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SUMMARY

The smoothed bootstrap paradigm involves replacing the empirical distribution function F,
with a smoothed version. Thus far, this idea has been mainly considered for continuous data
arising from a distribution F' with density f. In this paper a class of smoothed bootstraps
for d_is;:rete data is presented. Varieties of these proposed resampling methods are then
compared with the standard bootstrap in a simulation study of percentile method and
bootstrap-t confidence intervals. The Monte Carlo simulation involves samples from two
large real populations obtained from toxicological research. Some versions of the smoothed
bootstrap yiéld a worthwhile small-sample improvement in coverage for this application to
a ratio estimator with integer-valued data. The potential gains from this methodology are

evident, as are the dangers from oversmoothing.
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1 | Introduction

The bootstrap, introduced by Efr(;n (1979), is a general method for estimating measures
of statistical accuracy. An elementary application involves estimating the standard er-
ror o(F) of an estimate (Xy,..., X») of an unknown parameter 6(F), where Xq,...,X, is
a random sample from an unknown probability distribution F. The standard bootstrap
estimates o(F) by substituting F,, the empirical distribution function, for F. Usually
o(Fy) does not have an analytically closed form but can be estimated by resampling as
follpws. Obtain a bootstrap sample X7, ..., X7 of n independent draws from F,, and eval-
uate 6* = (X}, ..., X*). Independently repeat this process a large number (B) of times,
obtaining bootstrap replicates of g*. The sample standard error based on the B bootstrap
replicates is then an estimate for o(F}). A readable description of the topic is available in

the monograph by Efron and Tibshirani (1993).

Smoothing the bootstrap calls for replacing the empirical distribution by a smoothed
version. The motivation is that bootstrap resamples not be restricted to oniy those values
in the original sample. In the continuous case F), is replaced by Fy, the distribution asso-
ciated with estimating the underlying density f by a kernel density estimate f;, where the
smoothing parameter A determines the amount of smoothing. The evidence of substantial
improvements in mean square error due to resampling from F}, has not been overwhelming.
For a recent review of these ideas see De Angelis and Young (1992); also see Efron(1979,

1982), Silverman and Young (1987), and Hall, DiCiccio, and Romano (1989). As an example



of one study that does not focus on mean squared error see Banks (1988).

One version of a smoothed bootstrap for discrete data has been investigated by Frangos
and Schucany (1995) (FS). The model for the bivariate integer data (z;,n;) that they
consider leads to a two-stage resampling procedure for the bootstrap. The first step draws
a random sample of pairs (z},n}) with replacement from (z;,n;) as with the standard
bootstrap. The second step assumes a parametric form for the conditional distribution of
X given n, and thus draws a random sample (z7*,n}*), where z}* is distributed according
to an estimated conditional distribution given that n* = n}. The final bootstrap sample
is comprised of the (z}*,n;*). An important feature of this scheme is that the pairing of
(z;,n;) is retained, and by not imposing a model at the first step there is still a significant
nonparametric component to the methodology. The second stage is the “smoothing” step:
The sample space of z; is known to be 0,1, ...,n; and it may be desirable to resample from
this full range. Knowledge of the integer lattice with finite support distinguishes this case

from the continuous. This is the basis for expecting some improvements in the discrete case

by reassigning some probability to the empty cells which would otherwise not be resampled.

In this pé,per we replace the parametric smoothing imposed by FS with a nonparametric
construction, namely, estimating a djs;rete conditional distribution with a discrete kernel
density estimator. Section 2 discusses two possible kernel estimators, while Section 3 uses
these estimators for bootstrapping. Section 4 compares the kernel based smoothed bootstrap
with the standard bootstrap via coverage and average lengths of the associated confidence

intervals, and Section 5 contains some concluding remarks.



2 Estimators for Probability Mass Functions

Smooth estimators for probability mass functions have been considered by several authors.
Smoothing of observed relative frequencies in multinomial situations is the subject of early
articles by Good (1965), Fienberg and Holland (1973), and Stone (1974). Kernel methods
have been considered by Aitchison and Aitken (1976), and more recently by Titterington
(1980), Hall (1981), Wang and Van Ryzin (1981), Bowman, Hall and Titterington (1984),

and Hall and Titterington (1987).

