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SUMMARY
In Analysis of Variance designs with independent observations, the rank transform
test consists of ranking all observations together and then substituting the ranks
for the observations in the classical F-test. Previous research has shown that the
asymptotic distribution of the rank transform test is not always x2.. In the present
research, two rank tests, of which one is the rank transform, are derived in the way
similar to the derivation of the classical F-test in Linear Models. Then, necessary
and sufficient conditions are given for these rank test to be asymptotically x2 by
the theory of linear rank statistics, and their limiting properties are studied by
using theoréms in linear models and quadratic forms. It is found that even when
the rank transform test does not converge in distribution to a chi-sqaured
distribution, does the other one under certain conditions. Finally, based on the
abbve results, the application of these rank tests to unbalanced two-way designs is

investigated.

1. Introduction
The study of the rank transform test for two-way layouts has been an area of
research for longer than two decades. Two of the main approaches for obtaining

asymptotic properties have been to either apply theorems about linear

Key words: Analysis of variance; Asymptotic normality; Linear rank statistics; Rank tests; Rank

transform; Unbalanced two-way layouts.
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rank statistics, or apply the central limit theorem to the results from empirical

processes.

The first approach has been applied to scored ranks generated by real
functions that have bounded second derivatives. Examples of such scoreé include
Wilcoxon scores. This approach has yielded both the rank transform tests, such as
presented by Lemmer and Stoke (1967), Lemmer (1968), Lemmer (1980), Iman
(1974), Conover and Iman (1976), Conover and Iman (1980), Hora and Conover
(1984), and other alternative rank tests as by Thompson (1991a). All tests
“proposed in those papers are for balanced two-way designs and for score functions

with bounded second derivatives.

In the second approach, followed by Akritas (1990), the Wilcoxon scores are
expressed as an additive model and scaled by an estimate of the unknown standard
deviation of the rank. This approach makes the limiting distribution of the rank
statistics easier to obtain, and can be applied to unbalanced designs. However,
this method has only been applied to Wilcoxon scores, two-way nested models,

and two-way models without interaction but with proportional sampling.

In the above research, three very interesting problems remain open. First,
necessary and sufficient conditions for the rank transform tests to be
asymptotically chi-squared are uhknown. Second, rank tests, including rank
transform tests, for unbalanced two-way layouts have not been fully studied.

Third, the nature of these asymptotic tests have not been fully revealed.

The present research takes the first approach to study the above questions.
The results obtained are based on the theorems about linear rank statistics due to
Hajek (1968) and theorems about quadratic forms and linear models due to Searle

(1971) and Kshirsagar (1983).



2. Definition of the Model and Test Statistics
Consider the linear model Y= X8 +¢, where € is an Nx1 vector of independent
errors with absolutely continuous distribution functions, and X is a design matrix
of N xP with I patterns in the rows, this means that there are I cells. Suppose
each of the I patterns is repeated n;, 1<i<1I, times and that N= ¥ n,. Without
loss of genefality, the matrix X will be assumed not to contain any column of all
1’s.  For any square matrix M, let¢ M~ denote a g-inverse of M with
rank(M~ ) =rank(M). Suppose that the null hypothesis of interest is H,: K’8=0
where K’ is an Sx P matrix of full row rank such that K'=K'(X'X)” X'X. Let
u(x-y)=1if x>y and u(x-y)=0if x < y. Then, the rank of Y} is:
)

B = .Z—_:l kz-_; 1u( Yij = Ya)
Let ay=[ap(Ryy), - - -, aN(RI,,I)]', generated by a real-valued, nondecreasing
function ¢(t) with 0<t<1, denote the vector of scored ranks of the elements of Y,
and define the vector j, =(X'X)" X ay.

