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Consider two independent test statistics Pl and Pg ’

o0

P, =s k.(s|r, = 1) a@s ,
1 S 1 1

i
where ki is the conditional density of Si , and Si/X; v f(mi 2 0,
i =1, 2. The problem considered in this thesis is how to combine the
information from these two statistics when testing the null hypothesis
Ai = 1 . This paper recommends the use of the combined statistic
Ple(mz/ml).43(1—A2)/(1—A1) and discusses when the ragio 1—x2/1—x1 can
be considered to be greatly biased as an estimator of the function of
Al and Az which would maximize the power of the test.

This paper further advocates, for more than two independent tests,
the combined statistic -
(mp) " 43 (2-2)
maintaining that these exponents approximate pairwise optimal weighting
of the individual tests.

The utility of these combined statistics arises from a statistical
model with random treatments, blocks, and interaction effects where sub-
groups have different numbers of readings. Instead of producing one

F-statistic for testing treatment effects, the test data actually produces

several independent F-statistics,
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CHAPTER I
INTRODUCTION

The general problem under consideration is that of combining test

statistics, S1 and 82 , from two independent tests into one statistic of

the form P Pe for the purpose of testing a particular null hypothesis, H

12 o -

To define Pi let the general density of Si be gi(x) , and the conditional
x

density under H

0 of S; be ki(leo). Then Pfg ki(xIHo) dx and the density

of Pi will be referred to as fi(x). A functiiﬁal form is sought for the
weighting factor © in terms of the parameters of the two tests.

This approach to the formulation of a combined statistic can be thought
of as a refinement of the method of Fisher [1] in which © would be equal to
1, i.e., the combined statistic would be P1P2 . The use of weighting factor
allows us to take into account that the different P's may be based on
different amounts of information.

Zelen and Joei [2] considered the problem of finding an exponential
weighting factor for the incomplete block design with fixed treatment effects
where random block effects yield intra-block information which is indepen-
dent of inter-block information. The two statistics which result in that
case are central F's under the null hypothesis and noncentral F's under the

alternate hypothesis.

In this paper two independent tests statistics Sl and 52 are considered
~1

' -~/
which havé the property that the ratios Sl/)\l and 52/)\2 have central F-

distributions with respectively (rn1 ’ nl) and (m2 , n2) degrees of freedom.

1



The F-distributions are used to test the null hypothesis that Al = A2 =1,

The parameters A. , A2(0 < Ai <1, 1i=1, 2) are measures of the power of

1

the individual tests and are functions of the variances of the elements of
the model.
In an effort to keep this work general, the variances will not be

introduced until after a O-form is determined in terms of ml R nl ’ m2 R

n, Al , and Az . Generality will be sacrificed to the extent of consider-

ing only pairs of test statistics in which the ratio of degrees of freedom
is identical, i.e., ml/n1 = m2/n2 = r’{ This restriction is made to fit

the conditions of the specific problem presented in Chapter IV of this

-

paper. Thus we seek a O = ¢(Al s A, , m , r) which has the optimal prop-

2 1

erty of maximizing the power of the combined test resulting from any m o

m, and r over a wide range of anticipated A

5 and Az values.

1



CHAPTER II

POWER DETERMINATION FOR THE COMBINED STATISTIC Png

© statistic are tabled for o = .05 and

The critical points of the PlP2

.01 by Zelen [3] for O between 0 and 1 in increments of .1 . They can be

determined from the equations

for 0 < C <1

C for ©

1l
o

c - oct/o

_ 0
a = Prob(PlP2 j_CIHO) 106 for 0 <90 <1

C(1l1 - 1InC) for ©

i
I~

which are derived from the uniform distribution property of Pl and P2 under

the null hypothesis.

The power of the combined test then is

N O©

Power = Prob(PlP

<c h v a = jmj £ (x[A)) £,(y[x,) dxay (1)

where w is the critical region determined under the null hypothesis and

fl and fé are the density functions of P, and P, respectively.

