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Differential Thermal Analysis {DTA) is a technique used to quantify cold tolerance in plants. Plant tissue 15
cooled and the ambient temperature and the temperature differential between tissue and ambient measured. Freezing
episades, called exotherms, can be identificd as changepoints, local minima, or selected inflection points in a plot of
differential temperature against ambient temperature. The primary exotherm typically manifests itself as a
changepoint and can be identified using techniques similar to those deseribed by Miller (1992). Modifications tor
locally weighted polyromial regression are proposed here to locate additional exotherms through estimation of first
and second derivatives. Thesce techniques involve an innovative combination of local and globai bandwidth

selection. Finally, the estimators are applied 1o crepe mynie {(Lagerstremia Indica) and pecan (Carya iilinoensis)

DTA data.
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1. Introduction

Differential Thermal Analysis (DTA) is a technique used to assess cold tolerance of
plants. Samples of plant tissue are placed in an enclosed, temperature-controlled structure and
the temperature is gradually decreased. The air or reference temperature within the enclosure and
the differential between the temperature of the tissue and the air are measured at specified
sampling intervals. The reference temperature is sometimes measured using a sample of dry or
dead tissue. When water within the tissue freezes. heat is released resulting in what is referred to
as an exotherm. Multiple exotherms are oftcn observed as water in distinct parts of the tissue
freezes. If the reference temperature is placed on the horizontal axis and the differential
temperature on the vertical axis, the exotherms can be identified by examining features such as

changepoints, local minima, and certain inflection points of the resulting curve. Since water



freezing within the tissue is often the cause of injury to the plant, the temperatures at which these
freezing points occur are important in determining the level of cold tolerance of a given cultivar
or genotype. Plants with exotherms at lower temperatures are typically more tolerant to cold
conditions. This information can be used in selection of more cold tolerant genotypes or
cultivars. More information on DTA can be found in Barney (1989) and Quamme et al (1972).
Section 2 of the present paper provides some details of DTA and defines the exotherms within
the framework of a mathematical model.

It is not unusual for hundreds of tissue samples to be subjected to DTA. The primary
method of locating exotherms is currently by visual inspection of the raw data or the curves
described above. Since each sample typically generates several hundred pairs of reference and
differential temperatures, this can be a very costly and time consuming exercise. Hence, an
automated, objective means of locating exotherms is desired. Nonparametric regression
estimators, particularty [ocally weighted polynomial estimators (Hastie and Loader, 1993;
Ruppert and Wand, 1994), provide the tools necessary to identify exotherms without resorting to
a parametric structure in the proposed model. Section 3 provides an overview of these estimators
as well as their implementation in exotherm estimation. Section 4 provides details of exotherm

location in crepe myrtles (Lagerstroemia indica) and pecans (Carya illinoensis) and Section 5

provides conclusions, discussion, and some alternatives.

2. Differential Thermal Analysis

Tolerance to cold is a limtiting factor in the adaptation of plants to new geographical
areas. Many cultivars are not viable alternatives in colder climates due to their inability to
withstand the harsher temperature conditions. Most cold weather damage to plants occurs when
the plant freezes. This often occurs in stages as water in different tissues freezes. Determination
of the temperature at which these freezing episodes occur provides information about the

minimum temperatures that the plant can withstand. This information can be useful in breeding



for improved cold tolerance or cultivar selection for colder climates. One method of determining
these critical temperatures is Differential Thermal Analysis (DTA).

In DTA, plant tissue samples are placed in a closed, temperature-controlied environment.
The temperature of the air, or other reference temperature, is measured as is the difference
between the reference and sample temperature, known as the differential temperature. The
temperature is then reduced at a specified rate and both the reference and differential
temperatures recorded. As water within the tissue freezes, heat is released causing an increase in
differential temperature. Certain changes in the differential temperature versus reference
temperature curve during freezing episodes are called exotherms. Figure 1 is an example of a
curve with three obvious exotherms. The most prominent exothem occurs at approximately -7.5
°C. The targe jump in the curve at that reference temperature is indicative of a significant
freezing episode. A different exotherm is located at approximately -18.6 °C and appears on the
curve as a local minimum. A less noticeable exotherm occurs earlier at approximately -12.9 °C.
The freezing episode associated with this exotherm is mere moderate in nature and 1s
manisfested by a "shoulder” on the curve. These three exotherms represent the three types of
exotherms commonly seen in DTA. Note that the chronological order of the exotherms is from
right to left on the plot. The temperature record was sampled at equal time intervals to produce a
total of 431 pairs. Typically, the number of exotherms that are evident varies from sample to
sample. The first type appear with virtual certainty and the other two types are seen in many, but
not all, samples.