In the present article we investigate the kernel methods suggested by Titterington (1980)
and Wang and Van Ryzin (1981) as representative of two classes of linear smoothers with
kernels appropriate for ordered categories and distinctly different methods for choosing the
weights. As in the continuous case, we expect that the choice of kernel shape matters much
less than does the selection of smoothing parameter. (See Wang and Van Ryzin (1981) page

302 for their simulation experience with “more sophisticated weights”.
p g

Let D denote a sample of n independent observations zi,...,z, from the prbbability
mass function p(-) defined on the finite discrete sample space & = {ej,ez,...,ex}. A
general kernel estimator of the probability function is

1& |
By | h,D)= ;;K(%xi | 2), yes, 1)

where K(-,z | h) is a kernel function and h a smoothing parameter determining the degree



of smoothing. An equivalent representation is linear in the cell frequencies

k
By |k, D) =) riK;(y | h), (2)

i=1

where k is the cardinality of S, r; the observed relative frequency corresponding to cell j
(“cell” j in this context is equivalent to a realization whose value is e;) and K;(y | k) the

value of the kernel at cell j. The property that the kernels sum to 1.0 implies

> byl hD)=1. 3)

yeS

In view of (2), Titterington (1980) proposes a general kernel estimator of the k-dimensional

vector of probabilities
p"(C)=CTr, (4)

where 7 = (rq,...,7x) and C is a k X k matrix with each row representing k¥ nonnegative

weights summing to unity. By structuring the linear smoothing matrix C as
C=I+(1-r)G, (5)

where Gy; = —1,Gi; 2 0,i # j,and G1 = 0 for specific choices of G;; it is possible to obtain
some well-known kernel functions. In addition, if the smoothing parameter % is obtained

by a minimum mean squared error (MSE) criterion, Titterington (1980) shows that the

optimal value h* satisfies
1-h* = —tr(VG)/tr(GTpp” G + VGGT), (6)

where V = n~}(A — ppT), A = diag(py, ..., px). In practice, r; is substituted for p; in (6)

to yield A, an estimate of A*. As one example of unlimited range smoothing (URS), we

4



investigate the G;; from Titterington (1980), for fixed 7

27/{i(k - 1)} y J<i

Gij = (7
2k+1-)H{k+1-(k-1)} , j>i

These weights decline linearly on each row of G as j moves away from j = ¢. Conse-

quently, when we use (7) we denote the smoother by URSL. To study weights that fall off

quadratically we consider

652/{i(k - 1)(2i - 1)} , J<i
Gij = (8)

6(k—j+ 12 /{(k—i+1)(k-1)2k-)+1)} , >4,
which yields a smoother to be denoted by URSQ. In addition, we define and consider limited
range smoothers (LRS) by setting Gi; = 0 for all |7 — j| > w, for some integer w greater

than 1.

Wang and Van Ryzin (1981) present a class of estimators for probability functions
defined on the integers J. Following their notation, let p; denote the mass at i¢J and Sy
denote an interval on the real line containing the origin. Their estimate of p;, i€J, is the

infinite linear combination

o0

p*(z l S) = Z ’I‘jW(S,’i,j), (9)
j=—00
where W (s, 4, j) is a discrete window weight function [cf. Parzen (1962)] defined on SyxJxJ, _

with parameter s. As in (2), the estimators are weighted averages of the observed relative

frequencies r. Many commonly used estimators are special cases of (9).

The weight function recommended by Wang and Van Ryzin (1981) and that we employ



here is an LRS with uniform weight function over w symmetrically neighboring cells

(

Isjw , li-jl=1,.,w

W(sif)={ 1-s , i=j (10)

LO , li=j3l>w+1

where w is an integer > 1, and seSo = [0,1]. Even though it is not monotone decreasing, it
accounts for ordered categories by using only neighboring cells. For this class of “uniform w”
weights an analytically closed form optimal solution §, based on minimizing global MSE,
is given in Table 1 of Wang and Van Ryzin (1981). For example, when w = 1, LRS is

essentially identical to (4) and (6) with an appropriate G;;. They also discuss choices of s

for a local MSE criterion.