Although the critical region is easily found in P P_ space,

1772
(Png j_Ca), the density of P. gives difficulty. By definition

1

oo o

P, = j kl(tlx1 =1) dt = j
S1 S

'gl(t) dt

1/



Note that when Kl =1, Sl has a central F-distribution. Because the Beta

distribution yields a slightly simpler form (and because the Beta distri-
bution is used extensively later in the problem) we make the transformation

m.S
g = 11

1 n1 + mls1

or equivalently

X
g =11
17 m (LX)

where X1 ~ Beta (m1/2 ' n1/2) when Xl =],

To find the density of X

when kl # 1 consider new variables Xal and

1

Sal' and xlk and Slk’ related as Xl and S1 . The variable xal shall be

considered to have the Beta distribution and xlk and xal shall be related

through Slk énd Sal .

From the relationship

Sa1=[sl>\]>‘1
where Sal has a central F-distribution we see that
s =.__n_1)i§1___=>\ I = A [s..] .
al m (1 -X ) Um, (1= Xg5) 1°71A
Solving for xal in terms:of xlk
ME

X

al 1l - th + xlxlk
and equivalently

.. = xal
1A + Kl -

*a1 ¥a1h
i} _ _ el
Then P, = lex g (Bt = lex h(xy [A)ax, fxalaeta(xl)dxl_.



From the relationship of Xlk and Xa we find the density of X

1 A

that is we find the density of X, when A # 1 :

1
21-1 11 -1 Thth

A
2 2 2

1

hix.[A) = 0
1'1 B(ml ' nl)

1}

Under the mull hypothesis that Xl = 1 the above expression becomes
the density of a Beta distribution. It is through this density that we
get an expression for the density of Pl . F;om.the properties of the
probability integral transformation [4] we find:

h(x.|H)  h(x,[A)
= = 1 _a = 1 L
fl(Pl)‘l) = fl(P]Ha) h(xl[HO) h(xlll)

where X = g(pl) and g(pl) means the solution of the equation

m n

n 1 M
p,= [, Betapat=1-1 (=, 3
1 1l
for Xy .
m n
RNt 211
2_‘

o 2
From h(xllkl) and from h(xlll) = o™ a- xl‘)'

we find:

-fm_+n
= 2
fl<pl|xl) Ay [1 - x) + klxg

where X, = g(Pl) .

=}
|l
|l
| el

ol



Since the density of P. is not an explicit function of P, , numerical

1 1

integration of the power function was used. For that purpose the form (1)
of the power function could be used but for simplicity consider a second

integral transformation

ol |
m =1-§Z £ (AP i=1, 2
(2)

Power = Prob(m]kl ’ AZ%—S S dr,dr,

w

The mapping of the critical region from P, , P_ space into 7, , 7

1 2 2

space is accomplished through the incomplete Beta function realizing that

Pl 1
1 "S fl(plkl)dp = Beta(xl)dxl =
0 Alxl

—_——
l-xl+)\lx1 al

The particular mapping procedure used selected T values and solved

for the corresponding m, coordinate on the boundary of the critical region

2

in the following fashion

Step l. Select ﬂl

m n
: : _ 11
Step 2. Find xal from the equation =, =1 Ixal< ' )

Step 3. Find Xl from the equation X. =

m n
. . 1 1
Step 4. Find Pl from the equation P, =1 —le<—— ’ ——)

Step 5. Find P2 from the equation P.P_ = C

m n
. . 2 2
Step 6. Find X2 from the equation P, =1-1 — ——)



A X
_ _ 272
Step 7. Find x2a from the equation x2a 1T - X +3.x%
2 22
M My
tep 8. Fi ! =4- W)
Step 8 Find n2 from the equation “2 1 Ix2a 5> 3

The value of the power,
Smg £(p A E(®, |2 )apap,

is approximated through the form (2) by calculating the area under the set

of points thus generated.

The technique used for finding Ix(% P %) in this study was to read

incomplete Beta tables (K. Pearson [5]) into the computer and interpolate.

The power figures calculated were considered to be accurate to the third

decimal place.



CHAPTER III

FORMULATION OF 0

The values of O(or 1/0) were varied from 0 to 1 in increments of

.1 . Note that

(o]
{=
Ol

o) _ o1 _
Prob(PlP2 < Ca,O) = Prob P2P1 < (Ca,e) = Prob P2P1 < Ca,l/e .