A model describing the relationship between the differential temperature (y;) and the

reference temperature () 1s

yi=m()+e i=1,..,n, (2.1)
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where €; are random variables with mean zero and common variance 2. The function m(*) is
assumed to be smooth with continuous derivatives up to some specitied order at every f; with the
exception of a changepoint at t = 1.

The three types of exotherms can be defined in terms of the model as follows. The first
corresponds to a changepoint and, hence, occurs when the reference temperature 1s equal to T.
The "shoulder", occurs at reference temperatures where m” changes from negative to positive
and /" > 0. The remaining one corresponds to a local minimum and hence corresonds to
reference temperatures where m’ is zero as it changes from negative to positive.

A general overview of locally weighted polynomial regression is given in the next
section. Subsequently, we include details on using these estimation techniques to locate

exotherms.

3. Estimation of Exotherms

In this section, the use of nonparametric regression techniques in the location of
exotherms is outlined. Section 3.1 provides a brief overview of locally weighted polynomial
estimation. Section 3.2 gives details on applying changepoint estimation to exotherm location.
Sections 3.3 and 3.4 demeonstrate how exotherms that are characterized by local minima and

"shoulders" can be located.

3.1 Locally weighted polynomial curve estimation

Locally weighted polynomial estimators have become a realistic choice for data analysts
wishing to estimate the relationship between two variables without requiring that the functions
fall into a parametric framework. An appropriate model is given in {2.1). Without loss of
generality, it is also usually assumed thatr; € [0,1]fori=1, .. n.

One method proposed (Stone, 1977; Miiller, 1987; Fan, 1992; Hastie and Loader, 1993,

Ruppert and Wand, 1994) for estimation of m(') is locally weighted polynomial estimation. A pth



order estimator, r?z,p(r;h) is the appropriate clement from the familiar solution to the normal

equations, namely

iy (k) =) oy (XWX) T X'Wy, (3.0

s

where X = (lzzz....zP), W= dmg(;((ﬁn, 7/ = ((x[ —oY o x, —z)f) ,

h

and ¥y’ = (}‘1....,}’:1 ) The vector ¢, ; is a vector of length j with a one in the b location and zeros

i
clsewhere. The function K(-) is a symmetric, positive, 284 order kernel function defined on [-1,1]

such that

[ 1 1 {
JK(u)du"—"l, J-uK{u}:O, JuzK(ujdu=k2 =0, and JKz(zt)c114:Q<m.
-1 -1 -1 -1

A commonly used function that satisfies these requirements, which has been shown to possess
good theoretical properties is K(u) = T5(1-u2) (Epanechnikov, 1969, Benedetti, 1977).

Essentially, this curve estimator consists of a weighted least-squares fit of a poiynomial of
degree p at each desired point of estimation. The weights are determined by the function K(-).
Most reasonable weight functions place more weight on points closer to the point of estimation
and less on those farther away. How much of the data set is included when calculating the
estimator 1s controlled by the parameter 4, called a bandwidth. Only those values within the
interval [¢-f1,0+hk] are used by the estimator. Hence large values of 4 result in more data being
used and give a smoother estimated curve and small values of / yield a less smooth curve.
Optimal chotce of ki is addressed in the next section.

Derivatives can also be estimated with locally weighted polynomial regression.
Estimation of the rth derivative of m(*) at r with a pth order locally weighted polynomial fit (p=r)

yields



(k) = e,y (ZWZ) 7 2 Wy,

with all quantities defined analogously as in (3.1). The next section describes how these

estimators can be used in changepoint estimation of the first type of exotherm.

3.2 Changepoint estimation and location of the first exotherm

The first type of cxotherm exhibited as the temperature is reduced is characterized by a

changepoint in m(-). That is, there exists a reference temperature T such that [ifnm(() = limm(r).
{LT It

Typically, there is only one exotherm of this type for a given sample. Miiller(1992) proposed a
method of estimating a single changepoint using kernel regression estimators (Gasser and Miiller,
1979). The technique involves calculating the absolute difference between two regression
estimators (p=0) at each candidate value of the explanatory variable using only data to the left
and to the right of that value, respectively. The value of the explanatory variable corresponding
to the largest such absolute difference is taken as the estimate of the changepoint. However, to
calculate this estimator, it is necessary to compute curve estimates at the very edge of the data
used for the right and left fits. Clearly these potnts fall in the boundary area, i.e., within one
bandwidth of the edge of the range of the explanatory variable. Kernel regression estimators are
known to have increased bias within the boundary region, requiring specialized boundary kernels
to overcome this difficulty. Locally weighted polynomial estimators of degree one or greater
adapt automatically to the boundary (Fan,1992) and the use of special weighting functions is
typically not required. Hence, we use a changepoint estimator employing locally weighted linear
regression (p=1) to locate the first type of exotherm.

