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ABSTRACT

Spatiotemporal models of continuous space-time processes are a focus of much activity as
researchers attempt to better understand environmental processes. A class of models introduced
by Hartfield and Gunst (1999) encompass a broad range of spatial, temporal, and spatiotemporal
models that are currently in widespread use. This class of models also includes many popular
growth curve models. One advantage of this new class of models is that it does not require
separable covariance or correlation matrices. Another advantage is that it can easily be extended
to include more general spatiotemporal processes and non-Gaussian variation. In Hartifeld and
Gunst (1999) primary emphasis was on defining the model, discussing the relationships between
the various model terms, and determining appropriate statistical methods for identifying the
specific structure of each of the model terms. In this paper, estimation of the model parameters is
the focal point. Point estimates, asymptotic distributions, and Kalman-filter prediction methods
are detailed.
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1. INTRODUCTION

Hartfield and Gunst (1999) introduce a class of spatiotemporal models that includes many
which have previously been advocated for the analysis of temporal data collected over a spatial
region. This class of models includes commonly used geostatistical spatial models, continuous-
time autoregressive integrated moving average (ARIMA) models, and a flexible class of models
that are both spatially and temporally correlated. Hartfield and Gunst (1999) detail methods for
identifying the spatial and temporal components of this class of models. In this paper, estimation
of the model parameters, asymptotic distributional theory, and prediction methods for unobserved
spatial locations and times are presented.

Let Z(s,t) be a random variable that is observable at location s at time t, where s and t vary
over continuous index sets S € R¥(k=1,2,0r3)and T C R, respectively. Continuous index
sets are used because they allow the modeling of data that are irregularly spaced throughout a
region of interest or for which data at each location might be collected at irregular time intervals.
A special case of the latter is an equal-interval time series data containing missing values.

Hartfield and Gunst's (1999) class of models for continuous space-time processes is based on
the assumption of an underlying d"'-order stochastic differential equation in time, and can be
expressed as

Z(s,t) = pa(s,t) + g, {Y(s), 1} + Wi(s, t) + e, (s, 1), (1)
where p, is a nonstochastic function of explanatory variables, time, and fixed parameters a; gg is
a nonstochastic function of time and a stochastic function of independent spatial processes
Y1(5), ..., Yi(s); Wg is a continuous-time, zero-mean, spatiotemporal ARIMA(p, d, ¢) error
process; and e, is a zero-mean second-order stationary spatio-temporal random field representing

measurement errors.



The model component pq(s,t) + g,{Y(s),t} is assumed to be d times differentiable with
respect to time. The zero-mean, second-order stationary spatial processes Yj(s) are mutually
independent with isotropic covariance matrix

Cov[Yi(s),Yj(s+m)] = {Ozvi(IIUII) :j

Forq=0,p=0,],andd = 0,1,2, the Wg process has the following representation
ag(s,t) d=20
we = ftiag(s,u)du d=1
Ji frac(s,u)dudv  d =2

with
( t) bw(s’t) p=0
ast = -
: St bo(u)du p=1
and zero-mean, second-order spatially correlated disturbances b,, having an isotropic covariance
matrix of the form

Covlbu(s,t),bu(s+g, t+h)] = { govb(g;w) : : g

where g = ||g||. The errors are white-noise with

o, = 0, h == 0
Cov(e,(s,t), e,(stg, t+h)) = { o“ §therwise

The class of models (1) emphasizes temporal components in order to permit the modeling of
dynamic environmental systems. In order to better focus on some of the key specification and
estimation issues, attention is restricted to small-scale ARIMA(p, d, 0) components with p = 0 or
1 and d = 0, 1, or 2 and isotropic spatial covariance matrices. The model identification process
advocated by Hartfield and Gunst (1999) includes the following steps.

1. Tentatively characterize the large-scale spatial structure p, (s, ) through exploratory data

analysis techniques; e.g., spatial contour plots for each of several time periods.



2. Tentatively characterize the general temporal structure z,(-, t) + gg{¥(-), t} through
exploratory data analysis techniques; e.g., time series plots for each location.