In this manner power can be examined over a full range of @ values from

0 to + » for any specific values of m m

10 By r , A, , and Az .

1

The power vs. 0O curves thus obtained are unimodal and their crests
are quite flat; e.g. (Figure 1). From these curves Op (the value of which
optimizes power) can be estimated. It is for these optimiziﬁg values of
0 that an estimator is desired. The flatness of the curve crests indicates
that an estimator of Op need not be precise to be of value.

Fixing A, = A, = X , the parameters m , and r were varied to

1 2 » W

1 2

produce the results of Table I. The variations with A are not presented
because they were considered beyond the precision of the power calculation
technique. The nature of the variation with ) is in the direction of 1 as
A is decreased. The value of Op when A = .2 may exceed Op when )\ = .8 by
at most .1 , where my and m, are ordered so that Op is less than 1 . The
figures in Table I represent an average over the various ) values in the

cases where the variation appeared.

The noticeable similarity in the Op values when the ratio of my to



Power
.54
.52
.50

.28
.26 =\_=,
- | Al Az 6
.24 ¢+
r=2,m2=5
.22 F
.20 C]

1.2 .3 .4 .5 .6 .7 .8.91.0

Illustrative Curves

Power vs. O

FIGURE 1.
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6]
P 43
l.O - (mz/ml)./’
\ i
e
.8 |- g
e
.
.6 L&
e
y Op vs. m2/m1
A 7
/" and
/ .43
2 H (my/m,)
l
)
i)
0.1.2.3 .4.5.6 .7 .8.91.0 m1
FIGURE 2.
TABLE I
Op Values With Al = X2
& m, m, m2/ml OP romoom, m2/ml Op r m m, mz/m1 Op
1 10 5 .5 .7 2 10 5 <5 .7 2 20 15 .75 .9
1 15 5 .33 .6 2 15 5 .33 .6 2 30 15 .50 .7
1 20 5 .25 .5 2 20 5 .25 .5 2 40 15 .38 .7
1 15 10 .67 .8 2 30 5 .17 .5 2 50 15 .30 . 6
1 20 10 .50 .7 2 40 5 .12 .4 2 30 20 .67 . 8
1 20 15 .75 .9 2 50 5 .10 .4 2 40 20 .50 o7
2 15 10 .67 .8 2 50 20 .40 .7
5 6 3 .5 .75 2 20 10 .50 .7 .2 40 30 .75 . 9
10 6 .6 .8 2 30 10 .33 .6 2 50 30 .6 .8
2 40 10 .25 .6 2 50 40 .8 .9
2 50 10 .20 .5




11

f m, is constant, irrespective of r value, lead to the plotting of Figure 2.
Ejpitting these points with an equation of the form Gp = (mz/ml)K(e) or
: 1in @p =K n(mz/ml) + e' where e and e' represent errors leads to a least
; squares estimate of K of .43. That is, ép = (mz/ml)'43 when xl = A2 .

The results of varying Al and AZ appear in Table II., Without loss
of generality Al has been restricted to values less than Az . That is,
the test with the smaller (more powerful) A parameter is assigned the
éubscript 1 . However if m, > ml the second test could actually be the
more powerful. Beside the values of @p appear the values Op(adj.) =

.43

(ml/mz) @p . The similarity of these adjusted values for any fixed

values of A, and Ay leads to the proposed prediction form ép = (m2/ml)'43

1
g()‘l ‘ A2) . A simple algebraic form for the function g(xl ' AZ) that

explains all of its variational characteristics has not been deduced.

Therfore, the best estimate of g() Az), f(Al ’ Az), can be read from

1 r
Table III, entering the chart with the values of 1—x1 and l—Az . The

values of f£(A kz) presented in the chart were obtained by averaging

1!
the adjusted figures from Table II and additional computer calculations
run with m =m, .

Although a simple algebraic form is lacking that fully explains the
function, the form (1—A2)/(1—xl) is good over a large segment of what might
be called Al ’ Az space. Also this simple X-ratio is never very far wrong.
The dotted lines on the chart of Table ITI delineate the contours that
would be generated by the A-ratio. To the extent that “.k" values of
f(A1 ' A2) fall in the fan-shaped contour that runs from the point (0,0)
to (1, .k) for k =1, 2, 3 *+¢« 9 , this ratio is a good predictor of

£() Xz) . In general the ratio (l-AZ)/(l-Al) appears to be high when

l ’

power is high and low when power is low. 1Its marked systematic variations
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from true values makes it undesirable as a predictor, but its simplicity
coupled with the knowledge that precision is not critical for this prob-
lem make the ratio very appealing.