For this paper we consider probability functions on the discrete, finite sample space
S =40,1,...,m}. It is therefore necessary to modify the Wang and Van Ryzin eétimator,
since it is defined over the complete set of integers. To this end we devise a boundary kernel
thé,t folds all of the estimated probability, that would otherwise be beyond the boundaries
of the sample space, back onto the endpoints. That is, we assign the total mass associated
with p*(jlé);j < 0, to p*(0]3) and with p*(j[.é),j > m, to p*(m|§). Taking w =1 in (10),

i.e., the uniform 1 weight function, our modified estimator becomes

{
(1= 38)ro+ Lsry , i=0
Pr(i8) =\ Frici+ (1 - 8)ri+ Jons 0<i<m (11)
29"1=-1 1 29"+l
| (1= 28)rm + 33rm , i=m



3 Smoothed Bootstrapping

The specific application that we use to illustrate the proposed approach consists of set-
ting a confidence interval on a mean rate of integer counts based on M independent pairs
(z:,n;), where n; is a positive integer, and conditional on n; the sample space of the random
variate X; is {0,1,2,...,n;}. We assume that (X;,n;) and (X, n;) are identically distribut-
ed conditional on n; = n;. We will be concerned with bootstrap interval estimation of
4 = E[X]/E[n] based on the pooled ratio estimate i = M, X;/ M, n;. This requires a
bootstrap distribution of replicates that we specify below. An important aspect of proper
resampling is that the simulation preserve the stochastic assumptions stated above. For

b=1,..., B repeat the following steps.

1. Draw a (standard) bootstrap sample (z},n}) of size M from the empirical joint dis-

tribution of the original data (z;,n;).

2. Draw a (smoothed) bootstrap sample (z}*,n*) of size M, where n}* = nf and z}* is
distributed according to a smoothed version of the conditional distribution of X|n¥

as in Section 2.

3. Calculate the pooled ratio estimate, b = " o) M nre.

=1 i=1

The empirical distribution of the B bootstrap replicates {/i°} may then be used to construct

confidence intervals.



The intervals we consider are based on the percentile (Efron, 1982; Efron and Tibshirani,
1993) and studentized (Abramovitch and Singh, 1985) methods. The percentile method

yields a 1 — 2a central confidence interval
[A7(e), A1 - a)], (12)

where H is an estimate of the bootstrap distribution function, A (t) = #{a® < t}/B. The
bootstrap-t determines quantiles as in (12), but in step 3 it replicates studentized quantities
(2b - p)/ S/Tilb, where SE' is an estimate of the standard error of . The standard error
for each resample is estimated with the jackknife as in Gladen (1979) and Frangos and

Schucany (1995).

The construction of a smoothed version of the conditional distribution X|n is as follows.
For each distinct n in the original data, collect all pairs (z;,n;) such that n; = n. The
original data is thus partitioned into mutua]lf exclusive sets, one for each distinct n. Inde-
pendently, each data set, denoted by D,, is then used to c(onstruct a smooth estimator for
the conditional probability function associated with that vaiue of n. (It is easy to see that
this two-stage sampling applied to the unsmoothed D, is equivalent to ordinary resampling
of pairs.) Note that this approach does not require the same degree of smoothing within
each D, thereby allowing for a rich variety of patterns among the sets. We do, however,
require that the smoothed estimators among the D, be of the same type, for example all

uniform-1 weight function estimators, but with possibly different smoothing parameters,

Sn.



The values of z are ordered and any reasonable probability function estimator should
incorporate this fact. The Wang and Van Ryzin (1981) class of uniform w weight estimators
by definition take account of the natural order in the conditional sample space {0,1,...,n}.
The general kernel estimator of Titterington (1980) is also capable of accounting for order

by taking G;; in (5) to be decreasing as |i — j| is increasing, ¢ # j, such as in (7).

