4, 3; 0) model. This

indicates that X(t) has two dominant frequencies, which change over time.

Figure 7(a) shows a realization from the G(6, 5; 0) model with discrete dual

(1−1.4385B +0.9944B2)(1−0.0054B +0.9697B2)(1+1.3006B +0.9226B2)Xk = εk,

(22)

at sample rate h = 1.0055 and var(εk) = 1. Figure 7(b) shows the ACF. It seems

that its cyclical behavior is similar to what we saw in Figure 5(b). However, its G(λ)-

spectrum(Figure 7(c)) clearly shows that the data have three dominant frequencies,

which change over time, while the data in Figure 5(a) only have one dominant fre-
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quency. Therefore, the G(λ)-spectrum can provide information about frequencies

that are clearly unable to see from other methods.

As mentioned in Section 2, the G(λ)-spectrum of a G(λ)-stationary process equals

to the usual spectrum of its stationary dual. For example, Figures 8(a)-(b) show the

realization and G(λ)-spectrum of a G(2,1;0) process with discrete stationary dual

Xk − 1.4Xk−1 + 0.98Xk−2 = εk, (23)

at sample rate h = 1.0055 and innovation variance 1, respectively. Figures 8(c)-

(d) show a realization and the G(λ)-spectrum from a G(2,1;2) model with the dis-

crete dual in Equation (23) at the G(λ)-sampling interval ∆ = 200.5 and innovation

variance 1, respectively. From Figure 8(a), the data are elongating, while they are

compacting in Figure 8(c). However, their G(λ)-spectra look similar. Thus, the

G(λ)-spectrum only provides the information about frequencies of the data series at

the transformed time scale, but cannot tell how those frequencies change over time.

Therefore, we define the instantaneous spectrum for the G(λ)-stationary process.

Definition 6.1 If X(t) is a G(λ)-stationary process and GX(f ∗; λ) is its G(λ)-

spectrum, then the instantaneous spectrum of X(t) at time t is

S(f, t; λ) =





GX(0; λ) if f = 0,

GX( 1

ln( 1
tf

+1)
; λ) if f 6= 0 and λ = 0,

GX( λ
(t+1/f)λ−tλ

; λ) otherwise.

The instantaneous spectrum actually measures the spectrum of the G(λ)-stationary

process at a specific time t, and it is based on its G(λ)-spectrum. In practice, we use

the spectrum of the discrete dual to approximate the G(λ)-spectrum of the under-

lying continuous process. If X is an equally spaced realization from the continuous
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G(λ)-stationary process Xk, k = 1, 2, . . . , n, then we have t = Λ + k and f ≤ 0.5,

where Λ is the offset of the data.

Figure 9 shows a realization of a G(2,1;0) process which has discrete dual pro-

cess (23) with sample rate h = 1.0055 and innovation variance 1. Figure 10 shows

the corresponding instantaneous spectrum, where the x-axis represents time, and the

y-axis is the frequency. The gray scale represents the power at the corresponding

frequency and time. The darker the color, the higher the power. For example, the

location of the most powerful frequency of the data changes from about 0.22 at time

t = 101 to 0.09 at time t = 250. This indicates that at time t = 101, the length

of the next cycle is l = 1/0.22 ≈ 4, and the length of next cycle at time t = 250

is l = 1/0.09 ≈ 11. If we count those lengths in the data series in Figure 11, we

will obtain these results. Figure 11 shows a realization from a G(2, 1; 1) model. In

its instantaneous spectrum plot(Figure 12), the dark line stays at about f = 0.125

over the time period from t = 101 to t = 300. That is, the G(λ)-stationary pro-

cess with λ = 1, i.e., the traditional stationary process, has constant frequency or

frequencies, which is consistent with the common sense of the frequency of the sta-

tionary processes. Actually, the usual spectrum based on the Fourier transformation

could be treated as a special case of the instantaneous spectrum at λ = 1. Figure 13

and Figure 14 show a realization and the corresponding instantaneous spectrum of

a G(2, 1; 2) model. The data are obviously compacting, and the dominant frequency

monotonically increases over time. Figure 15 shows a realization from a G(6,5;0) pro-

cess. From its instantaneous spectrum (Figure 16), the data set has three dominant

frequencies, which monotonically decrease over time. From the data set, it seems that

the GIP at t = 101 is about 4 and the dominant GIP at t = 250 is about 11. This is

reflected by the most dominant frequency, where f = 0.22 at t = 101 and f = 0.09 at
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t = 250. Figure 17 and Figure 18 show a realization and the corresponding instanta-

neous spectrum from G(6,5;1) process, i.e., ARMA(6,5) process, respectively, where

both three dominant frequencies keep constant over time. Figure 19 and Figure 20

show a case for λ = 2, for which the data are compacting and all of the dominant

frequencies increase over time. In addition to displaying the change of the frequency,

the instantaneous spectrum provides information about “aliasing”. In Figure 16, the

top line of the three dominant frequencies starts at about t = 135, and before that

time, the data only shows two frequencies. This is due to the fact that one of the

instantaneous frequencies(top line) is so high(larger than 0.5) before t = 135 that the

discrete data sampled at the fixed interval cannot detect it when t < 135. It follows

that in sampling continuous time series, adequate care must be taken to ensure that

a high enough sampling frequency is chosen so that aliasing will be avoided.

The instantaneous spectrum relates to time-frequency analysis, which has been

the object of intense research activity in the last decade. The common methods such

as the Gabor transforms and wavelet transforms provide some good results for the

time-frequency data. The instantaneous spectrum analysis provides another approach

under the assumption that the data are G(λ)-stationary. We will not discuss the

relationship between these methods here, but it will be a topic of further research.

7 The Offset Problem and Equally Spaced Real-

izations

The correlation function of a stationary process is, of course, not a function of time,

while the correlation function of a G(λ)-stationary process does change with time

when λ 6= 1. The impact of this, from a data point of view, is that in order to

32



properly model the process, one needs some estimate of the location of the initial

observation. To be more specific, suppose for a time shift, Λ > 0, and t > 0 that

X1(t) = X(t − Λ) is a G(λ)-stationary process with λ = 0, i.e., X1(t) is an M-

stationary process. The process X(t) is not M-stationary but is referred to as the

shifted M-stationary process(Gray and Zhang, 1988). The time shift, Λ, will be

referred to as the origin offset of the process X(t). The stationary dual of X1(t) is

Y1(u), i.e., Y1(u) = X1(e
u). However, the process Y (u) = X(eu) = X1(e

u +Λ) here is

definitely not stationary. That is, given the process X(t), t > 0, we cannot obtain the

stationary dual through a logarithmic time transformation without adjusting for the

origin offset. Actually, we can regard X(t) as the observed subset of X1(t). Thus, it is

reasonable to use the stationary dual, Y1(u), of X1(t) as the stationary dual of X(t).