Hence the proposed predictor of GP . the value of 0 which maximizes

43

power, is (mz/ml)' £(x, , AZ) where f(Al , AZ) is read from Table III or

1
approximated by the ratio (l—kz)/(l—xl) .

. That is, one must

In both cases ép is a function of Al and AZ

select values of xl and ), for which he wishes to maximize power. The

2
specific tests from which the Al and AZ parameters arise should be studied
to aid in making a choice of these parameters. However, even in the case

where no knowledge of )\, and Xz is available, the use of ép = (mz/ml)'43

1
(which is eguivalent to assuming Al = AZ) would be more apt to maximize
power than the choice © = 1 .

Consideration of a random model with interaction and unequal numbers

in the subgroups will furnish an example for the problem of determining

values for Al and Xz .



CHAPTER IV

THE RANDOM MODEL WITH INTERACTION AND NUMBER OF

READINGS IN SUBGROUPS AT TWO DIFFERING LEVELS

Consider the model yijk =wu+t+a + Bj + (aB)ij + Eijk

where p is an unknown constant and o v Bj ’ (aB)ij , and eijk are in-

dependent random variables from normal populations with zero means and

2 2 2
ag ag
a ' "B "aB

Webster [6) considers the conditions under which a single approximate

variances g , and 0?2 respectively.

F-statistic provides a good test for the hypothesis of no treatment effects.
Webster points out in the same paper that even when these conditions are not
met but nij takes on only two values the results yield three independent
F-statistics testing the same hypothesis, that of no treatment effects.

That is,

n,. =n for a, of the levels of a
ij 1 1

n2 for a2 of the levels of a , al + a2 = a .

Consider n, >n, with no loss of generality.

Let SSA1 , and SSAB1 be the sums of squares for o and (af) from the

first group, using cell means.

19
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Let SSA2 and SSAB2 be the sums of squares for a and (aB) from the
second group, using cell means.

Let SSA and SSAB be the sums of squares for a and (oB) from all of

the readings, using cell means.

From Analysis of Variance Table

TREATMENTS
2
Group I a,-1 SSA A o2 + bo?
1 1 n af a
g2
Group II a.-1 SSA — + g2+ bg?
2 2 n aB a
2
o2 a2 a1
Bonus 1 SSA-SSA_-SSA —[— + =] + 02 + bo?
1 2 a\n n aB a
1 2
TREATMENTS -
BLOCKS
02 2
Group I (a,-1) (b-1) SSAB -— + 0
1 1 n aB
1
52
Group II (a.-1) (b-1) SSAB — + ¢2
2 2 n aB
2
a2 (%2 %1
Bonus (b-1) SSAB-SSAB_ -SSAB —|—=+ =} + o2
1 2 a nl n2 B

The three independent statistics to which Webster refers are:

SSAl(b—l)

Al ——EEXEI_— N F[(al-l) ' (al-l)(b—l)]

where A

SSAZ(b-l)

A, —sens, v Fl(a,-1) , (a,-1) (0-1)]
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2
ag
A
n of
2
where Xz =37
~— + g%+ bog?
n af

(SSA~SSA —SSA2)(b—1)

1
A3 (SSAB—SSABl-SSABz) FI1 . b-1]
za a
2_[:%4._1. + G2
afn n aB
1 2
where A, = -
3 5202 3
SRt a] t vae P
1 2

Since the power optimizing technique of formulating a weighting
factor developed in this paper is devised for two tests, the first two
will be considered. (These two will always have as many degrees of
freedom as the third test, and will have more if a; and a, are greater
than 2 .)

The object of this example is to formulate from these two statis-

tics a single statistic of the form P PO » wWhere Pi = Prob (F Z.Fi oi = 0),

12
i=1, 2.

o o

1-A > o2 1-X o2
1 1 ogs é 2 1 GSB g2
— + + b — + +b —
n g2 o2 n g2 a2

1 2
The values of b , nl , and n2 are known integers for any set of data.