3. Eliminate the large-scale spatial structure by forming spatial residuals, contrasts of the data
that are orthogonal to the spatial mean structure.

4. Calculate temporal primary increments (Cressie 1988) from the spatial residuals, separately
for each location. Compare graphs of the averages of the temporal increments with
theoretical model increments for several possible temporal model specifications to determine
the temporal large- and small-scale model structure; i.e., the forms of p.(-, t) + gg{Y(.), t}
and Wi (-, t).

5. Use plots of sample semivariograms of the spatial residuals to specify the spatial structure of

W(s,) through the choice of a spatial semivariogram model.

This model identification process does not require the initial estimation of model parameters
because spatial contrasts (residuals) and temporal increments are used. Hartfield and Gunst
(1999) apply these methods to a data set on temperature anomalies for the contiguous United
States. They conclude that a reasonabie fit to the data set consists of quadratic spatial mean
functions for each year and an AR(1) small-scale temperature disturbance with spatially correlated
errors, where the latter follow a spherical generalized covariance model. Estimation of the model
parameters and prediction for unobserved spatial locations or time points is the focus of this
paper, with accompanying asymptotics to enable inferences on the model parameters and
predicted values to be drawn.

In Section 2, estimation of the spatial small-scale model parameters is presented. Section 3

contains the corresponding estimation and inferential methods for the temporal small-scale model



parameters. Estimation of the large-scale parameters in g,(s, t) is provided in Section 4. Modified

Kalman-filter prediction is the topic of Section 5. Concluding remarks are made in Section 6.

2. ESTIMATION OF THE SPATIAL SMALL-SCALE MODEL PARAMETERS

Spatial residuals, on which the spatial small-scale modeling is based, consist of
transformations of the original data. These transformations are generally contrasts which eliminate
the large-scale spatial gradients p, (s,-) from the transformed data. For the temperature anomaly
data in Hartfield and Gunst (1999), least squares quadratic fits in latitude and longitude were
made for each year. The residuals from these fits constitute required transformations of the data.
From these residuals, spatial semivariograms are calculated for each year and then averaged.
Models fit to semivariogram values calculated from residuals are referred to as generalized spatial
semivarigrams. A generalized spatial semivaﬁogfam is precisely the "essential part" (Kitanidis
1993) of the semivariogram that is needed for prediction purposes.

Denote the residuals from a least squares quadratic fit to the observed temperature anomalies
as r(s,t), where s is a two-dimensional vector of the latitude and longitude of the spatial location
and t is a time point. Each of the m locations will be assumed to have response values at the same
n equally spaced time points. This simplification is not required by the theoretical results that
follow;, it is solely for notational simplicity. As in Gunst, Basu, and Brunell (1993) and Gunst
(1995), 100 km bins are used to calculate the sample semivariogram values for each year:

Fi(e) = let(gN > {rlsitat) — risit)}, @

Mi(g}

where g = ||g|| is the nominal isotropic bin separation distance between stations (g is a multiple of

100 km), M, (g) is the set of station pairs in year t with nominal separation distance g, and



|Mi(g)| is the number of station pairs with nominal separation distance g. The plotted points in
Figure 1 are averages of 7,(g) across the 61 years of data.

Superimposed on the plotted semivariogram values is a fitted spherical semivariogram model

of the form
0 g=0
Yo (8w) = { wi +wr{1.5(g/ws) — 0.5(g/un)’} 0< g < ws 3)
) + wo wy3<g

The relationship between the semivariogram model (3) and the small-scale spatial generalized

covariance matrix needed for prediction is that

Cov,, (8w) = w; +wy — 7, (gw) . 4

In this application it is reasonable to assume that the measurement error in temperature
measurements is negligible compared to the local (microscale) variation among stations in close
proximity. The microscale variation is due to differences in terrain, nearby structures, wind
patterns, and a number of other conditions that affect local temperatures. Thus, the nugget effect
in the small-scale spatial semivariogram model parameterizes the microscale variation and there
are no measurement error parameters to estimate. The estimated semivariogram parameters
&, =0.127, &y = 0.081, and @s = 1,314 km were obtained from a nonlinear least squares fit
of the model (3) to the semivariogram values shown in Figure 1.