In order to obtain the stationary dual of X1(t), we then use the time transformation

function ln(t + Λ) instead of u =ln(t), i.e., Y (u) = X(eu −Λ) = X1(e
u) = Y1(u). For

the G(λ)-stationary process we use the time transformation function,

u =
(t + Λ)λ − 1

λ
, Λ > 0,

instead of u = tλ−1
λ

. Note that if λ = 1, the G(λ)-stationary process is the observable

stationary process, and the correlation function does not depend on t. Therefore, we

do not need to estimate the origin offset, Λ.

7.1 Generating Realizations from a G(p, q; λ) Model

For most time series modeling, observations are usually discrete and taken at equally

spaced time intervals, i.e., hourly, daily, monthly and so on. In order to imitate the

practice, we need to generate realizations of the G(λ)-stationary process at equally

spaced time intervals. Suppose the equally spaced time interval is 1. The discrete
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realization is Xk = X(Λ + k), where k = 1, 2, 3, . . ., where X(t) is the continuous

process and Λ is the offset. For processes such as

X(t) = Acos(2πβ(
tλ − 1

λ
) + φ) + a(t),

this is easy. However, generating equally spaced data from a G(p, q; λ) process is

not as straightforward. The main problem is that we cannot generate a continuous

realization from a G(p, q; λ) process. When λ = 1, the G(p, q; λ) process is an ob-

servable continuous stationary ARMA(p, q) process. From Theorem 5.2, its equally

spaced sample at a sampling interval ∆ is the discrete ARMA(p, p − 1). Therefore,

an equally spaced realization of the continuous ARMA(p, q) process can be generated

from the corresponding discrete ARMA(p, p− 1). For the continuous G(p, q; λ) pro-

cess, given the G(λ)-time scale, tk = ((k + ζ)∆λ + 1)1/λ, k = 0, 1, 2, . . . , n, we first

generate the realization, Zk, from its corresponding discrete dual. Then we obtain

an approximation of the continuous realization of X(t) based on

X̂(t) =





Zk if t = tk

Z(t; {Zk}) otherwise
, (24)

where Z is the interpolation function. One way to do such interpolation is to use

standard smoothing procedures. If we use linear interpolation,

Z(t; {Zk}) =
tk+1 − t

tk+1 − tk
Zk +

t− tk
tk+1 − tk

Zk+1,

where k is the largest integer such that tk < t. Then the finally equally spaced sample

can be obtained by Xk = X̂(Λ+k). In (24), we use interpolation to approximate the

continuous process, so there will be interpolation errors in the final equally spaced

sample. However, when the G(λ)-sampling interval ∆ is very small, the interpolation

error is minor. Our experience showed that the effect of interpolation methods is

minor.
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The following procedure gives the details for generating an equally spaced discrete

realization with interval 1 and sample size n from a continuous G(p, q; λ) process with

the offset, Λ.

1. Setup a G(λ)-time scale, tk = ((k + ζ)∆λ + 1)1/λ, where ∆ is the G(λ)-

sampling interval. Usually, we let ∆ = (Λ+n)λ−(Λ+1)λ

m(n−1)λ
, ζ = (Λ+1)λ−1

∆λ
and k =

0, 1, 2, . . . , m(n− 1). So we have t0 = Λ + 1 and tm(n−1) = Λ + n.

2. Find the corresponding discrete dual at the G(λ)-sampling interval ∆ as we did

in Example 5.1.

3. Generate the realization, Zk, k = 0, 1, 2, . . . , m(n− 1), from the discrete dual.

4. Obtain the approximation X̂(t) for Λ + 1 ≤ t ≤ Λ + n using Equation (24)

5. Obtain the equally spaced realization using Xk = X̂(Λ + k), k = 1, 2, . . . , n.

Note that m here is referred to as the generating rate which determines how many

data values are in the realization of the discrete dual to approximate the continuous

process. The higher m is, the lower the approximation error in step (4) will be. Thus,

large m results in small interpolation error. Typically, we set m = 20 for which the

interpolation error is minor.

Example 7.1

Let X(t) be a continuous Euler(2,1) process given by

(tD − α1)(tD − α2)X(t) = (tD − β)a(t), (25)

for t > 0, where α1=-1.844-92.31i, α2=-1.844+92.31i, β=433.5 and var(a(t))=34.4.

We generated a discrete realization at equally spaced intervals of length 1 and sample
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size n = 200 from X(t) with the offset Λ = 100. The G(λ)-time scale in this case is

tk = lim
λ→0

((k + ζ)∆λ + 1)1/λ

= Ahk,

where A = e∆ζ and h = e∆. From step 1, ∆ = limλ→0
(Λ+n)λ−(Λ+1)λ

m(n−1)λ
= ln(Λ+n)−ln(Λ+1)

m(n−1)

and ζ = limλ→0
(Λ+1)λ−1

∆λ
= ln(Λ+1)

∆
. When m = 20, obtain A = e∆ζ = eln(Λ+1) = 101

and h = e∆ = (Λ+n
Λ+1

)
1

m(n−1) = (300
101

)
1

20∗199 = 1.000274. Using the procedure described

in Example 5.1, the discrete dual of X(t) given h = 1.000274 is

Zk − 1.99835Zk−1 + 0.99899Zk−2 = 0.88796εk, (26)

where var(εk) = 0.01058. A discrete realization (see Figure 21(a)) with m(n − 1) =

3981 data points then is generated from the discrete dual process, i.e., model (26).

An approximation of the continuous realization of X(t) for 101 ≤ t ≤ 300 can be

obtained by using Equation (24)(see Figure 21(b)). Figure 21(c) shows the equally

spaced data set with length 200 using the equation Xk = X̂(Λ+k), k = 1, 2, . . . , 200.

7.2 Modeling Equally Spaced Data

We assume that the underlying G(λ)-stationary process is continuous. Since most

observed data sets are equally spaced, it is necessary to interpolate to obtain the

discrete dual. Given the equally spaced discrete sample Xt, t = 1, 2, 3, . . . , N , and

the offset of the process, Λ, the interpolated continuous sample is

X̂(t + Λ) =





Xt if t = 1, 2, 3, . . . , N ,

X(t; {Xt}) otherwise,

where X is the interpolation function. If we use linear interpolation, then

X(t; {Xt}) = ([t] + 1− t)X[t] + (t− [t])X[t]+1,
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where [t] represents the integer part of t. There are many interpolation methods

that could be used such as local regression estimation (Loess) and spline estimation.

Different interpolation methods may yield different results. However, when the cyclic

behavior is clearly visible in the original discrete data, the effect of the interpolation

methods on the final model is minor. The discrete dual of X̂(t), Zk, is

Zk = X̂(((k + ζ)∆λ + 1)1/λ − Λ), k = 0, 1, 2, . . . .

Usually, we let ∆ = (Λ+n)λ−(Λ+1)λ

(m−1)λ
and ζ = (Λ+1)λ−1

∆λ
, where n is the sample size of the

original equally spaced data, and m is the length of the discrete dual. In practice, we

can fix either the sample rate ∆ or the number of the dual data values, m = n.