Under the classical assumptions, as described in Searle (1971, p.190 — 191),
the two methods based on 3 =(X'X)” XY to obtain test statistics for testing for
H, K'8=0 are:

i) the distributional method, which yields statistic
T= (KB {K(X %) Ka®} =} (K'P),
ii)the constrained least squares method, which yields
Q= (KB {K(X'X)" K}~ (k')
Then, the classical F-test is

F= QA5 =* T/(53%,
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where 62 = (Y- X8)'(Y - XB8)/{N-rank(X)}.
To parallel the development of these two methods, replace 3 by B,. Define
the asymptotic covariance matrix of (K'f,) by Ay=NK(X'X)" Z)(X'X)" K, the

counterpart of T, @ and the rank transform, respectively, is:

Tr = (Kﬁr)lAKI(KBr);
Qr = (KB K (X'X)” K}~ (K'B,),
B = Q./(S6d),

where &2 ={ay - XﬂA,.)'( ay - XB,)/{N-rank(X)}. 1f Ay is replaced by a consistent
estimate, AN» it yields the test statistic T,= (K'ﬁr)'/i;,(l{'ﬁ,.). The asymptotic

properties of statistics 7. can be discussed in terms of those of T,.

3. Limiting Properties of the Test Statistics
Once the asymptotic normality of X’ ay is obtained, theorems in quadratic forms
and linear models can be applied to find the limiting properties of all the test

statistics contained X'ay.

3.1 Asymptotic Normality of the Vector of Linear Rank Statistics

Let x; be the /th row in X, 1<i<P, Xik | be the elements in x;. Let

XlaNz[LN’l 1t LN,P]’)

A
where Ly ;=3 ¥ x3; ap(By), 1<I<P. Then, Ly is a simple linear rank
Y oi=zlk=1 " !
statistic as defined in Hajek (1968) and Puri & Sen (1971). Denote the cumulative
distribution function at y by ®(y). Also define

Hy(y) = “IN' ZI: n:F(y), *F—I:T_E Y _xik )

i=1



ny

Zyg=rhs 5 Ogyr=wing) [ (40 = Ya) = FOI (1)} AY),
Uul)N=C°V(_ZI: Z‘: Zipp . E ; Zy y)» NNI— E E x,“/qﬁ{HN(y)}dF(y),
ZNP [ E 2 iR ,'_é‘lkélza,p]l, .UN=[I‘N,1» Tt #N,p]'-

Conditions for the linear rank statistic LN,I to be asymptotically normal given by
Hijek (1968) in this setting is:
Theorem 3.1.1. Assume that ¢ has a bounded second derivative. Then, for every

€ > 0 there exists K, such that

var(Ly )>Ke RS (.u %) (3.1.1)
15k

l/\ll\

entails

1
2

suglP(LN’,—ELN,,<y{Var(LN,1)} - &(y)|<e . (3.1.2)

The assertion remains true if varLy ; is replaced by oy in (3.1.1) and (3.1.2).

The assertion is also true when E(LN,I) is replaced by u Ny provided that

Ex?h,z'
5ik=l <. (3.1.3)
E E(xxkl %,)°

i=1k=

Let

™= P (.u‘xl)
154

Il\l/\

By Theorem 3.1.1, Corollary 3.1.2 follows straightforwards:

Corollary 3.1.2. Assume that ¢ has a bounded second derivative. If there

exists positive constant B and b > 0 such that

i a u,N
1m

> B, (3.1.4)

then condition (3.1.1) is satisfied and the assertions of Theorem 3.1.1 follow.

Theorem 3.1.3. Assume that ¢ has a bounded second derivative. If



i) there exists a positive constant B) such that m;< B) <o for all
1<i<I, 1<I< P

ii) there exists a positive constant By such that
I ﬂ‘- g 2
£ 2 |
islk=1 <By<oo, forall 1<i<I, 1<I<P

> Z (Xxk %)

i=lk=

iii) there exist constants ¢y, such that 0< ¢ <oo, || < o0, and lAi’r_nmNI-ok’N = ¢ for
1<l k< P;

then, X'aN is asymptotically multivariate normal with covariance matrix M¢y)
and mean vector py .