Ideally, one wishes to resample from a distribution that is smoother in some sense, but
differs as little as possible in other important features. However, the proposed smoothing
will change some moments of the resampling distribution, and may introduce bias into the
bootstrap estimate. In order to minimize the potential bias one may want to resample from
a “smooth” distribution with the same mean and variance as the standard resampling dis-
tribution. Unfortunately, the additional desire to preserve the integer lattice support makes
the problem considerably more difficult than the continuous case. Indeed, the optimization
associated with such constrained optimal smoothing appears to be an integer programming
problem. Titterington (1980) has noted similar problems. More discussion of the difficulty

of rescaling is presented in the next section.

Both types of estimators handle the degenerate case the same. Specifically, if for a fixed
n' only one value, say g, is observed in the sample D,, then the smoothing parameter is

selected so that mass 1 is placed at xo. This corresponds to A =1 in (5) and s = 0 in (9).

Although the main emphasis of this paper is on nonparametric smoothing, our simulation

study compares this technique with the “semiparametric” approach of Frangos and Schucany



(1995). In step 2 of the above bootstrap procedure the FS resample (z}*,n}*) is drawn by

[N )

taking n}* = n} and z}*|n}* from a binomial distribution B(n},p?) with pf = z7/n}.

4 A Simulation Study: Small Sample Behavior

To investigate the performance of the various bootstrap procedures on real data we have
defined a study population using t'oxicologica.l data from Table 3 of Luning et al. (1966).
This dataset was also studied by Gladen (1979) to compare jackknife estimates and tests to
methods based on distributional models. The population consists of 604 litters with data
pairs (z,n), where z denotes the number of affected mice out of n total fetuses from one
female. Figure 1 is a plot of frequencies of affected mice, conditional on the total number
of fetuses. The proportion of affected fetuses (#) in the population is 0.25258 and we
consider confidence intervals for this parameter. Another large population of control mice
(# =~ 0.0996) was also studied. The results presented here are representative of those in the
control population. Carr and Portier (1993) compare the ordinary bootstrap with other
methods in the more difficult problem of dose-response modeling. Here we are studying the

relative performance of various refined resampling procedures at a single fixed dose.

The simulations were performed on a RISC System 6000 at Southern Methodist
University using C code and NAG routines. For each sample size (number of litters) and
estimation procedure there were 1000 independent iterations, each yielding one confidence

interval from B = 1000 bootstrap resamples. The nominal 90% intervals are summarized

10



by the actual coverage and average length across the 1000 iterations. The standard errors

for the coverages close to 90% are just less that 1%.

Table 1 summarizes results at 4 sample sizes. The standard bootstrap (STAN), which
simply eliminates step 2 of the previous section, significantly undercovers at M =10 and
15. A dramatic increase in actual coverage is achieved by the binomial method (BIN), but
at a cost of excessively long intervals relative to the standard bootstrap. This sigm'ﬁcaﬁt
overcoverage is a noteworthy difference from those found by FS. The uniform-1 LRS is a
good compromise. It corrects the actual coverage with average interval lengths considerably
smaller than BIN and not much longer than STAN. Similar results were found when the
method of Titterington (1980) was chosen to be a limited range smoother as described in

Section 2.

To what should we attribute this difference in F'S? Although these conditional distribu-
tions exhibit no obvious departures from slightly overdispersed binomials, the BIN method
behaved significantly different than it did on the FS simulated beta-binomial distributions.
This particular semiparametric bootstrap may be somewhat sensitive to the actual model,
since the intervals were consistently too wide. This suggests that there a.r—e subtle differences
between this mouse population and‘the joint distribution imposed by conditionally mixing
binomials at each litter size. The FS method matches the litter-to-litter variation well, but
generates too much variability in the ratio estimator. Indeed for fixed binomial populations
with p = 0.25 at every litter size, the BIN bootstrap covered 97% at M = 15,30. On the

other hand, the uniform-1 weight function estimator (LRS), being akin to a nearest neigh-

11



bor procedure, has a smoothing effect only at and near those points of the sample space

where data have been observed.

The URSL, the linear choice of G specified by (7), yields relatively long intervals, but
also obtains poor coverage as M increases. The long intervals can be explained by reasoning
similar to that given above for the binomial method. The poor coverage results from bias
introduced in the ratio estimator for the smoothed samples. Less smoothing, represented by
URSQ was a step in the right direction. However, it was not sufficient to rescue URS entirely.
We also experimented with relocating and rescaling the smoothed resamples in an effort to
control this bias, as is often done in the continuous case. In this specific application, however,
standard approaches (';a.n yield exactly the same intervals as the standard bootstrap since
one might be actually controlling the numerator of 2 by imposing the desired moments.