It is necessary only to select the variance ratios 02/02 and 028/02 for which
optimum power is desired. To consider the effect on 0 of different selec-
tions of variance ratios we look at (lsz)/(l—xl) the A-ratio approximation

to the f(A1 R A2) charted in Table III.

;. (az-l 43 1-),
al-l l—kl




22

2 2
._l + iﬂi + b ?_(1
a.-1\.43 n fo¥ 4 a?
R =
-1 2 2
n, o2 o2

From this form it is apparent that if n, and n, are close to the
same value the A~-ratio is effectively unity. However it should be noted
that if n, is close to n, the conditions also hold for use of Webster's
approximate F-statistic.

Other conditions that will cause the X-ratio to be close to unity
are large b (number of blocks) or large values of either variance ratio.
Even if l/nl and l/n2 take their extreme values, O and 1l respectively,
(note we have ordered the tests so that nl > n2), the A-ratio is effec-
tively 1 when (ogs/o2 + b 02/02) > 20 . And in a more moderate situation
where l/nl and l/n2 take values such as .1 and 1.3 , respectively, the
A-ratio is effectively 1 when (oie/og + b 02/02) > 4 . Note that the
bias of the A-ratio estimator of f(Al ' A2) is not apparent at the .95
level of O where these computations are made.

Since the model for this problem includes the interaction term, it
is not unreasonable to assume some prior knowledge of the 026/02 ratio.
If one has knowledge of treatment interaction with blocks but gquestions
the non-zero value of 0§ . he might be able to estimate 058/02 and then
select a value of oé/o2 at which to optimize power.

Figures 3 and 4 show the variation of the A-ratio with variation
of the 02/02 ratio for different n-values and b-values. In both graphs
the 056/02 ratio is held at a value of 1 . That is, we are considering
optimizing the test when o2, equals 62 . A larger value of this ratio

aB

will, of course make the A-ratio values closer to unity. In fact, a
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value of 2 will raise the intercept value of Figqure 4 from .55 to .7 .
The cross-hatched area on these two graphs identifies the area in which
the »-ratio values can be considered to be a high estimate of f(Al ’ Az) .
(A~ratio - .15 < f()\l ’ Az) < X-ratio).

Another approach to the selection of variance ratios is to first

fix the ratio of oi to oi . This approach would be appropriate if one

B
does not have knowledge of interaction magnitude but feels that 028 will
have values in proportion to 02 . The procedure then is to fix the ratio

of the two variances for which optimization is desired (1/4, 1/2, 1, etc.)
and then select the desired 02/02 for power optimization.
Figures 5 and 6 show the variation of the A-ratio with variation of

the 02/02 ratio for different n-values and b-values. In both of these

graphs, og is considered to be half of ¢2 . As in Figures 2 and 3, the

g o

area of the graph in which the A-ratio is a biased estimator of f(ll ,»Az)
is cross-hatched. Again the bias is of the nature: A-ratio - .15 <

< f£(X Az) < A-ratio .

1’
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CHAPTER V

6, 0 0
WEIGHTING THREE OR MORE TESTS BY P1P22P33 s Pnn

The combinatorial technique presented here deals with only two test

values, P. and P

1 5 - The question naturally arises as to whether or not

the technique can be extended to three or more values. Accurate ex-

62 ]
5 P3 )} would reqguire a map-

tension of the technique to three tests (PlP
ping of the critical region into 3-space so that the numerical calculation
of power for any choice 62 and 63 would involve approximation of the
volume of a solid. It would then be necessary to generate a power surface
over @2 ’ @3—space from which the power optimizing coordinates of @2 and
63 could be selected.

A simpler approach which is intuitively appealing, if not mathemati-
cally defensible, is to optimally combine the third test with each of the
first two tesfs and average the two weights, keeping the first two tests
weighted optimally. The purpose of this approach is to make the weighting
of each pair of test statistics approximate the optimal weighting of that
pair. It is equivalent to using the weighting for each two statistics
which will optimize power when the third test is enﬁered into the combined
statistic with 0 weight.