Proof. It‘is necessary to prove that for every vector A such that \'N( epA>0 for N
sufficiently large, the sequence )"XNa y is asymptotically normal with mean My N
and covariance matrix A'N(¢)X. Assume [|A]| =1. Rewrite \'X'a into

"

XNXay=(XYay = élkél( é? l’\lxik,l)“N(Rik)

. P
with regression constants }° ), Xik, 1) 1<i<I, 1<k<n;. Define
{=1

3

4

Zy =gl 3
AT 2

i

(éf'"f':‘,z‘éﬁl Xit, f {uly - Yy) - F(n)}o (Hy(y)}HFy(y) -

It follows that
Zg = Z'\szkl' 2 E kA—)‘IZN

Denote var(\'Zy) by a?v’)‘, 11%13’1000%,,)‘20. Therefore, (c;) is semi-positive. To
verify (3.1.4) for X such that XN(q)A>0, with condition iii), if
0<max€2 M(%ig 1~ }'cl)}2<co holds, B=X(c)X. The inequality on the left
following from: if ma.x{Z: ,\I(x,k - xl)} =0, then, var(\'Zy)=0; and the one on
the right from condmons 1) and ii). Also, it is easy to show that condition (3.1.3)

is satisfied as well. 0



3.2 Limiting Properties of the Test Statistics

Assume that p; is a rational number satisfying 0 < p; <1 for all i, and

|=

lim
N—-o0

Z

=p;. o (3.21)
Let Hy)= l&r_x’lmHN(y) Define |

/Y)= [ |, #LHNIEL)

and Px P matrix 2 with the (ll')th element

I I 1
aul =‘ §1{§1u§1pip‘.lpu(xi'lil —xil,l)(xul,ﬂ - Xil’I,)COV{gl.,( Yil)) gu( Yil)}r
for1<ll'<P

To obtain the asymptotic normality of X'ay under (3.2.1), three conditions
. in Theorem 3.1.3 need to be verified. Under the above assumptions, condition i)
and ii) are satisfied, condition iii) will be verified in Lemma 3.2.1. Then, it can be
seen that 1151—1300 {K'N (X'X)—K}—1 and lly_rgoo N Ay, denoted respectively by I" and 4,
exist and are not null. The rank of I' and A, a factor determining what Q, and T,
test for, is discussed in Lemma 3.2.3. The limit of the asymptotic mean Q, and

T, is given in Lemma 3.2.4. Finally, the limiting distribution of Q,, T, and F, is

given in Theorem 3.2.5, 3.2.6 and Corollary 3.2.7, respectively.

Lemma 3.2.1. Assume that the score function ¢(t) is nondecreasing, and
has a bounded second derivative. Under the assumptions of the above model, it
follows that 0 < oy <o, |oy|<oo, and lim o, /N =0y for all 1<, I'<P.

Proof. Simplifying the integral on the R.H.S of Zilc,l gives

[y - Y) - F(o )} (B} Ry) =gy Y) - Gy

where

ol Y= [ °;_k¢'{HN(y>}dF..(y), G= [Fy) #'(Hy(1}F(y).



Then, Zik,l can be written as

n
_ 1 I '] .
Zieg= w1 2, E, Kt~ Xir ) {8y (Ya) - CL -
Computations show that

I I 1
im Lo? = . ~-X; -
m ~ oy =2 2 2 PilaPu(Xy = Xig )Xy =% )

1= 1;" =1u=

X ll%r_nmcov{gN".,( Yil)) gN,u( Yxl)}

for every y, and since ¢’ is bounded and integrable, it follows from the Lebesgue’s
dominated convergence theorem that both

5 Vi) = lim g A Vi) = [ °;k¢'{H(y)}Wy)

and

II;IIILIOOCOV{gN,‘.;( Yib)’ gN,u( be)} = Cov{g,”( Yik)’ 8ul sz)}

exist. It is also true that cov{gi,( Y, g Yip)} 20, (x;'k’,g_xik,l)(xuw,l—x:'k,l) >0,
since x,,,; is either 0 or 1. Also, none of the ps are zero. Therefore, result

follows. o

Theorem 3.2.2. Assume that ¢ is nondecreasing and has a bounded second
1
derivative. Then, under the above model, (X'ay-py)/N? converges to a

multivariate normal vector with mean vector 0 and covariance matrix (o) .