For example, given an equally spaced sample from an M-stationary process, i.e.,

λ = 0, with offset Λ, we have

∆ = lim
λ→0

(Λ + n)λ − (Λ + 1)λ

(m− 1)λ

=
ln(Λ + n)− ln(Λ + 1)

m− 1

= 1/(m− 1)ln(
Λ + n

Λ + 1
)

and ζ = limλ→0
(Λ+1)λ−1

∆λ
= ln(Λ+1)

∆
. The G(λ)-time scale is tk = Ahk, where h = e∆ =

(Λ+n
Λ+1

)1/(m−1), A = e∆ζ = Λ + 1 and k = 0, 1, 2, . . . ,m − 1. Often, we let m = n, i.e,

we obtain n dual data values from the n equally spaced data values.

Example 7.2

Figure 22(a) shows an equally spaced realization from model (25) with the length

n = 200. The offset is Λ = 100. Figure 22(b) shows the discrete dual using linear

interpolation with sampling rate h = 1.005486. Using Burg’s algorithm to fit the
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discrete dual, we obtain a discrete AR(2) model given by

Zk − µ̂− 1.7448(Zk−1 − µ̂) + 0.9939(Zk−2 − µ̂) = ak.

The estimated variance of ak is 0.95, and µ̂ = −0.164. The corresponding estimated

Euler(2, 1) model is

(tD − α̂1)(tD − α̂2)(X(t)− µ̂) = (tD − β̂)ε(t), (27)

for t > 0, where α̂1 = −0.56 − i92.34, α̂2 = −0.56 + i92.34, β̂ = −434.2, and

var(ε(t)) = 32.3. Comparing these results with the parameters of the true model,

(25), the estimated coefficients are close to the true values. In the continuous process

such as the continuous ARMA process, the imaginary parts of the complex roots

of the characteristic equation determine the frequencies of the data, and the real

parts determine the energy of those frequencies. The closer the real part is to 0, the

stronger the corresponding frequency. Therefore, model (27) does a very good job of

estimating the cyclical behavior and the white noise variance of the true model (25).

In Figure 22(c), the solid line is the M-spectrum of true model, while the dashed line

is the M-spectrum based on model (27). Both have a peak at frequency, 14.7. Based

on the spectrum, the estimated model fits the true model very well. Figure 22(d)

shows the M-autocorrelation function of the true model, i.e., the solid line, and that

of the estimated model. The periodic behavior of the M-autocorrelation function of

the estimated model matches that of true model very well. Since the absolute value

of the real parts of the complex roots of the true model are larger than that of the

estimated model, the true M-spectrum has a higher peak than the estimated one.
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7.3 Forecasting

There are several methods of forecasting after fitting a model to an equally spaced

data set. The method used here is to forecast the discrete dual and then interpolate

to obtain forecasts for X(t) at the equally spaced time points. Given an equally

spaced data set Xt, suppose we know Λ and λ. In Section 7.2, we describe how to

fit a G(λ) model such as a G(p, q; λ) model to the data. Then, for a G(λ)-time scale

such as tk = ((k+ζ)∆λ+1)1/λ, we then can obtain its discrete dual to which a model

such an ARMA(p, q) can fit. The procedure for obtaining the l-step ahead forecasts

follows.

1. Calculate the corresponding maximum forecasting length, L, for the discrete

dual data using equation

L = [
(Λ + n + l)λ − 1

∆
−m− 2],

where Λ is the offset, n is the length of the original equally spaced data set, m

is the length of the discrete dual, ∆ is the sampling interval, l is the maximum

lag to forecast in the original series, and [ ] means the integer part.

2. Using the discrete ARMA(p, q) model and the discrete dual data, Z0, Z1, . . . , Zm−1,

obtain L-step ahead forecasts, Zm, Zm+2, . . . , Zm+L−1.

3. Obtain the approximation, X̂(t), for tm−1 ≤ t ≤ tm+L−1 using equation

X̂(t) =





ZM if t = tM ,

Z(t; {ZM}) otherwise,

where M = m− 1,m, . . . ,m + L− 1 and Z is the interpolation function.

4. Obtain the equally spaced l-step ahead forecasts by Xk = X̂(Λ + k), k =

n + 1, n + 2, . . . , n + l.
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Figure 23 shows the l-step ahead forecasts using the model fit to the discrete dual

data indicated by a dashed line with sign “+”, and using the usual AR model fitting

the original equally spaced data indicated by a dotted line, respectively, where the

solid line is the true value. Clearly, the G(λ) method produces better forecast perfor-

mance than the typically AR model. In order to compare the forecast performance,

we define

Impovement =
MSE of AR Model−MSE of G(λ) Model

MSE of AR Model
× 100%,

where MSE indicates the mean squared-errors of the forecasts. The value of “Im-

provement” measures how much the G(λ) model reduces the forecast error. The

maximum value of improvement is 100%, which means there is no forecast error us-

ing the G(λ) model. The value can be negative, which indicates that the forecast

error increases when using the G(λ) model. The closer the value of improvement

is to 100%, the better the forecast performance of the G(λ) model is compared to

the AR model. In Table 1, we can see that the G(λ) model improves the forecast

performance for Example 7.2 dramatically. This example demonstrates that for the

time series which have frequencies monotonically changing over time, the G(λ) model

can provide substantially better forecast than the usual ARMA model.

8 Estimation of λ and Λ

We have shown that given equally spaced data and the values of Λ and λ, we can find

the the discrete dual, Zk, at the sampling rate ∆ by interpolation. From Theorems

5.2 and 5.3, modeling Zk yields the corresponding continuous model as shown in

Example 5.2. Now we discuss the estimation of λ and Λ.
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Table 1: Forecast Performance(MSE): AR model vs. G(λ) Model for Example 7.2

lags AR Model G(λ) Model Improvement

5 44.5 11.0 75%

10 52.6 22.5 57%

15 103.4 24.9 76%

20 150.2 29.4 80%

25 250.0 49.2 80%

30 309.5 55.9 82%

35 311.9 69.7 78%

40 360.3 111.4 69%

45 441.0 137.4 69%

50 434.2 148.6 66%

55 464.1 188.3 59%

60 502.4 207.8 59%

Gray and Vijverberg (2002) introduced a model-based method for estimating Λ

for a shifted M-stationary process, which is the G(λ)-stationary process with λ = 0.