Lahiri, Lee, and Cressie (1998) establish conditions for nonlinear least squares estimators of
semivariogram parameters to be consistent and asymptotically normal. Let G denote the number

of spatial bins used to fit model (3) to the method-of-moments estimates in (2). Condition C; of



G
Lahiri, Lee, and Cressie (1998) is that ) {(gi;01) — ¥(gi;62)}? > 0 for all 8, # 6,. This
i1

condition is readily satisfied for the spherical model (3) except in extreme, uninteresting cases.
Condition C,(i) states that sup{(g;#} < oo, which holds for (3) when all the parameters are
finite and the range parameter is strictly positive. Condition C;(ii) requires p > 0 continuous
partial derivatives of y(g;8} with respect to w. The spherical model (3) has p = 1 continuous
derivative. Condition C; stipulates that a weight matrix V(8) that could be used for weighted or
generalized nonlinear least squares estimation of @ be positive definite, bounded and have
continuous derivatives. Since the weight matrix for (ordinary) nonlinear least squares estimation is
V(#) = 1, the identity matrix, this condition is trivially satisfied.

Theorem 3.1 of Lahiri, Lee and Cressie (1998) stipulates that if conditions C; - C3 hold and
the semivariogram estimators in (1) are pointwise consistent, then the nonlinear least squares
estimators & obtained by fitting (3) to the semivarigram values in (2) are also consistent. Under a
wide variety of m-dependency, increasing domain, and infill asymptotic assumptions (e.g., Davis
and Borgman 1982; Cressie 1985; Lahiri, Lee and Cressie 1998), the method of moments
estimators are pointwise consistent. For example, the unbiased method-of-moments estimator (2)
is shown by Cressie (1985) to have var{7(g)} = O(N(g))"! under Gaussian random field
assumptions. Cressie (1985) argues that this consistency holds under much more general second-
moment assumptions.

Theorem 3.2 of Lahiri, Lee, and Cressie (1998) stipulates that if conditions C; - C3 hold and
the semivariogram estimators are jointly asymptotically normal, then the semivariogram parameter
estimators are also jointly normally distributed. Davis and Borgman (1982) prove asymptotic
normality of method-of-moments semivariogram estimators under stationarity, m-dependence,

and finite fourth moment conditions. Cressie (1985) points out that mild additional assumptions



on the sampling design lead to asymptotic joint normality of both the method-of-moments
semivariogram estimators and a more robust semivariogram estimator (Cressie and Hawkins
1980). Under these conditions, n'2(& — w) is asymptotically normal with mean zero and
covariance matrix (I'TY'IVE.,I'T'T)"!, where £.,, = var{n'2(5 — )}, ¥ is the vector of
estimated semivariogram values, and I' = [0(g;,w)/0wj;). Using Cressie's (1985) expressions
(10) and (11) for the variances and covariances of the %{g ), the estimated standard errors for the

semivariogram model parameters are se{@; ) = 0.029, se(@,) = 0.047, and se(&3) = 66.076.

3. ESTIMATION OF THE TEMPORAL SMALL-SCALE MODEL PARAMETERS

By comparing empirical and theoretical semivariograms of primary temporal increments of the
U.S. temperature anomaly residuals, Hartfield and Gunst (1999) conclude that the small-scale
temporal component of the U.S. temperature anomalies could be modeled as a continuous-time
AR(1) process with spatially correlated errors. If one fits an AR(1) model to the spatial residuals
for each year, the average over the 138 stations of the maximum likelihood coefficient estimates,
under Gaussian assumptions, is ¢ = 0.425. If one estimates the AR(1) parameters using the Yule-
Walker equations, the average over the 138 stations is 3 = 0.414.

Maximum likelihood estimates calculated from spatial residuals is equivalent to restricted
maximum likelihood (REML) estimation. Searle, Cassella, and Berger (1992, Section 9.3) review
REML estimation for a one-factor inear model and cite many of the classical references on the
subject. Cressie and Lahiri (1993) derive asymptotic properties of REML estimators for spatial
sampling. Of importance in this work is the dramatic effect REML estimation has on estimation of
the AR(1) parameter. The average estimates across the 138 stations using the original anomalies
are ¢ = 0.231 using maximum likelihood and ¢ = 0.228 using the Yule-Walker equations.