The proposed procedure consists of stepping through the dataset and at each step dividing
the data into left and right portions. Estimation of the mean function at that point using the data

to the left and the data to the right separately is then carried out with locally weighted linear



regressions, The reference temperature with the largest positive difference between the left and
right fits is the estimated exotherm, T. The largest positive difference is used here rather than the
largest absolute difference, because only a positive change ts indicative of heat being released.
Before any estimation can be done, however, bandwidths must be chosen. A local bandwidth
selection scheme is proposed.

Bandwidths can be chosen eiiher globally or locally. Global bandwidths employ the same
smoothing parameter at each estimation point but local bandwidths allow for a different
bandwidth at each point. Thus, a small bandwidth can be used when the function is changing
rapidly and not much smoothing is possible. A larger bandwidth is to be used when the function
ts not changing rapidly and more smeothing is allowable. Miiller and Stadimiiller (1987) showed
that local bandwidths are more efficient in terms of asymptotic mean squared error (AMSE). A
method of local bandwidth selection from Schucany (1995) is adapted here for use in the
changepoint problem.

One criterion for local bandwidth selection is to choose a bandwidth that minimizes the

AMSE at the point of estimation. The AMSE of the left fit, st (£:4; ), using bandwidth A, is

(Fan, 1992)

~ i * 2 2 GZQ"
AMSE[HZ!'(I;}I[)]Z[Ekéfrl;’(!)flz ) +—;“m‘ (32)
gty f (!

where n; = number of pairs to the left of the point of estimation,
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$ig = Ju'K(u)du.
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and K(-) is a weight function described in Section 3.1. The quantity f{-) is called the design
density and is the probability density function of the reference temperatures. The density is taken
to be uniform (f(z)=1 for all te [0,1]) for the discussion that follows. In general, the model is
F(t)=i(n+1), where F is the cumulative distribution function corresponding to f. In the
exotherm application, the uniform density may not hold exactly throughout the entire range of
temperatures, but is still a reasonably good approximation. The derivation of (3.2) requires the
existence of a finite second derivative, mj(t). 1t should be noted that the first termi in (3.2) is the
squared asymptotic bias and the second is the asymptotic variance of the estimator. Hence for
this estimator to be consistent, the bandwidth must shrink as the sample size increases such that
lim nhy =oo. An analogous expression holds for #, (2:4, ).

Hy— o

Differentiation of (3.2) yields an optimal bandwidth of

/s
"
. 2
(kz'm(”(t)) ny

h!.()pf =

Since Q7, &;, and 1, are known, if consistent estimates of 2 and m/{¢) can be obtained, a plug-
in estimate of each bandwidth can be calculated. A consistent estimate of 62 can be computed

using a method developed by Gasser et al (1986). Hence the only real difficulty lies in

estimation of m[(1).

Schucany (1995) proposed a method of estimation motivated by the form of the squared

bias in (3.2)



B

bias[rﬁ!(z‘:h,)]z :(%kim,”(!)h}}h = B/zf.

which can be viewed as a regression model with independent variable hf and parameter B. If the

bias were known for a fixed grid of /j's, then [east squares could be used to estimate B.

However, the bias is not known and must be estimated. One consistent estimator, b, IS
b= ehy )=y (),

where o (£:8 ) and iy (15 k) are locally weighted quadratic and linear regression estimators,

respectively. Gerard and Schucany (1996) showed that the resulting bandwidth estimator of the

form

20"
4&)1[

/;J =

is consistent under fairly general regularity conditions for estumation in the interior, It foilows
also that on the edge of the estimation interval (3.3) i1s also consistent. See Schucany (1993) for
details on the choice of bandwidth grids. An analogous procedure can be followed to determine
bandwidths for 2, (r:4, ). Now T = arg max(s; (r) =, (¢)) and we have our estimated

!
exotherm,

Since samples typically have no exotherms prior to this changepoint and only one
exotherm of this type is present in a single DTA analysis, the data can now be separated into two
disjoint parts. The portion with reference temperatures greater than T is not searched for
exotherms of the other two types. The data with reference temperatures less than T are
investigated for additional exotherms. The next section presents details on locating exotherms

that are represented by local minima.