They obtained an initial “guess” for the possible values of Λ, then found the value

of Λ that minimized the sum of squared residuals (SSE) after fitting an AR model

to the dual data. The method was based on finding the value of Λ that provides

the model with minimum weighted SSE fit to the dual data. These results showed

good forecast performance when roots of the characteristic function were close to unit

circle. However, their estimator of Λ was dependent on the initial “guess”, and the

resulting estimate was not always close to the true value in the simulation studies.
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In order to narrow down the range of the origin and avoid error due to the initial

“guess”, Choi (2003) investigated an alternative approach that balanced the number

of dual data values in the first and last cycle. The approach works well when there

is one frequency in the dual process and when this frequency can be clearly seen

in the realization. In the case of multiple frequencies, it will be difficult to identify

the first cycle and last cycle. Choi (2003) also used AIC instead of SSE as the

criterion to estimate Λ in order to improve the comparison among models of different

orders. From the simulation results, AIC not only tends to give models with fewer

parameters, but also yields a more accurate and stable estimator of Λ. Both AIC

and SSE are model-based. Different models or different modeling methods such as

“Burg”, “Yule-Walker”, and “MLE” often result in very different estimators of Λ,

especially when the roots of the characteristic equation are not very close to the unit

circle. For G(λ)-stationary processes, we need to estimate both λ and Λ. Before any

estimation, a reasonable step is to test H0 : λ = 1. If λ = 1, the traditional stationary

analysis is appropriate. Otherwise, we need to estimate the value of λ and Λ. The

new approach for estimation discussed in this section is model-free and is based on

the empirical general instantaneous period (EGIP) and the sample autocorrelation

function(SACF) of the discrete dual data.

8.1 Testing H0 : λ = 1 using SACF

Given a discrete time series Xt, the sample autocovariance function is

γ̂k =
1

n

n−|k|∑

t=1

(Xt − X̄)(Xt+|k| − X̄), k = 0,±1,±2, . . . ,±(n− 1),

and the sample autocorrelation function is ρ̂k = γ̂k

γ̂0
. When λ = 1, Xt is a discrete

stationary process, and γ̂k and ρ̂k are estimators of its autocovariance and auto-
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correlation function, respectively. When λ 6= 1, γ̂k and ρ̂k have no direct physical

interpretation. If we divide a time series realization from a G(λ)-stationary process

into two sections, and then calculate the SACFs of the two parts, ρ̂1k and ρ̂2k, respec-

tively, the two SACFs can help test H0 : λ = 1 and identify λ and Λ. Figure 24(a)

and (c) show 400 equally spaced data values generated from models:

(D − α1)(D − α2)X(t) = (D − β)a(t) (28)

and

(t1/2D − α1)(t
1/2D − α2)X(t) = (t1/2D − β)a(t), (29)

where α1=-0.0101-0.506i, α2=-0.0101+0.506i, β=2.375 and var(a(t))=0.188, respec-

tively. When λ = 1, i.e. model (28), the data are stationary, and ρ̂1k and ρ̂2k are

very close to each other since both are the estimators of the autocorrelation of the

same stationary process(Figure 24(b)). When λ = 0.5, i.e. model (29), the cyclical

behavior of ρ̂1k and ρ̂2k can be clearly different as seen in Figure 24(d). Actually,

the two SACFs, ρ̂1k and ρ̂2k, can be interpreted as the local autocorrelations of the

first half series and the second half series respectively. For G(λ)-stationary processes,

the theoretical local sample autocorrelation of the first half series is equal to that of

the second half series if and only if λ = 1, i.e., the process is stationary. In Figures

24(c)-(d), when λ = 0.5, ρ̂1k seems to have higher frequency than ρ̂2k. Therefore,

given a time series, one approach to test H0 : λ = 1 is to test whether there is a

significant difference between ρ̂1k and ρ̂2k. Here we first use a graphical display to

assess whether λ = 1. Given a time series Xk, the procedure follows:

1. Separate the data Xk into two parts, the first half, X1k, and the second half,

X2k, and obtain the SACFs, ρ̂1k and ρ̂2k, respectively.
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2. Fit an autoregressive model to X1k. Suppose the sample size of the full data set,

Xk, is n. Generate R realizations of length n using the autoregressive model

obtained for X1k.

3. For each realization, calculate ρ̂1k, and obtain an empirical distribution of the

ρ̂1k at each k.

4. For ρ̂1k at fixed lag, k, obtain a 100(1-α)% probability interval for the ρ̂1k using

the quantiles of the empirical distribution.

5. Using the 100(1-α/2)th and (100α/2)th quantiles at each lag, an 100α envelope

is obtained for ρ̂1k by connecting these quantiles.

6. Plot the envelope and ρ̂2k.

Here the value R is the number of bootstrap replications, and R = 199 in the example.

If Xk is from a stationary model with constant frequency, then ρ̂2k should fall largely

within the envelope. This type of envelope was used by Tsay (1992) and Ripley

(1977), and they will be referred to here as acceptance envelopes. The probability

that the envelope contains the entire SACF is not 1 − α under the assumption that

the data are from a stationary model. Thus the acceptance envelope considered is

not a joint 100(1-α)% confidence interval of the SACF but is mainly used as a guide.

Figure 25(a) shows ρ̂1k and ρ̂2k for a realization generated by model (28) and an

acceptance envelope constructed by using α=0.10, where the solid lines are the 5th

percentile and 95th percentile of SACF, the dotted line is ρ̂1k and the dashed line

with label “2” is ρ̂2k. Here the envelope contains ρ̂2k very well. However, from Figure

25(b), the stationarity of the realization from model (29) is questionable. Therefore,

the bootstrap-based envelope provides a graphical display that can be used to assess
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whether the data are from a model with constant period or frequency, i.e, λ = 1. As

mentioned above, this graphical method is not to test H0: λ = 1 but simply provides

a diagnostic display.

To test the null hypothesis H0 : λ = 1, we measure the difference between ρ̂1k and

ρ̂2k by zk = ρ̂1k − ρ̂2k, i = 1, 2, . . . ,K, where K is the maximum lag of SACFs. In the

implementation here, we use K equal to one fourth of the total sample size. Under

the null hypothesis: H0: λ = 1, we have

Z ∼ normal(0,Σ),

where Z = (z1, z2, . . . , zK), 0 is a K × 1 vector with 0 as elements, and Σ is the

covariance matrix

Σ =




γ11 γ12 . . . γ1K

γ21 γ22 . . . γ2K

...
...

. . .
...

γK1 γK2 . . . γKK




,

where γij = 2cov(ρ̂1i, ρ̂1j). It follows that Z ′Σ−1Z ∼ χ2(K) under the null.

To test the difference between ρ̂1k and ρ̂2k via parametric bootstraps, we propose

a new statistic

Q =
K∑

k=0

(ρ̂1k − ρ̂2k)
2.

For a stochastic process, typically, Σ 6= I, and the statistic Q does not have a simple

known distribution such as Chi-squre or Gamma. The bootstrap method is used to

generate the empirical distribution of Q under the assumption that the time series is

stationary. The procedure follows:

1. Separate the time series Xk into two parts, the first half X1k and the second

half X2k, and obtain the SACFs and the value of the Q-statistic.
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2. Fit an autoregressive model to Xk, the entire series.

3. Generate R realizations using the model obtained in step (2) and calculate the

value of the Q-statistic for each realization (R = 199 in the example).

4. Obtain 100(1-α)th empirical quantiles, Q1−α, of Q.

If Q > Q1−α, we then reject the null hypothesis. Figures 25(c) and (d) give the result-

ing empirical distributions of Q’s for model (28) and model (29) and the estimated

Q.95’s (vertically dashed line). The observed value of Q is also shown with the arrow.