Lemma 3.2.3. Matrices I' and A are of full rank.
Proof. Since all p;s are rational numbers, there exist N* and a} such that
111vr-n»oo n;/N*=p; for all i. Denote the corresponding design matrix by X,. We have
I' = K'{N'(X,X,) }K. By the results found in Searle (1971), K'{N%(X,X,)” }K is
of full rank.

Now, it will be proved that A is non-singular. First, define a partitioned



matrix /B, which consists of I x I matrices. The ith diagonal one is an n;Xn;

maitrix:

(£ mivar(ey, ( Yi) ~2Neon(ey V), S(E Y) T + N2varlg( Hy( YD)l B,

where E is an identity matrix, the ijth off-diagonal one is an n; x n; matirx :

(ninjcov(uélgN,i( Yui)'uélgN»J( Y“l)) - Ncov(gN,i( Y, ¢(HN( Y'l)))
- Ncov(gN,j( Y1), $(HN le)))) 1, 1;lj '

The covariance matrix of ZN,P can be written as X’8X. The rank of B is N.
Hence, the rank of ("IL-, N), the covariance matrix of Zyp is equal to Rank(X).

When N = N”, the rank of (o equals to the rank of X, and ¥ =ﬁl‘(0ﬂ: N It

lk,N“')

follows that I' is nonsingﬁla.r. o

Rewrite Q, and T, into:
@ =(N'PKB){KMXX)" K} (NKS,)
T, = (N'?K'8,Y(NAy) (N KS,).

%E-nmE(Q") and l&{_nmE( T,) depends on %@m{{(Nl/gK(X')()_(‘N}' Computations

show that for every 1 < l <P

‘ 1

lI{,I_T}OO%#N,l =i§lp,' X.'1,1/¢{H(Y)}de(Y)°
Furthermore, N(X'X)™ is finite. Thus, lim | (X'X)" py is finite, and the expression
llélr_pm{(NlhK'(X'X)_pN} is a zero vector if and only if II%I.HOO{K’(X'X)_“N} =0.

Lemma 3.2.4. Under the above model and assumptions on the score

function, it follows that l]\i,r_r’looE(Q,‘)<oo and ll~ilr_r’1°°E(T,.)<oo if and only if
lim [K(X'X)"pyl=0.



The following theorems are straightforward by the theorems of Searle (1971, P.69).

Theorem 3.2.5. Under the above model and assumptions on the score
function, the statistic T, converges in distribution to central x? with S degree of

freedom if and only if %IEWE{KJ(XIX)-/‘N} =0.

Theorem 3.2.6. Under the above model and assumptions on the score
function, the statistic Q, converges in distribution to %x?(S, 0) if and only if

i) %’HW{K,(X)O—”N} =0, ii)I" = cA, where c is a positive constant.

" Corollary 3.2.7. Under the above model and assumptions on the score
function, the statistic F,. converges in distribution to %XQ(S, 0) if and only if
i) ll\i,r_’}w{Kl(X’X)-/‘N} =0, ii) lgrr_alw['/&a =cA, where c is a positive constant.

Because both A and I' are positive definite, there exists a full rank matrix

D such that A=1=D'r-1p, Hence,
lim T,=lim (NV2DK'G,)'T~Y(N'/DK'S;)
=lim (DK'B,){K'(X'X)” K}~ (DK'4,),

which resembles the form of 11\17[300 Qr. If D=cE, for some constant ¢, then Q, is

asymptotically proportional to a x? random variable.

It can be seen from the above that:
1) Only those null hypotheses which imply llsglmEK'ﬁ,.zo can be possibly tested
by the tests based on Q. and T,. 2) The tests based on Q, and T, are consistent
for all the alternative of l}é’r_r’leK'érgéO. 3) If these tests reject the null, a
statistical conclusion of the existence of the effects being tested can be made. If
the tests fail to reject the null, there still exists the possibility that the effects

being tested exist, because lim | EK'S, =0 does not necessarily imply k'8 =0.
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4. Application

The application of T, and @, on various two-way layouts is investigated based on
the above results. In each case, the model is first defined. Then, the investigation
under H, includes three steps: i) check whether II%IPMN‘/QK'(X'X)‘/JN =0; ii) check
whether I' =cA; and iii) simplify T,. In the process, the simplification of the
matrices involved in Q, and T, are greatly simplified by using the results in Searle

(1971) and Graybill (1970).