Hartfield and Gunst (1999) show that orthogonalizing for the large-scale spatial mean structure



enables the small-scale temporal structure to be more clearly identified. It is also well known that
orthogonalzing using REML estimation removes much of the bias of maximum likelihood
estimators. The larger magnitudes of the REML estimates of ¢ suggests that spatial effects are
attenuating the maximum likelihood estimates calculated from the raw anomalies.

Although using spatial residuals has a dramatic and beneficial effect on eliminating spatial mean
effects from the estimation of the autoregressive parameter, use of these residuals has an
asymptotically negligible effect on the estimation of the autoregressive parameter for most
reasonable spatial designs. This latter property follows by writing the vector of spatial residuals
for time t as r(t) = {r(s,t), 1(s2,1), ..., 1(Sm,1)}’ = Pz(t) = PW(t), where 2(t) is the corresponding
vector of observed anomalies and W(t) is the corresponding vector of small-scale spatiotemporal
effects. Write the matrix P as P =1 — H, where H = X(X'X)" X' and X is the m x p matrix of p
= 6 quadratic components in fatitude and longitude for the m = 138 stations. Properties of the hat
matrix H are well known (e.g., Cook and Weisberg 1982, Chapter 2). Two properties of the
elements of H are important to the use of spatial residuals for the estimation of the autoregressive
parameter: | hy | < h;; for i # j and average(h;;) = p/m. Thus, as the number of stations increases,
the spatial residuals approach the small-scale spatiotemporal effects since H — @. Huber (1973)
shows that for linear regression max(h;) — 0 is necessary and sufficient on X for asymptotic
normality.

Box and Jenkens (1976, Chapter 7) and Brockwell and Davis (1991, Chapters 8, 10) provide
asymptotic distribution theory for univariate and multivariate maximum likelihood estimators of
ARIMA models. Brockwell and Davis also show the asymptotic equivalence of maximum
likelihood and least squares estimators of ARIMA model parameters. Model (1) assumes that
We(t) = (We(sy,t), Welsa,t), ..., We(sp,t)} is a multivariate ARIMA process with time-

independent, spatially-correlated innovation errors. Applied to the temperature anomaly data, the



restriction 0 < |¢| < 1 ensures causality of the multivariate AR(1) process and that the least
squares and maximum likelihood estimators are asymptotically equivalent under the assumption
that W (t) is multivariate Gaussian. The asymptotic properties (e.g., Brockwell and Davis 1991,
Section 8.8; Fuller 1976, Chapter 8) can be invoked to determine standard errors for the AR(1)
parameter estimator.

- n-1 n
Specifically, let ¢,(s) = >_r(s,)r(s,t+1)/3"r(s,t)?. Fuller's (1976) Theorem 8.2.1 can be
t=1 t=1

adapted to show that the $r(s) are jointly asymptotically normal, each with asymptotic mean ¢,
and asymptotic covariance matrix T4y = n(1 ~ ¢?)Ryp, where Ry, = [ Pob(si,8;)*] is an m x
m matrix of squared spatial correlations between the small-scale spatial errors b..(s,t). Then since

¢ = m‘lizﬂr(si), asvar() = (1 — ¢*)1'Ryp1 / (nm?). By inserting the estimated
i=1

semivariogram parameters in (3), the spatial small-scale covariance matrix Lo = 20X, where
A = —In(¢), and its corresponding matrix of squared correlations Ry, can be calculated from
the relationship in (4). The estimated standard error for $ is then calculated to be se(a) = 0.015.
To the decimal places shown, this estimated standard error is the same as se{®,(s)}/m'? where
se{@,(s)} = {(1- 32)/11}% is the estimated asymptotic standard error for an AR(1) parameter

estimator from a single time series (e.g., Box and Jenkins 1976, p. 244).