In Figure 25(c) we show the case in while λ = 1, and in Figure 25(d), we show the

case for λ = 0.5. It is clear that Q < Q.95 when λ = 1, and Q > Q.95, indicating

rejection of H0 : λ = 1, when λ = 0.5.

8.2 Initial Estimation of Λ and λ using EGIP

After testing the null hypothesis, we need to either fit a stationary model to the

data if we do not reject it or find the proper Box-Cox transformation for the time

scale if we reject the null. Theoretically, given a G(λ)-stationary process, the dual is

stationary if and only if we transform the time scale by the true λ and the true offset

Λ. That is, the general instantaneous period(GINP) of the dual is a positive constant

if and only if the true λ and Λ are identified. When data have clear periodic behavior,

the empirical general instantaneous period(EGINP) estimated by peak detection can

be used to estimate the GINP. The procedure we recommend involves fitting a linear

regression line for the EGINP on the dual time scale. Thus, we will be searching for

values of Λ and λ that are associated with a regression line with slope near zero.

The algorithm is as follows:
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1. For the original equally spaced data, find the locations of peaks, i.e., t1, t2,

. . . ,tm by inspection.

2. For a given value of λ, let

ui =





ti if λ = 1

ln(ti + Λ) if λ = 0

(ti+Λ)λ−1
λ

otherwise

and pi = ui+1 − ui, i = 1, 2, 3, . . . ,m− 1.

3. Initially, letting λ = 1, find the corresponding m − 1 pairs of pi and ui values,

where pi is also referred to as the EINP of the data at time ui. Fit a simple

linear regression model: pi = bui+a, and test whether the slope b is significantly

different from 0 at the significance level 95%.

4. Choose a value of λ from a selected range. If b > 0 and the general trend of

the EINP appears to be a straight line, we usually look at λ’s in the range (0,

1), or perhaps even (-1, 1). We consider Λ’s in the range (0, 200), at first, and

extend the range later if necessary. We would usually cover the selected range

with about 11-21 values of λ and 20-50 values of Λ. We can divide up a portion

of the interval more finely later. If b < 0, we would select the range for λ to be

(1, 3), or perhaps even (1, 5).

5. For each combination of chosen λ and Λ values, calculate m − 1 pairs ui and

pi, fit a simple linear regression model: pi = bui + a and record |b(λ, Λ)|, the

absolute slope for the regression, and |t(b, λ, Λ)|, the absolute t value associated

with the estimated slope.
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6. Find all combinations of λ’s and Λ’s for which the slope, b, is not significantly

different from 0.

The initial estimation will narrow the range of λ and Λ significantly, especially,

when the periodic behavior is very clear in the data.

8.3 Estimating λ and Λ Using Q

As previously mentioned, for the G(λ)-stationary processes with offset Λ, the theo-

retical autocorrelation of the first half of the dual data is equal to that of the second

half dual data if and only if the discrete dual is obtained using the true λ and Λ.

Since the Q-statistic can be used to measure the difference between two SACFs, we

use a numerical method to find the value of λ and Λ that minimize Q. The procedure

follows.

1. Separate the time series Xk into two parts, the first half X1k and the second half

X2k, and obtain the two corresponding SACFs and the value of the Q-statistic.

2. Choose the range of the values of λ and Λ from the initial estimation based on

EGIP. Current practice is to cover the selected range with about 11-21 values

of λ and 20-50 values of Λ. The interval can be divided up a more finely if

needed.

3. Find the discrete dual for each combination of λ and Λ and calculate the values

of the Q-statistics.

4. Obtain the λ and Λ that minimize the Q-statistic.

Note that instead of picking any range of values of λ and Λ, we select the range from

the initial estimation. This can reduce the computation considerately. Restricting
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the search to estimates relatively close to the true values is important since if λ and

Λ are selected too far away from the true values, both ρ̂1k and ρ̂2k will tend to 0 very

quickly as k increases. This will incorrectly result in the Q value being close to 0.

Table 2 shows the results for the data(Figure 5(c)) from model (6), i.e.,

X(t) = A1 cos(2πβ1
(t + Λ)λ − 1

λ
) + A2 cos(2πβ2

(t + Λ)λ − 1

λ
) + a(t),

where A1 = 10, A2 = 5, β1 = 5, β2 = 4.5, λ = 0.5, Λ = 100 and a(t) ∼N(0,1), and

data(Figure 24(c)) from model (29), i.e.,

(t1/2D − α1)(t
1/2D − α2)X(t) = (t1/2D − β)a(t),

where α1=-0.0101-0.506i, α2=-0.0101+0.506i, β=2.375, Λ=100 and var(a(t))=0.188.

When the cyclical behavior is very clear, as in Figure 5(c), this method gives us

the very accurate estimates λ̂ = 0.5 and Λ̂ = 100. When elongation of the cyclical

behavior of the data is a little weak such as in Figure 24(a), this method still provides

good estimates, λ̂ = 0.6 and Λ̂ = 52. Since the Q-value for λ = 0.4 and λ = 0.5 are

very close, in practice, we would typically pick λ̂ = 0.5, instead of λ̂ = 0.4 for ease

of interpolation, i.e. we use the square root time transformation, The corresponding

estimator of Λ is then Λ̂ = 100, which is exactly equal to the true value.

The approach we recommend here provides a neighborhood of the true value

rather than one specific value of λ or Λ. It actually gives us freedom to interpret the

final model we obtain. For example, if λ̂ = 0.01, we typically use λ̂ = 0, which is the

logarithmic time transformation, and is easily interpreted.
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Table 2: Minimum Qs for each Possible λ

Data from Model (6) Data from Model (29)

λ Λ Q Λ Q

0.0 360 0.017937059 372 0.7521601

0.1 310 0.017526286 320 0.7473886

0.2 250 0.036805857 264 0.7396110

0.3 200 0.015139636 208 0.7162618

0.4 150 0.001666056 154 0.6579882

0.5 100 0.001132114 100 0.5991000

0.6 50 0.014224997 52 0.5314034

0.7 10 0.133403316 9 1.1090868

9 Application to Actual Data

We will apply the methods mentioned above to two data sets in this section. One is

a geophysical data set called MNTA, and the other is a bat signal called ABEND.

9.1 Data MNTA

The original MNTA data set provided by Dr. Brian Stump has 4096 measurements.