41 Two-Way Nested

. . n..
Assume Y‘Jk=a‘+ﬂ‘j+€"1k, ].S_ISI, 1S]S b‘, ISkan. Define puz!'ivf_goo—&"",
and N, Bijor Bipe s and a are as defined as in usual ANOVA. Let E denote an

identity matrix, K;:(E(b,-l)x(brl) ‘l(brlj)’ and K'=(0p,; Diag(K})), where
m=Y,(b;-1).  Further, define [(ﬂij_ﬂib-)]'» with 1<i<I, 1<j<b;-1, a
(X(b;-1)) x1 vector. We have

5 0 0

(XX)~ = , with 1<i<1,1<5<b.

0 diag(—,%'_;) )

Then, the null hypothesis is: Klﬁz(ﬁij‘ﬂibi)=0' It can be interpreted into:
Fi;=F for all j and i. By substituting the rank score for the observations, we

have (K'8,) =[(B;;- B, where Bij—Ba = ;.- By for 1<i<l 1<j<b;-1.

It is easy to find that K'(X'X) py =0 under H, even for every N.
Algebraic computation shows thatA= Diag[vamjb{H(Y,-j1)}E(b__l);< (b—1)] xI', where
I'=Diag(Dy), 1<i<l, Diz(djj’)’ d i=i-+7k, d A for j'#j, 1<j,

3hd TG TRy T T

J'<b;-1. Hence, T, converges to a central x? variable with (3b;—1TI) degree of

freedom under H,, but neither Q, nor F, does.

Under H,, algebraic simplification gives

11



b;
z: (al]'—a‘)g, (4.1.1)

i=h

P 1
r= L Var gl )

i=1

for each i, the var¢{H{ Y'-J-)}’s are equal forall 1< j< b;. Tt is proved in Appendix
that the following are two consistent estimates of var¢{H{ Yk |

P Y T S 9
) oaz X X (Gip-8)s ) ap 8% (9-8;.)"

When Wilcoxon score and ii) are chosen, 7. is exactly (Xb;-1I) times the one

suggested by Akritas (1990).

4.2 Two-Way Without Interaction

Assume Y--k=a‘-+'yj+e,-jk, 1<i<I, 1<35<b, 1<k<n

ij ¢ 8 are independently

i i
and identically distributed with the cumulative distribution function Fy. The null

hypothesis is ;= - - - =<v,. This is equivalent to Fi;j=F;forall i and j.

Let B=(ay, -, an 71 - 1), K=(0]|E| -1,4), a (b-1)x (I+b)
matrix. The null hypothesis can be written as: K'8=[y, — Yt 'yb_l—'yb]' =0.
Next, let M be Ix (b-1) matrix whose (i,j)th element is m‘-jzn,-j/n‘-_, 1<i<,
1<j<b-1, and let Cbe (b-1)x(d-1) matrix whose (j,j')th element is

I n, I Mij B g,
c].jzn.j—_zﬁ;, ¢,a=~— 3 —pr— When j'# 3.

Also, let X be the design matrix. It follows from Searle (1971, p.268, p.280-281)
that {K'(X'X)"K} '=C and K(XX)"=CY-M'| E | 0 ).  Thus,
KB.=C~Y-M'| E|0)X'ay. Define the vector §=(-M'| E| 0)X'ay . Then,

Qr=(N A&\ NC) (N -1,

T,=(N~8'){(-M'| E| 0)2(-M'| E|0)}~ (N ~"%).

12



(-M'| E| O)uy=0 implies lAi,r_r’loo[Nl/nK'(X'X)_pN]zo. For checking ii), only

need to check ll\ifxgm(Nc)mll\ifgloo{(_M" E|0)2(-M'|E|0)}.