3.3 Local minima exotherm estimation

The second type of exotherm is manifested by a local minimum in m(s), the differential by
reference temperature curve. Hence, estimation of first derivatives is required over the range of
reference temperatures less than T. The estimated first derivatives can be scanned and those
points where the sign changes from negative to positive classified as local minima exotherms.

The use of local polynomial estimation (Ruppert and Wand, 1994} allows for estimation
of the derivatives of the underlying mean function. The regression coefficient for the rth order
term in a pt order local polynomial fit (p=r) is an estimate of m(")(¢)/r!. For p-r odd, the
expression for the asymptotic bias of the derivative estimator is less complicated. Hence we use a
locally weighted quadratic estimator and the coetficient of the linear term is our estimate of the

first derivative,ﬁz(l)(r). Under general regularity conditions, the asymptotic bias and variance

are
n .k 5
bias[m(l)(t)] = im(BJ (!)—4}'12 = Blr?1(3)(f)iz“
6 ks
and
2 2
A (1) . C 2 e
var[m* ()= —5— | K (u)du = ——,
[ ] n 3&5 _J-l nir®
where
l .
k; = Ju’_K(u)du. (3.4)

-1
Since neighboring estimates are compared to determine the location of local minima, it is
desirable that the estimates have an equal amount of smoothing. With this in mind, we usc a

global bandwidth procedure suggested by Gasser et al (1991) and modified by Hermann (1994}



for derivative estimation. The procedure attempts to find the bandwidth that minimizes the
Integrated Mean Square Error of prediction using a fixed number of iterations. The procedure
outlined by Gasser ct al (1991) uses exactly eleven steps. For derivative estimation, the number
of iterations varies depending on the derivative to be estimated. The steps for first derivative
estimation are outlined below, making use of the asymptotic equivalence of this local polynomial

estimator and a third-order kernel estimator.

l. Set hp=2/n.

2. lterate the following step for i=1....,16.
1/7
ol
hi = 4i 1 ‘!G
n . 2
812 Jv(l)(rfz(j)(r:hl-‘lnl’lm )) dt

0

3. Stop after 16 iterations and set =/,

The estimate of the third derivative is obtained from the coefficient of the cubic term of a locally
wetghted third-order fit. The function v(r) is a weight function used to eliminate boundary
effects, taken here to be an indicator function for te {.1,.9]. The estimate of ¢2 is again found
using the method of Gasser et al (1986). Using the global bandwidth, the estimates of the m’(1))
can be evaluated on a grid of points and local minima located approximately. For convenience,
the values of  are scaled to lie in the interval [0,1]. Though the estimates of derivatives are also
scaled, the methods proposed are invariant to these scale changes. These estimates are also

subsequently used to locate the third type of exotherm discussed in the next section.



3.4 Estimation of shoulder exotherms

The third type of exotherm is identified by the second derivative changing signs from
negative to positive while the first derivative remains positive. This gives the appearance of a
"shoulder" on the curve. Since the first derivatives are found to locate local minima exotherms,
all that remains is estimation of the second derivatives. A third-order locally weighted fit is used
and the coefficient of the quadratic term is A (1) /2. Hence, twice the regression coefficient
estimates the required derivative,

Under general regularity conditions, the asymptotic bias and variance of the estimate of

second derivative are

bias[r?z(z)(f)] = %m(‘” (1)Byht?

and

G2V,

var[ﬁz(z)(()} = s

nh

where

kikg +k3kgky —kokZ —kok?
kD F kg —kokgkg — kK3

By =

12
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-1 -1

i
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and the &; are defined in (3.4).
As with the first derivative, a global bandwidth 1s used to estimate the second derivative.

The procedure of Gasser et al (1991) as modified by Herrmann (1994) 1s as follows.