Figure 26(a) shows the entire data set. Note that the data values at the beginning

and at the end of the data set are very close to zero. Therefore, we will only use

data values 901-1600 (Figure 26(b)) for analysis. We shall refer to this subset of

MNTA as MNTASUB. Figure 26(c) and Figure 26(d) show the usual AR spectrum

and sample periodogram of the data, respectively. They both show that the data
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has dominant frequencies located in a neighborhood of f = 0.03. Obviously, the

data are compacting over time, and the frequency of the data at the beginning is

lower than at the end. Based on the peak detection method discussed in Section

3, we obtained the empirical instantaneous period of the data(Figure 27(a)), where

it can be seen that the period is monotonically decreasing over time. From Figure

27(b), the ACF, ρ̂1, (“1”) of the first 450 data points vs. the ACF, ρ̂2, (“2”) of

the remaining data points of MNTASUB, indicates that the two ACFs have different

frequencies. Thus, stationarity of the data is questionable. Therefore, we need to

test H0 : λ = 1. Figure 27(c) provides a diagnostic display for testing λ = 1, where

the 95% acceptance region of ρ̂2 under the null hypothesis is in the region between

the two solid lines. It seems that the region does not contain the observed ρ̂2 very

well, especially for the first 40 lags. Figure 27(d) shows the empirical distribution of

the Q-value under the null hypothesis, the 95th-quantile(Q.95) with the dashed line

of the Q-value, and the observed Q(arrow). The observation is obviously larger than

Q0.95, and we therefore reject the null H0 : λ = 1. Thus traditional Fourier spectral

analysis is not appropriate. Currently, many methods such as wavelet analysis, short

window Fourier analysis (Percival and Walden 2000) and autoregressive models with

time-varying coefficients (Rajan and Rayner, 1996) are used to analyze data with

time-varying frequencies. Figure 28 shows the result of short window Fourier analysis,

where the x-axis is frequency, y-axis is time, and the dark line represents the dominant

frequency at each time point.

From the plot, the data appear to have monotonically increasing dominant fre-

quency. We will therefore consider a G(λ)-stationary model with λ > 1 for the data.

To identify λ and Λ, we set initial ranges of λ and Λ from 1 to 3 and from 0 to 400,

respectively. The initial estimation gives the range or λ from 2.0 to 2.8. From Table
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3, the value of λ appears to be located in a neighborhood from 2.4 to 2.8. We then

pick λ̂ = 2.5 and Λ̂ is 216. The corresponding discrete dual of MNTASUB(Figure

30(a)) seems to have a constant frequency over the entire time period. Figure 30(b)

and Figure 30(c) show the AR spectrum and sample periodogram. The discrete dual

data has a low dominant frequency located around f = 0.022, and also it has sharper

peak than that of the original data set shown in Figure 26. The empirical instanta-

neous period (Figure 30(d)) of the discrete dual is reasonably flat. Figure 29 shows

the sample instantaneous spectrum based on λ = 2.5 and Λ = 216. Comparison

with the time-frequency plot in Figure 28 shows that when t < 200 and t > 750,

the sample instantaneous spectrum clearly identifies the dominant frequency of the

data, while the short window Fourier analysis does not. For 200 < t < 750, both

methods give similar results. Next, we fit a G(p, q; λ) model to the data and obtain a

G(15, 0; 2.5) model with offset 216. When sampling the data at G(λ)-time scale with

the G(λ)-sampling interval ∆ = 18203.7, the discrete dual is given by

(1− 1.97B + 0.99B2)2(1 + 0.7611B + 0.7626B2)(1− 0.6179B + 0.7472B2)

(1 + 0.0734B + 0.7247B2)(1 + 1.2655B + 0.7099B2)

(1 + 1.5611B + 0.6651B2)(1− 0.7476B)Yu = εu, (30)

where var(εu)=3.361. An AR(p) model will be used as a competing model to evaluate

the forecast performance of G(15;2.5) model. With the highest order set at 30,

the AIC criterion selects an AR(22) model for MNTASUB. Figure 31 compares the

forecast performances of the AR(22) model and the G(15; 2.5) model. Clearly, the

G(15;2.5) model has much better forecasts than AR(22) as would be expected. Table

4 shows the MSE of forecasts at different lags using the AR(22) and the G(15;2.5)

model, respectively. The latter model almost reduces the MSE by 80% forecasts for
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Table 3: Minimum Qs for each Possible λ for Data MNTASUB

λ offset Q slope t

2.0 8 4.708274 0.0100409943 1.9020885

2.1 48 3.599942 0.0104302499 2.1193730

2.2 88 2.845673 0.0109098621 2.3429982

2.3 128 2.325702 0.0114238232 2.5667171

2.4 176 1.968625 0.0111080888 2.6395371

2.5 216 1.675376 0.0116661060 2.8579594

2.6 256 1.479355 0.0122018868 3.0689614

2.7 304 1.310339 0.0120100714 3.1343856

2.8 360 1.250445 0.0112107764 3.0593131

at lag 10 to lag 60. Figure 32 shows the instantaneous spectrum for MNTASUB

based on the G(15; 2.5) model, which is almost the same as the sample instantaneous

spectrum shown in Figure 29. From Figure 32, the dominant frequency of the original

data is about f = 0.014 at t = 200 and about f = 0.041 at t = 845, which implies

that the data has an instantaneous period of 70 at the 200th data point and an

instantaneous period of 24 at the 850th data point. From Figure 33, we can see that

these observations are consistent with the original data set.

9.2 Data ABEND

The bat signal is recorded from the Nyctalus noctula bat. One can download the

data from the web site: http://www.zwergfledermaus.de/wav/wave e.htm. The data

set has 82,958 measurements, and the sample rate is about 25kHz. In this section,
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Table 4: MSE of Forecasts: AR(22) vs G(15,0;2.5) for Data MNTASUB

lags AR(22) Model G(15, 0; 2.5) Model Improvement

10 3164788 493374 84%

20 7524439 831502 89%

30 5767593 665691 88%

40 4651343 570987 88%

50 3905185 808824 79%

60 3404564 855499 75%

we only analyze a typical subset, referred to as ABENDSUB, of length 280. From

Figure 34(a), ABENDSUB has cyclical behavior elongating in time. Figure 34(b)

shows its uninformative sample spectrum, which has many peaks, namely, 0.088,

0.1139, 0.2649, 0.4079. Separating ABENDSUB into two parts of length 140 each

and calculating the ACF for each part, the two ACFs are quite different (Figure

34(d)). Therefore, the stationarity of the data is questionable. We test the null

hypothesis that the data are from a stationary process using the bootstrap method,

and in Figure 35(a), we see that the observation Q is larger than Q.95, the 95th

quantile of the empirical distribution of Q-values under the null, so we reject the

null.

From the data in Figure 34(a) and the empirical instantaneous period in Figure

34(c), it is clear that the periods are increasing in time. Fitting a G(λ)-stationary

model with λ < 1 for the data, we set the initial range of λ and Λ from 0 to 1 and

from 0 to 250, respectively. From Table 5, we see that λ̂ = 0 and ˆΛ = 188 are selected

as the best parameters estimates. That is, we fit an M-stationary process to the data.
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The corresponding dual data, the sample spectrum of the dual and the empirical in-

stantaneous period are shown in Figures 35(b)-(d), respectively. The dual data has

strong cyclical behavior, with constant period. The sample spectrum shows three

frequencies, i.e., 0.12, 0.24 and 0.36. Figure 36 and Figure 37 show the instantaneous

spectrum under the assumption the data are from an M-stationary process and the

time-frequency plot generated using a window based Fourier method. These plots

provide similar information concerning the time varying frequency behavior. How-

ever, the sample instantaneous spectrum clearly shows three dominant frequencies in

the data, while the time-frequency plot only gives the most dominant one.