More sophisticated approaches to controlling the bias are needed and certainly warrant

further investigation.

The bootstrap-t corrected the coverage but the intervals at the smaller sample sizes were
longer than the satisfactory LRS intervals. It may be worth noting that LRS also represents
less computing than the bootstrap-t, which estimates a standard error for each resample.

The bootstrap-t did not produce desirable results when we used it after either LRS, URSL,

or URSQ smoothing.

What one sees is that the best of the various intervals was the percentile method based

on LRS. The satisfactory improvement from LRS relative to STAN (unsmoothed) appears

12



to be due to a tradeoff of less skewness for more spread. This is consistent with the general
idea that the percentile method works best on a symmetric pivot. Choosing the extent

of smoothing is critical. The window w = 1 was successful, but the unlimited range was

disastrous here.

5 Discussion

Previous investigations of bootstrap smoothing consider continuous data and focus on mean
squared error performance to judge the relative merits of a smoothed bootstrap. For the
most part the results indicate no global preference for the smoothed bootstrap, De Angelis
and Young (1992). In this paper we depart from these investigations in that we consider
discrete data and assess the merits of a smoothed bootstrap thrbugh confidence intervals.
One reason to anticipate a better payoff than with continuous distributions, is that one
may capitalize on the known integer lattice. In both situations the choice of smoothing
parameters may be a delicate matter. However, the important distinction between the two
is that, especially for integer-valued random variables, one may more faithfully prescribe
the support for the resamples. These discrete smoothers impose a structure that constitutes

fundamentally different information about the nature of the range of the random variable.

We have shown that employing a smoothed version of the empirical distribution, when
using the bootstrap in confidence interval construction, improves the coverage in small

samples without a substantially increased interval length relative to the standard bootstrap.
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At least in the present situation, the best procedure, namely the uniform-1 estimator, (ioes
not actually yield extensive smoothing. In the uniform-1 method the mass for an observation
is smeared to only those values immediately above and below that observed point. These
results agree with those of Wang and Van Ryzin (1981), who have noted that the uniform-1
method performs “approximately as well or better than the other more sophisticated weight
functions.” The key feature may be that the support of the kernel is limited to £w. The

two less successful competitors evidently do too much smoothing over the full range of z;.

There is a distinct difference between these kernels and those with compact support in
the continuous case, where the smoothing parameter controls the window width. Here one
may fix the range, for example at w = 1, and then select the amount of smoothing to only
those neighboring cells. Ideally, the two would be chosen simultaneously. We suspect that it
would also be better to select the smoothing parameter(s) from a criterion directly related
to coverage. This warrants additional research. One complication pursuant to this idea
that the relevant Edgeworth expansions derived by Hall (1992) do not hold for the lattice

case. In general, however, Young (1994) and a number of discussants stress the importance

of finite-sample practicalities of workable bootstraps.

14



Figure 1: Conditional Frequencies of Affected Mice in the Luning Dataset
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Table 1: Bootstrap Confidence Intervals for a Proportion

Percentile Bootstrap-t

M | STAN BIN LRS URSL URSQ | STAN LRS URSL URSQ
10} 84.5 96.4 89.6 85.2 85.8 90.1 914 79.0 80.2
170 237 185 .233 213 .209 210 194 .198

15 | 86.6 96.1 90.2 78.7 82.1 91.5 894 69.8 73.3
144 195 .154. .195 178 .163 160 .148 151

30 | 88.6 96.2 92.0 61.0 68.4 90.7 88.0 52.2 57.7
104 JA39 112 .140 128 110 109 .100 102

50 | 89.6 96.6 91.0 41.8 48.8 91.1 88.4 45.5 50.1
.082 108 .087 .107 .099 .084 .083 .077 079

The first entry is the empirical coverage in percent (SE & 1.0) and the second entry is
average length of the confidence interval. The nominal coverage is 1 — 2o = 0.90.
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