1. Set hg=4/n.

1. Iterate the following step fori=1, .. 21,

/9

a2
Vzoﬂ

5
4n (1 |
" B3 J'v(r)(;?z(‘”(:;!L-_ln'f"s))2dr
0

3. Stop after 21 iterations and set h=h;).

The estimate of the fourth derivative, /% (1), is from a fourth-order local polynomial fit. The
estimate of ¢2 and the function w(t) are as in the previous section. Using this bandwidth
estimator, the second dertvatives are estimated and points where the sign changes from negative
to positive accompanied by a positive first derivative are selected as "shoulder” exotherms.
These techniques are applied in the next section to identify exotherms for crepe myrtles and

pecans.



4. Application : Location of Crepe Myrtle and Pecan Exotherms

The results of diffcrential thermal analysis of a tissue sample (n=431) from crepe myrtle
are plotted in Figure 2. For completeness the curve from Figure [ is reproduced as Figure 2a. In
keeping with the algorithm in Section 3.2, the first type of exotherm that is located 1s the
changepoint exotherm. The differences between the left and right boundary fits are plotted
against reference temperature in Figure 2b. The largest difference corresponds to a reference
termperature of -7.54° C, which agrees closely with the jump seen in Figure |. This value locates
T, the first estimated exotherm, and reference temperatures larger than this value are not
searched for additional exotherms. The estimated first derivatives and second derivatives for the
reference temperatures less than -7.54° C are plotted in Figure 2c and Figure 2d, respectively.
The exotherms characterized by local minima are shown in Figure 2c to be -31.44° C and -18.61°
C. The shoulder exotherms are shown in Figure 2d to be -24.64° C, -15.10° C, and -12.88° C.
The two shoulder exotherms at the lower temperatures are difftcult to see in Figure 1 without
close inspection of the data. Further, the local minimum exotherm at -31.44°C is also not
obvious and might be missed in a quick inspection of the plot.

The results of differential thermal analysis of pecan tissue {(n=090) is shown in Figure 3.
Plots providing detatls of the location of exotherms are found in Figure 4a-d. The first exotherm
is estimated to be -9.065 °C. Scarching reference temperatures less than -9.065 °C yields local
minimum exotherms at -10.58 °C and -23.56 °C and a shoulder exotherm at -14.02 °C. These

are in close agreement with exotherms determined from a close visual inspection of Figure 3.

5. Discussion

The nonparametric regression techniques described and illustrated in the previous
sections provide a fast, automatic method of locating exotherms used to evaluate cold tolerance
in plants. Changepoint estimation techniques provide an accurate method of locating the first
exotherm, where the most damage to the plant is usually sustained. Subsequent, less dramatic,

freezing events are located by scarching estimates of first and second derivatives to find their



corresponding exotherms. The methods proposed here tend to locate more exotherms than would
be found using the naked eye. This is especially true in areas where the curve is flat, which can
tead to estimates of the first derivative that fluctuate about zero, or where the curve s essentially
linear, which can lead to similar fluctuations in the second derivative estimate.,

In many instances, this increased sensitivily is desirable, at least as a screening
mechantsm, so that the scientist may choose critical exotherms from a list of candidates. In the
event that location of only the strongest freczing episodes is desired, there are ways to remove
some candidate exotherms from consideration. First, since most of the less obvious exotherms
occur in an area where more smoothing is required, local bandwidth techniques could be used for
derivative estimation as well as in changepoint location. The method of Schucany (1995) could
be extended to provide the required local bandwidths. These local bandwidths would allow for
more simoothing to be done in those areas where undersmoothing may be causing spurious
exotherm location.

Another method to reduce the number of candidate exotherms involves confidence
intervals. Since the derivative estimators are linear functions of the data, central limit theorems
(Miller, 1988) are available for the asymptotically equivalent local polynomial estimators and
kernel estimators. Gasser and Kneip (1995) proposed such a method by constructing confidence
intervals on (1) and m (1), whenever the bias in these estimators is negligible. One way of
eliminating spurious exotherms would be to disregard those candidates that do not have a
significantly nonzero derivative from all of the simultaneous confidence intervals between the
proposed exotherm and the nearest zero on the derivative curve. In the crepe myrle example of
the previous section, this would eliminate all exotherms except those three mentioned in the
Introduction. No exotherms would be eliminated from the pecan example. A system involving
quick visual inspection of a set of candidate exotherms as well as subjecting these exotherms to
an objective criterion using confidence intervals would provide the scientist with a substantial

amount of information for informed judgements regarding these [ocations.
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Figure 4. Plot of Pecan (a) differential,(b) difference of left and right fits,(c) first

derivative, and {(d) second derivative versus reference temperature. The

changepoint (C), local minimum (M), and shoulder (S) exotherms are noted.