4. ESTIMATION OF THE LARGE-SCALE MODEL PARAMETERS
Estimation of the large-scale model parameters is straightforward once the small-scale spattal
structure has been identified and the corresponding parameters estimated. The quadratic fit to the
temperature anomalies for each year is obtained by applying generalized least squares estimators
with the estimated generalized spatial covariance matrix. For year t, let p, (s,t) = Xay. Then

a@ = XZZ@'X)'X'E,@)"2(t), where £ = (¢, wy, ws, ws). For an AR(1) small-
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scale temporal component with spatially correlated innovation errors and no measurement error,
T8 = Zuwl®) = 2N Ze, A = —In(¢),and Ty, = [Cov{b.(si, ),b.(sj,-)}]. Inserting
the spatial small-scale parameter estimates into (3) enables the covariance matrix X to be
calculated from (4). Inserting the estimate of ¢ into the above expression for X,,(£) then yields
Zu(@).

Theil (1971, Chapter 8), Van Der Genuten (1983), Rothenberg (1984) and Cavanagh and
Rothenberg (1995) provide a variety of conditions for the asymptotic equivalence of &(Z) and
&,(£) and the consistency and asymptotic normality of the estimators. Van Der Genuten (1983)
lists conditions that are especially pertinent to model (1) and proves that at(’é) is consistent and
asymptotically N{ a,(X'E (€)' X)"} for AR(1) model errors. Consistency of ER(E),
nonsingularity of Bo, = (X'Z(8)'X)! foralln, X%, (Tue) = Om!) where A, (5,,)is the

smallest eigenvalue of X,.,, and max(h;) — 0 are sufficient conditions for this result.

5. PREDICTION
The primary goal of this investigation is to obtain better predictions of temperature

anomalies, predictions that could improve area estimates and thereby better characterize
climatological changes in temperature. The ARIMA structure of the small-scale spatiotemporal
variation enables iterative prediction algorithms to be based on Kalman filters. The development
in this section parallels that of Christensen (1991, Section V.8). Huang and Cressie {1996) used a
similar development for their spatiotemporal autoregressive modeling and prediction of snow
water equivalent. The prediction equations shown below are, again for simplicity, expressed in
terms of discrete-time processes but they all have continuous-time equivalent expressions.

For the temperature anomaly data, the m-dimensional observation and state vectors can be

written, respectively, as

11



Z(t)=Xo; + W(t) + e(t) and W(t) = QW(t-1) + b(t), 5)
where Q depends on the assumed ARIMA model. For an AR(1) model, Q has an especially
simple form: Q = @I Letz; = {z(t-1), z(t-2), ..., (1)}’ denote the vector of observed data
values through time period t-1. Then predicted data values at time t are obtained from the

recursive relationships

() = B{ZM)fz1} = X&, + QE{W(t-1)fze1 } (6)
E(W(®lz} = COVIW(), Z(t) — E{Z(t)fze: 1(var{z(t) — B{Z(Dlz1}])"
x [2(t) — X@ + QE{W(t-Djze1}] , @)
where

Cov[W(), Z(1) — E{Z()i2u1}] = TuwIiXX'TIX)IX + R,
var{z(t) — E{Z(®lz1}] = X(X'TIX)'X' + R+ 2,
2XX'ZIX)IX'E,, QP
R, = var[W(t) — E(W®z1}] = QP.1Q +Ey,
P, = Var[W(t) — E(W(Oln}] = R — COvIW(), Z(t) — B{Z(t)fz..}]
x (var[z(t) — E{Z(O)[z1 }]Y COVIW(L), Z(t) — E{Z(t)lzt )}
and B, =X (&) etc.

The predictions of the observation vector Z(t) and the state vector W(t) in equations (6) and
(7) are based on the previous prediction E{W(t-1)jz,., } of the state vector and the current
estimate &, of the large-scale parameter vector. It would be desirable to use the previous estimate
a1 of the large-scale parameter vector but they do not provide adequate predictions of the
current large-scale parameter. The spatial contour plots in Figure 2 of Hartfield and Gunst (1999)
suggest why this does not occur: the large-scale spatial structure was determined to be quadratic

for each year; however, the quadratic patterns were very different in successive years. Several
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analyses of the annual large-scale structural parameter estimates did not suggest any reasonably
temporal relationship among successive annual estimates other than independence.