By fitting an AR(p, q) model to the discrete dual, we obtain an Euler(12) model

for the data. When the sample rate of the Euler time scale is h = 1.00326, its discrete

dual is given by

(1− 1.4448B + 0.9954B2)(1− 0.0703B + 0.9732B2)

(1 + 1.2691B + 0.9193B2)

(1− 1.7282B + 0.7599B2)(1− 0.7885B + 0.6537B2)

(1 + 1.502B + 0.5758B2)(Yu + 0.01636) = εu, (31)

where var(εu) = 0.002722. Figure 38 shows the instantaneous spectrum based on the

Euler(12) model. Since the data have multiple frequencies, it is not easy to evaluate

the model-based instantaneous spectrum by visual methods as we did in Figure 33.

However, when we compare it with the previous sample instantaneous spectrum and

the time-frequency plot, the instantaneous spectrum based on the Euler(12) model

characterized the change of the three dominant frequencies of ABENDSUB very well.

Based on model (31), Figures 39(a)-(d) show the snapshots of the Euler(12) spectrum

at four specific times, i.e., t = 1, t = 80, t = 160 and t = 220. Note that since the
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Table 5: Minimum Qs for each λ for Data ABENDSUB

λ offset Q slope t

0.0 188 0.07823766 0.001953457 1.631810

0.1 160 0.09287909 0.001846839 1.514361

0.2 128 0.14823380 0.002247002 1.783700

0.3 96 0.19932705 0.002878826 2.166317

0.4 64 0.35008821 0.003992134 2.727323

0.5 36 0.65244955 0.005119565 2.990009

0.6 12 1.50383413 0.006702452 2.960328

0.7 0 8.93196774 0.004249245 1.500202

frequency monotonically decreases with time, the highest dominant frequency is so

fast that it cannot be identified at the sample rate used for t < 25. To evaluate the

forecast performance of the Euler(12), we use an AR(p) as a competing model. With

the highest order set at 20, the AIC criterion picks an AR(16). Table 6 shows the

MSE of forecasts at different lags, where it can be seen that Euler(12) reduces the

MSE by 90% over the forecasts for the AR(16) model for all lags from lag 10 to lag

60. Therefore, form both spectral analysis and forecast performance points of view,

the Euler(12) is a good model for ABENDSUB.

10 Conclusion

The goal of this article is to extend the work of Gray and Zhang(1988), Gray, Vijver-

berg and Woodward(2004) and Choi (2003) concerning the continuous M-stationary
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Table 6: Forecasts Performance for Data ABENDSUB: AR(16) vs Euler(12).

lags AR(16) Model Euler(12) Model Improvement

10 0.086352 0.013884 84%

20 0.221560 0.016544 93%

30 0.387166 0.020579 95%

40 0.341677 0.018365 95%

50 0.452858 0.040770 91%

60 0.426750 0.033221 92%

process and the discrete M-stationary process. A continuous M-stationary process

can be transformed to a continuous weakly stationary process, referred to as the

dual process, through a logarithmic time transformation. The M-stationary pro-

cess provides a better fit for the non-stationary data with cycle length increasing

approximately linearly in time than the usual methods based on a stationarity as-

sumption. The G(λ)-stationary processes are proposed to model data with a wide

range of time-frequency behavior, especially for the processes with frequencies that

monotonically increase or decrease over time. The usual stationary processes and M-

stationary processes are two special cases of the G(λ)-stationary process, i.e., λ = 1

and λ = 0, respectively. Using the Box-Cox transformation on the time scale, the

G(λ)-stationary processes is transformed to a stationary dual. Most properties of

stationary processes and M-stationary processes are special cases of the correspond-

ing properties of G(λ)-stationary processes. The general instantaneous period and

general instantaneous frequency are introduced to measure the change of the period

and the frequency in G(λ)-stationary processes. These concepts are first introduced
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by Gray, Vijverberg and Woodward (2004) for measuring the change of the period

of the data for M-stationary processes. Here we give a more general definition. The

general instantaneous period measures the length of the next cycle starting at any

time. The general instantaneous frequency is its reciprocal.

A typical class of G(λ)-stationary process, the G(p, q; λ) processes, are proposed.

When q = 0, this is referred to as the G(p; λ) process. Their dual processes are the

continuous ARMA(p, q) processes and the continuous ARMA(p) processes, respec-

tively. The continuous processes can only be applied to real data through discretiza-

tion. Extending the theorem by Phadke and Wu (1974), we prove that sampling a

G(p; λ) or G(p, q; λ) process at the G(λ)-time scale results in a discrete ARMA(p, r)

process, where r ≤ p− 1 if the Nyquist frequency is greater than the highest fre-

quency of the corresponding G(p; λ) or G(p, q; λ) process. The importance of the

theorem is that inference based on the sampled data can be made regarding the un-

derlying continuous process. Moreover, in Phake and Wu’s research, the coefficients

of the discrete stationary process are restricted to a specific region. In this thesis, we

extend their method and find a unique continuous stationary or G(λ)-stationary for

each discrete stationary process.

For the G(λ)-stationary processes, we use the instantaneous spectrum to provide

a spectral representation that describes the manner in which the frequency changes

over time. Time-frequency analysis has been approached in the literature using the

window-based Fourier transform and wavelets. The instantaneous spectrum anal-

ysis has clearer and smoother results, especially, for data with multiple frequencies

changing over time when the change can be described by a monotonic transformation.

In practice, most data are collected at equally spaced time points. Methods to

simulate equally spaced realizations from a continuous G(p, q; λ) model, model the
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equally spaced data, and forecast are introduced in this article. For the latter two

procedures, the main idea is to interpolate the data at the G(λ)-time scale from the

equally spaced data and reinterpolate forecasts based on interpolated data to obtain

the forecasts on the equally spaced time scales.

A challenging problem in dealing with the G(λ)-stationary process in this research

is to estimate the value of λ and offset Λ, which affect both the instantaneous spec-

trum and the final model. A bootstrap method is used to test the null hypothesis

that the data are from a stationary process. Also, we provide a procedure to narrow

the range of possible values of λ and Λ and to identify the best model based on the

ACF of the dual data. The sample spectral density may be used instead of the ACF

in the estimation procedure, and this is a topic for future research.

Finally, the G(p, q; λ) models are used to fit the two actual data, i.e., Data MNTA-

SUB and Data ABNEDSUB, respectively. From the spectral analysis point of view,

the G(p, q; λ) models do a good job of describing the frequencies and the change of

frequency over a given time interval for each data set. Also the G(p, q; λ) models

outperform the usual AR models in forecast performance.

This research marks the beginning of a new area in non-stationary analysis. A

natural extension of this research is to explore processes with several different λ’s.