It is with regard to pairwise optimality that the A-ratio set forth

in Chapter III becomes particularly useful. The A-ratio for the statistic

. c]
Png is the product of the A-ratios for the statistics P1P3 and P3P§ for

26
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any test P3 . That is,
-\ - -
1. 3 1 Az ) 1 Az
l—Al 1—A3 l-Al

Thus the approximate weighting factor for the third test would be
(m3/ml)°43(l—k3)/(lfkl) where the first test has the weight 1 and the
second test has the weight (m2/ml)'43(l-A2)/(l—Al) . Note that multi-
plying the three weights by the reciprocal of the second or third weight-

ing simply "permutes" the 1 weighting from test one to another test.

For instance,

(Tl>.43(l—kl)
m2 1-A2

PlP2 P3
( _l) 43(1—A1> <-mi) 43(1-A3)
oo m2 1 A2 . m2 l—Az
271 3

Thus using the A-ratio approximation to f(>\1 ’ A2) makes all pairwise
weightings optimal with respect to power to the accuracy of that approxi-
mation, regardless of the number of tests combined in a multiplicative
fashion with exponential weights.

The general form for combining any number , n , of these tests is

.43
P'mi (l->\1)
1 1

==

i

The critical values for these statistics can be found from Good's [7]

equation: for 0 <g<1
0, 0, 0 0 n
1 72 73 n 1/ ;
Prob((Pl PPy P < q))- Z ¥, q

i=1
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where

n-1
Wi = Oi /(ei—el)(ei-ez)( tee )(Oi-Oi_l)(Oi—Oi+l) see (Gi-Gn)

This equation can be solved for q provided all the Oi are different.

3 the following equations can be used to

In the case where n

find critical points when two or more of the Oi are the same, 0 < ei < 4,

for 0 <c <1

Prob(P,P.P, < c) = c[l - 1In ¢ + lnzc]
1 1
Prob(PlePg <c) =c+ (i - ;G) - cllf ; - 2; - g?i
L5 g
Prob(p PP < c) = c® + = fnec (i - ;)2

Consider several examples. Let Pl . P , and P3 be statistics

2

resulting from three independent tests of the same statistical hypothesis

which can be characterized by Ai =1,1i=1, 2, 3 . Let m1 = 10,

m, =5, andm, =1 . We want to find the exponents 0., and 03 which will

2 3 2
02 0
optimize power of the combined test statistic PlP2 P3 s, When Al = .3,
. .43
A, = .5, and A\, = .4 . The proposed form for 62 is (5/10) (.5/.7) = .5 .
The proposed form for 63 is (1/10)'43(.6/.7) = ,3 . Then for a combined
statistic we would use P1P2'5P3'3 =Q . To find a critical point when
o =1.05
Prob(Q < q) = .05

/(.5 « .7) = q2/(.5 » .2) + q10/3/(.7 « .2)

q/;ss - q2/.10 + q10/3/,14

.018722

Q
I
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Using the parameters of the three independent statistics resulting
from the random model with interaction and two levels of subgroup readings

(Chapter IV), let a, =5, a,. = 15, n

5 =10, n, =1, b =2 . We seek a

1
combined statistic of the form P_P 2P33 with optimal power when 028/02 =1

and 05/02 =1,

>
]

02
—1+——7+b%
<a2-1>.4 nl o] o] B (14).43<.1 +
- d 2 1= \"a
2 a; 1 1 o Sﬁ 4 1+
2
n, o]

2 2
.43 2 2 .

5 o [—2 4 ¢ ° _(1}* 1+ 1+ 2 -

30\t ! °% . % 4 15, _5 4,142/ °

+ + >+ b — 20-10 20°1
an an o] o
1 2

, . . s 1.3_ .5 . .8_ .4

Yielding the combined statistic PlP2 P3 , Or equivalently P2Pl P3 .

The above example magnifies the effect the A-ratio on the weighting

factor by having a relatively extreme nl/n2 ratio and by having a minimum

number of blocks. If instead we use n. = 10, n 5, b = 5, we get the

1 2

following results:

[o})
|

l_’43 1+ 1+5) ¢
37 \4 .125 + 1 + 5/ °

P21'6P2'55 , or eguivelently P ' '6P -3 ,

Yielding the combined statistic P 2Pl 3

1
which is the same statistic that results when both A-ratios are entered
as 1 .