Figures 2 and 3 compare AIC-optimal temporal predictions with predictions from the Kalman
filter (6). Figure 2 is a time series of the anomalies for a station for which the AIC selected an
AR(1) as the optimal ARIMA (p,d,0) fit. In Figure 3, an AR(3) was selected. For both stations
and in general for all the stations, the Kalman filter predictions more closely match the actual
anomalies. The mean absolute prediction error for the Kalman filter across all stations is 0.30,
whereas for the optimal ARIMA (p,d,0) fits it is 0.58. The primary reason for the far superior
predictions using the Kalman filter is that the spatiotemporal model uses the large-scale fit to all
the spatial data for a given year to adjust the fitted model mean each year. The autoregressive fits
can only use the average of the individual series to account for the long-term temporal mean
anomaly. Thus, the autoregressive model fits are primarily small-scale temporal model fits. It is
not surprising, therefore, that the spatiotemporal model fits are superior.

The time scale has a great effect on the ability to use previous large-scale paremeter estimates
to predict current values. An analysis similar to the one conducted on the annual anomalies was
conducted on monthly anomalies for 334 U.S. stations over the 252 months in the calendar years
1950-1070. As with the annual data, the residual semivariogram has a well defined sill at about
1,000 km and can be well approximated by a spherical semivariogram model. The fitted model
parameter estimates are &y = 0.307, @y = 0.677, and &3 = 994 km. As one might expect, the
estimated nugget & = 0.307and the estimated sill &, + &, = 0.985 indicate that the monthly
average anomalies exhibit more variability than do the annual average anomalies. Again, the
overwhelming choice of the AIC criterion on the ARIMA(p,d,0) fits for the 334 stations was an

AR(1), with an average coefficient estimate of ¢ = 0.232.
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To gauge whether the monthly large-scale parameters might exhibit temporal structure,
autoregressive fits were made to each set of coefficient estimates. Unlike the coefficients for the
annual anomalies which appear to be independent from year to year, the AIC criteria selected an
AR(1) fit for each set of monthly coefficient estimates, with the autoregressive coefficient
estimate for each coefficient being in the neighborhood of 0.1. Equations (6) and (7) were then
modified by replacing &; by 0.1G.;. Figure 4 shows the results for one station whose optimal fit
was an AR(7). The Kalman-filter predictions are more comparable to the optimal ARIMA model
fit for this station and across all the stations. This occurs even though the Kalman filter uses a
common A(1) parameter estimate and not the optimal fit for each location. The mean absolute
prediction error for the Kalman filter across all stations is 1.36, whereas for the optimal ARIMA
(p,d,0) fits it is 1.33. Using the current month large-scale parameter estimates &, the mean
absolute prediction error is 0.74.

The lack of forecasting ability for the spatiotemporal model with annual anomalies does not
detract from its intended purpose of providing better spatiotemporal predictions for observed time
points throughout a region of interest. Area averages and predictions for locations not included in
the data set at any of the observed time points can be accomplished with modifications of
equations (6) and (7). On a monthly scale, the modification to the large-scale parameter estimates

allows prediction at any location and at any time,as well as forecasts for future months.

6. CONCLUDING REMARKS
Although the temperature anomalies are equally spaced in time, the theory and methods
discussed in this paper and in Hartfield and Gunst (1999) were developed for and are applicable to
data collected irregularly in space and in time. In addition, the model definition (1) is not intended

to be restrictive. Very general spatial processes can be included in the large-scale temporal
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component g,{Y(s), t} and in the small-scale spatiotemporal component Wg(s, t). It is also
possible to extend the definition of model (1) to include generalized linear models and Bayesian

hierarchical models.
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Figure 1. Average Spatial Semivariogram of Annual Anomaly Residuals.
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Figure 2. AR(1) and Spatiotemporal Model Predictions
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Figure 3. AR(3) and Spatiotemporal Model Predictions
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Figure 4. U.S. Temperature Data Average Monthly Spatial Semivariograms
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