This a very fruitful area of research with much work left to be done.
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Figure 1: Realizations from the model in Example 2.1: (a)A=10, β = 20, φ = 0,

λ = 0; (b)A=10, β = 3.5, φ = 0, λ = 0.5; (c)A=10, β = 0.4, φ = 0, λ = 1; (d)A=10,

β = 0.004, φ = 0, λ = 2.
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Figure 2: The Plot of the Instantaneous Periods for Different λ’s
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Figure 3: Data and EGIP’s from Two Model:(a)The Signal from model (5); (b) EGIP

of model (5) vs t ; (c) A Realization of equation (6); (d) EGIP of model (6) vs t
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Figure 4: Stationary region covered by φ1 and φ2 corresponding to discretized con-

tinuous ARMA process
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Figure 5: A realization (a) and ACF at time t = 101 (b) of a G(2,1;0) process with

the discrete dual (20) at sampling rate h = 1.0055.
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Figure 6: A realization (a), ACF at time t = 101 (b) of a G(4,3;0) process with the

discrete dual in Equation (21) at sampling rate h = 1.0055 and G(λ)-spectrum of the

G(4,3;0) process
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Figure 7: A realization (a), ACF at time t = 101 (b) of a G(6,5;0) process with the

discrete dual in Equation (22) at sampling rate h = 1.0055 and G(λ)-spectrum of the

G(6,5;0) process
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Figure 8: A realization (a), G(λ)-spectrum (b) of a G(2,1;0) process with the discrete

dual (23) at sampling rate h = 1.0055. A realization (c), G(λ)-spectrum (d) of a

G(2,1;2) process with the discrete dual (23) at sampling rate h = 1.0055.
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Figure 9: A realization from a G(2,1;0) model with discrete dual (23) at sample rate

h = 1.0055 and var(εk) = 1.
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Figure 10: Instantaneous spectrum of the data in Figure 9
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Figure 11: A realization from a G(2,1;1) model with discrete dual (23) at G(λ) sample

interval ∆ = 1 and var(εk) = 1.
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Figure 12: Instantaneous spectrum of the data in Figure 11
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Figure 13: A realization from a G(2,1;2) model with discrete dual (23) at G(λ) sample

interval ∆ = 200.5 and var(εk) = 1.

0 50 100 150 200

t

0.0

0.1

0.2

0.3

0.4

0.5

gif

Figure 14: Instantaneous spectrum of the data in Figure 13
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Figure 15: A realization from a G(6,5;0) model
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Figure 16: Instantaneous spectrum of the data in Figure 15
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Figure 17: A realization from a G(6,5;1) model
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Figure 18: Instantaneous spectrum of the data in Figure 17
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Figure 19: A realization from a G(6,5;2) model
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Figure 20: Instantaneous spectrum of the data in Figure 19
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Figure 21: (a) A realization(3981 data points) of model (26); (b) An approximate of

a realization of X(t) for 101 ≤ t ≤ 300; (c) An equally spaced data set with length

200 of model (25) given offset Λ = 100.
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Figure 22: (a) An equally spaced realization with length n = 200 of model (25);(b)

The interpolated discrete dual data; (c) The M-spectrum of true model(dashed line)

vs that of the based on model (27)(solid line); (d) The M-autocorrelation function of

true model(dashed line) vs that of the based on model (25)(solid line).
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Forecast:AR Model vs. Euler Model
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Figure 23: l−step ahead forecasts based on the Euler model vs l−step ahead forecasts

based on the usual discrete AR model.
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Figure 24: Equally spaced samples of G(2,1;λ) model and their SACF’s for λ = 1 and

λ = 0.5, respectively. The solid lines represent half samples and the corresponding

SACF’s, while the dot line represent the second half samples and the corresponding

SACF’s. (a) Equally spaced sample of model (28). (b) SACF of the sample in (a).

(c) Equally spaced sample of model (29) with offset=100. (d) SACF of the sample

in (c).
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Figure 25: (a)Acceptance envelopes(two solid lines) for SACF of model (28); (b)

Acceptance envelope for SACF of the Realization from model (29); (c) Empirical

distribution of Q, Q.95 (vertically dashed line) and the observation value of Q for the

sample from model (28); (d) Empirical distribution of Q, Q.95 (vertically dashed line)

and the observation value of Q for the sample from model (29).
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Figure 26: (a) Data MNTA. (b) Data MNTASUB: the subset of MNTA data(from

901th to 1600th) for this analysis. (c)The AR spectrum of Data MNTASUB. (d)The

sample periodogram of Data MNTASUB
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The Empirical Instantaneous Period
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Figure 27: (a) The empirical instantaneous period of Data MNTASUB. (b)the ACF,

ρ̂1, (the line with sign “1”) of the first 450 data points vs. the ACF, ρ̂2, (the line

with sign “2”) of the remaining data points of Data MNTASUB. (c) Acceptance

envelopes(two solid lines) for ρ̂1 of DATA MNTASUB. (d) The empirical distribution

of Q, Q.95 (vertically dashed line) and the observation value(the line with arrow) of

Q for Data MNTASUB.
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Figure 28: Short-window Fourier analysis for Data MNTASUB
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Sample Instantaneous Spectrum

Figure 29: Sample instantaneous spectrum based on λ = 2.5 and Λ = 216 for Data

MNTASUB
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Discrete Dual Data
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Figure 30: (a) The discrete dual data. (b) AR spectrum of the discrete dual data. (c)

Sample spectrum of the discrete dual data. (d) The empirical instantaneous period

of the discrete dual data.

Forecast:AR Model vs. G-lambda Model
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Figure 31: Forecasts for last 120 lags: AR(20) model (dashed line) vs G(15,0;2.5)

model (the line with sign “+”), where the solid line represents the true values.
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Estimated G-AR Instantaneous Spectrum

Figure 32: The model-based instantaneous spectrum
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Figure 33: Data: MNTASUB
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Data ABEND
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Figure 34: (a) Data ABENDSUB (b)The sample spectrum of Data ABENDSUB. (c)

The empirical instantaneous period of Data ABENDSUB. (d)the ACF, ρ̂1, (the line

with sign “1”) of the first 450 data points vs. the ACF, ρ̂2, (the line with sign “2”)

of the remaining data points of Data ABENDSUB.
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Figure 35: (a) The empirical distribution of Q, Q.95(vertically dashed line) and the

observation value(the line with arrow) of Q for Data ABENDSUB.(b) the dual data.

(c) The sample spectrum of the dual data. (d) the empirical instantaneous period of

the dual
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Figure 36: The sample instantaneous spectrum of Data ABENDSUB given λ = 0

and Λ = 188
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Figure 37: Window-based Fourier analysis for Data ABENDSUB.

83



0 50 100 150 200 250

t

0.0

0.1

0.2

0.3

0.4

0.5

gif

Estimated G-AR Instantaneous Spectrum

Figure 38: The estimated G-AR instantaneous spectrum of Data ABENDSUB given

Euler(11) model.
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Figure 39: Model-based instantaneous spectrum for Data ABENDSUB at (a) t=1,

(b) t=80, (c) t=160 and (d) t=220.
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