Thus for the random model problem only extreme values of the n, b,

and o2 parameters effect the form of the combined statistic. In most
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cases the statistic can be formulated using only a and a, the numbers

of treatments receiving each of the different number readings.



CHAPTER VI
SUMMARY

The problem considered was to formulate a combined statistic of the
Png—type for two particula? F-tests. Mathematical theory was utilized
in the solution of this problem only to the point of developing a technique
for generating the power value for a particular set of test parameters.
From that point on the problem became an excercise in data analysis.

Since the plots of power vs. 0 showed very flat crests, small errors
(.1 or .2 for 0 < © < 1) in predicting the optimum O-point of a particular
power curve seemed of little consequence. It might be noted that Zelen
and Joel [5], who work with a less precise estimate of power, present data
which for various parameters reports Op , the maximizing value of 0 , to
lie in ranges of .2 to .8 .

Here the estimates of ep found were considered accurate to .1 and
these estimates were used to find an estimator which will predict Op with-
in .2 .

As was pointed out in Chapter I, generality is sacrificed to the
extent of considering only cases in which mi/ni =r, i =1, 2, and the
data generated was concluded to be independent of r . Most of the data
produced for this problem was with r = 1 or r = 2 . That difference did
not seem to cause any appreciable variation in Op , hor did the few data
sets produced with r = 5 . It is quite possible that large values of r

would noticeably effect Op . However a large r means a very large number
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of degrees of freedom and the power calculating technique used here was
not sensitive enough to detect Qp accurately when the degrees of freedom

of the two tests are large (except when ), and Az were very small), thus

1

this check was not made.
In addition to the conclusion (1) that variations in r do not effect
Qp , two further simplifying "conclusions" were reached. These are (2)

for a particular pair of m, , m

1

5 values if Al = A2 = ), Op varies little

with ) , and (3) that the variation of ep with my and m., could be adequately

described as a function of their ratio. Conclusion (2) can result in a
.1 error as discussed in Chapter III. The magnitude of the error is a

function of the spread of my and m,, (i.e., it is 0 when m, = m2) but the

nature of the functional relationship was not determined.

Conclusion (3), which considers m2/ml sufficient for m1 and m2 can

be evaluated by looking at Figure 2 which plots ep against m2/ml . It can
be seen that no simple curve can fit these points. However, at this point
in the data analysis, the errors due to precision of Op and the first

two simplifying conclusions are hopelessly confounded. The points of Figure

2 are approximated by a least squares fit and the factor (mz/ml)'43 results.

.43

The resulting form for @p ' Op = (my/m)) " ""g(X; » X)), (where g(i; , A,)

1 2

is an unspecified function of Al and Az) can best be evaluated by observing
the correlation of the Op(adj) values in Table II. By way of defense, it
is said only that it seems to work.

The form of g(A Az) is another problem. For the application of

1"
Chapter IV, the use of the )-ratio, 1-A2/1fxl , is advocated because it

is a reasonable approximation of g()\1 ’ Az) over the range °f~Al andk)‘2

occurring from that application. For the general problem f(xl ’ Az) is

presented in Table III. This f()\l ’ Az) is simply an averaging of various

values produced from several computer runs incorporating the average of
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Op(adj) values from Table II.

It has been a temptation of say that (l—Az)/(l—Al) describes all
the systematic variation resulting from varying Al and A2 . However,
this is not the case. Use of the simply A-ratio can introduce bias
into the calculation of ép and will be magnified by a large spread of

ml and m2 .

Thus the conclusion must be a recommendation for the statistic

p p, M2/m0) “43(1-23)/(1-27)

of (l—Az)/(l—Al) .

accompanied by a word of caution on the use

In Chapter V it is shown that this A-ratio form of ép can be extended
to combine three or more test statistics. The combined statistic which
results has the property that all pairs of test are weighted optimally.

Of course, the same word of caution must be injected because (l—Az)/(l—Al)
may introduce bias.
n m_.43
In many cases the abbreviated combined statistic I Pi 1 can be

i=1
used. This abbreviation is equivalent to saying Ai = Aj , 1 # 3 and could
be used in absence of any information on the magnitude of the Ai ,y OT

where there is reason to believe that the various ).'s are close to the
i

same value (such as large numbers of blocks in the example of Chapter 1IV).
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