The lth element of 6 is the linear rank statistic

E Ea.u- Zn Z Eaub

i=1k

After simplification, (- M'| E| 0)uy =0, and the diagonal element of
lim (- M| B10)5(- M| E| 0))
is

£ pift - Syvard {H Yy},

the ldth off-diagonal element of lim {( ~-M'|E|0)YW(-M'|E|0)}is

E Pirp; p” - varg{H Yig)},

compared to

I p.n.
ij
Hm Cij=Pj= X B
. Pi;Pi4
l]fim Cid= — 2. D;

b "
A 1 B = \2
o= > n ( n") E x (auk a; ) ’
i j=1lk=
R L nynyg Xb: U ( )2, d #1
O 3= — a..;—a.. #
id l§l n?- j=1k§l ik e ’
or ) n.
I n, n 2| - \2
&n= il 1- il E E A:1—0a
=k, ey
b=~ L0 f F (ay-a,
= 720 w2 s UE

but the rank trénsform is not.

Under the assumption of proportional sampling, namely Pij=Di-P-j

and (4.2.2) can be simplified to

13
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p1-p. 1)2 pi-vard(H( Yyy,)),
P P-d‘_élpivaqu{H( Yilk)},

(4.2.3) and (4.2.4) to p.{1-p.) and - p,p.;. Under the null hypothesis, by the

result in Appendix, two consistent estimates of var{¢(H Y, ijp)} are:

b if b j
1 = \2
I)TE E(afjk_ai“)’u) HI‘E Z( be a:] )2
j=1k=1 ‘j: =
Hence
] . - \3 b 2
. szlﬂ.j(aj - ) R N.Eln.j(aj a )
— = —_ J=
== ;7 = S
E E E( i 5k ) E E E(aij}: alj)
i=lj=1lk=1 i=1j=1k=1

and the rank transform test

(N-1- b+1)):‘ n.{a.; —a..)

A

F.=

(b- 1)§ =z, z{(a,,k_a,...-a.,..m...)*

converges to a x2(b_1)/(b—- 1) variable, because

MN
] [Vje-

i E (auk a ‘f'a)2
lim’

N-voo N I-b+1

i~

converges in probability toﬁE varg{ H{ Y}

4.3 Two-Way With Interaction

eij,i'j’ =i~ Yy~ Vi T Ve By Searle (1987, p.97), there are IHI-1)(b-1)/4
different 8’s. The maximum number of LIN 6’s is (I —~1)(b—-1). Let 0 be a vector,

- of which the elements are a set of (I - 1)(b— 1) LIN 6’s. The null hypothesis of no

14



interaction can be expressed as =0, that is KB8=0=0. Denote

r =0a:- —a —~a a 3 =0"i 1
ij,i’j’—a' i a‘.j,. ai'j‘ +ai’j"’ we use K'f, =0" in the rank tests discussed here.

First, verify whether E6" converges in probability to 0 under H,. The

asymptotic mean of 0;']. i converges in probability to

[SLHOVF )~ [S{HDYEF, L)~ [S{HD}F(3)+ [ S{EIIAF, L)

(4.3.1)

which is not necessarily equal to zero.

When the design is balanced and when ¢{H(Y)}=H(Y)=ZZPUF:'J'(Y):
which is the Wilcoxon score, then, by Thompson (1991b), (4.3.1) is zero when

either there is only one main effect, or when I =b=2 with the presence of both
main effects.  Furthermore, in the latter case, only when the underlying

distributions have common support, which implies that

[Ry+a-B)dRy+a+p)= [Ry-28)dry) (432)
[Ry+a+B)dRy +a-p)= [Fy+28)dRYy), (4.3.3)
[y +8)dF+ Fy-8)}dF=c. (4.3.4)

Here only the case with the presence of both main effects is discussed.

Similar to Thompson (1991b), expression (4.3.1) becomes
2P11- P12 - Pa1+Pag) + (P12 - Pzz)/F(Y - 2B)dF(y) +(pqgy - P22)fF(Y ~2a)dF
+pan(y ~2a-24)dF + pu/ﬂ(y +2a +28)dF(y) - (py; - pu)/F(Y +2a)dF
~ (P11~ P) [ Ry +28)dF- poy [ Ky —2a+28)dF~pyy [ Fly + 2 - 28)dF.

(4.3.6)
When /{P(y +8)+ Fly —8)}dF is a constant ¢, using the relationship of

15



/F(y—&)dF: c— /.P(y+6)dF, equation (4.3.6) becomes
A P11-P1a— Py + Pa2) + P13~ P2) —(Pgy— P11 -1 + P22)/F(Y +2p)dF
~(P1z- P11 - Py +Ppg) [ Fly +20)dF = (pay - py) [ Fly +2a+28)dFly)

~(Pn - P12) f Hy +2a-2B)dF. (4.3.7)

Equation (4.3.7) is a function of a, 8 and ¢, and it is constantly zero, regardless to
a, B, ¢ and the F that satisfies (4.3.2), (4.3.3) and (4.3.4), if and only if all pij;s
are equal, where ¢=1, 2 and j=1, 2. That is, if and only if the design is
balanced. Counter example: when ¢ =%, P11= P99y P19 = Po1, but pyq # pgy, (4.3.7)

equals %(pu ~Pip— Py + P22) + %(Pu - p22) # 0.

The asymptotic variance of (Ryy.—Ryg. - By + Ryy.) is val( ¥ Y ¥ Zip)-

With the Wilcoxon score, it can be simplified to

var(Zyy;) = 4n 2 var{Fio( Yi11) + Fy( Y1)},
var(Zyyp) = 4n =2 var{Fyy( Y1) + Fpo Yo1)},
var(Zy;) = 4n 2 var{Fyy( Yar1) + Fag( Yor)},
var(Zyy;) = 4n =2 var{Fiy( Yag1) + Fyy(Yaap)}-

-9 . .
Let 6 be a consistent estimate of var(}" Y EZijk)' Further, let Ruvlc,(uv,:'j,i’j’) be
the rank of Y, ; among Yj;,'s, Yy 's and Yyw's, L<w<n, Ry o,

be the rank

of Y, ,; among Y,,’s, 1 <w<n, and
R

— - e _1 &
uvk Ruvk,(uv,xj,i’f) R“"L‘;("")’ Hy=5 kZ__:IR* uvk:

It can be shown by the way similar to the proof in the appendix that

= 2P
;152(3*1115“3*11) = var{ F1o( Y111) + Fn(Y111)},
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) = (2 e \2 e \2 .
02'—‘;'1;;2{(3'111;‘3'11) + (R gp- B ) + (B~ B9 + (Rgop - '),

o 525 15 Svarlg(H Vi)l
Thus,

2 z - 5 \3
Ryy.—Ryy.— Ry .+ Ry, )" P
T,.=(” 12. fﬁx 22-) "X%;
g
2

A

F"Xl

4n0

It can be seen that neither Q. nor T, is distribution-free in the case with the

presence of two main effects for testing for interaction.

APPENDIX

Consistent Estimates of the Unknown Parameter

First define Pijt N = (N+l) 'Jk’ ¢U, Z qS(puk N)» Wwhere ¢(P:1k N) is the
score function, and ¢y = Z qS{H( Jk)}

Theorem 4.1 Under the condltlons set forth in the previous sectlon it
follows that for all 1<i<P, ;1 o E (d’(qu N) - qSl N) converges in probablhty to

varg{H( Y )}
Proof. Let nj be denoted by n. Theorem 4.1 will follow if

%rfmp{t%kf:il(¢(p.-,-k,p,)—&i,-,N)Q B EHY - >} =0 ()

holds for every €>0. By some algebraic simplification and Triangle-Inequality, (1)

can be simplified to

e m Pl 2 [8(6i,3) - HH T} >} =0, e>0. (2)

Equation (2) will follow if

lim B, 2 16(015,) - S Y, )})=0 (3)
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