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ABSTRACT

Long-memory models have been used by several authors to model data with persistent
autocorrelations. The fractional and FARMA models describe long-memory behavior
associated with an infinite peak in the spectrum at f=0. The Gegenbauer and GARMA
processes of Gray, Zhang, and Woodward (1989) can model long-term periodic behavior
for any frequency 0< f<.5. In this paper we introduce a two-factor extension of the
Gegenbauer and GARMA models that allows for long-memory behavior to be associated
with each of two frequencies in [0,.5]. We provide stationarity conditions for the two-
factor model and discuss issues such as parameter estimation, model identification,
realization generation, and forecasting. The use of the two parameter GARMA model is
applied to the Mauna Loa atmospheric 002 data. It is shown that this model provides

a reasonable fit to the C"O2 data, and it produces long-term forecasts that outperform
those obtained via a fitted ARIMA model.
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1. Introduction

For many climate-related data sets, the correlation structure between
observations may persist over long intervals of time. Such long-memory behavior was
first noted by Hurst (1951) associated with the problem of determining reservoir storage
capacity required to meef‘.anticipated shortages. More recently, long-memory processes
have been studied by a number of authors. A long-memory process has been defined as
one for which )", | p;| diverges, where p; is the autocorrelation at lag i (McLeod and
Hipel, 1978). Gray, Zhang and Woodward (1989) slightly extended this definition by

defining a long-memory process as a process which has an unbounded power spectrum
for some fe [0, .5].

In Section 2 we review long-memory models which have appeared in the
literature. Section 3 describes the GARMA II model which is a new long-memory
model capable of modeling the situation in which two persistent periodicities are present
in the data. In Section 4 we apply the GARMA II model to the Mauna Loa CO, data

! This research was partially supported by DOE Environmental Sciences Division
Grant DE-FGO03-93ER61645.



(Keeling, et al., 1989) and compare its forecasts with those obtained by more traditional
techniques.

2. Models for Long Memory Data

Models currently in use for describing time series with long-memory behavior are

extensions of the ARMA(p,q) models popularized by Box and Jenkins (1976). The
classical ARMA model is given by

¢(B)(Yy —p) = 6(B)a (1)

where

$(B)=1-¢B—- - d’po
6(B)=1-6,B— ... - Oqu )

p, d, and ¢ are nonnegative integers, a, is zero mean white noise with variance o2, and
BF is the backward shift operator defined by ka(t) = fli—k). In general the pth order
polynomial operator ¢(B) can be factored as a product of first order and irreducible
second order factors. The roots associated with a first order factor are real roots, and
those associated with an irreducible second order factor appear as complex conjugate
pairs. These first and second order factors serve as the “building blocks” determining
the periodic behavior of the data. Each factor is associated with a “system frequency” .
The system frequency, in cycles per year, associated with the first order factor 1 — aB is
either 0 or .5 depending upon whether a is positive or negative respectively. The

system frequency, f, associated with an irreducible second order factor 1 —ayB— a2B2

is

1 - %
f=gycos (24——042) :
For a first order factor, the absolute value of the reciprocal of the associated root is |a1|

while for a second order factor it is [~y Factors associated with roots on or

sufficiently near the unit circle (i.e. with absolute reciprocal near 1) dominate the



behavior of the process. Woodward and Gray (1983, 1993) and Gray and Woodward
(1986) suggest presenting this information in the form of a factor table.

An ARMA process is stationary if and only if the roots of characteristic
polynomial ¢(r) =0 all lie outside the unit circle. The most interesting class of
nonstationary ARMA processes are those for which some roots of ¢(r) =0 are on the
unit circle (and none are inside the unit circle). When ¢(r) = 0 has a root of one, then
1-B is a factor of ¢(B). When there are d such unit roots, Box and Jenkins (1976)
suggested expressing the model in the form

$1(B)(1 - BYY(Y, —ps) = 6(B)a

where ¢;(B) is of order p—d. The notation typically used for an ARIMA(p,d,q) model

18

B - BYXY, ) = 0(B)a, )

where ¢(B) is of order p. Roots on the unit circle tend to dominate the behavior of a
process, and sample autocorrelations from an ARIMA process with d > 0 will show very
slow damping although the theoretical autocorrelations are constant. Gray and
Woodward (1981) and Huang and Anh (1993) consider the more general ARUMA model

which allows for complex‘. as well as real roots on the unit circle. The general form of
the ARUMA model is

$(B)A(B)( Yt —p) = 0(B)at (3)

where ¢(B) has all of its associated roots outside the unit circle,
MB) =1-X\B—-.-—)gB% and all of the roots of A(r) =0 lie on the unit circle. Thus,
the operator A(B) can be expressed as a product of first order and second order factors
associated with roots on the unit circle. Thus, it is clear that the ARUMA model
contains the ARIMA models as a special case. A complex root on the unit circle will be
associated with a second order factor !--ayB —012B2 with ag = —1. Such processes

will be characterized by slowly damping sample autocorrelations that display a periodic
behavior.

It should be noted that the nonstationary ARIMA and ARUMA processes are



long memory. Hosking (1981, 1984) defined an extension of the ARIMA model which

allows for the possibility of stationary, long-memory models. Specifically, these models
are of the form

$(B)(1 - BY(Y, —p) = 6(B)e, (4)

where in this case d can take on fractional values. This process is called a fractional
ARMA (FARMA) process. The process Y; in (4) is stationary and long memory
whenever 0 < d <1/2 and all of the roots of ¢(r) = 0 lie outside the unit circle. Spectral
densities associated with the FARMA model are unbounded at f=0. Gray, Zhang, and
Woodward (1989) and Andel(1986) introduced an extension of the FARMA model
which allows for long term dependency in stationary models associated with any
frequency f€ [0, .5]. This extension is given by

$(B)(1 - 2uB + BYNY; —p) = 6(B)a, 5)

where u specifies the frequency at which the long memory behavior occurs, and X
essentially indicates how slowly the autocorrelations damp. The model is called the
Gegenbauer ARMA (GARMA) due to the fact that (1—2uB+B2)‘A is the generating
function of the Gegenbauer polynomial, i. e.

(1-2uB+B)~*= 3 c,OwB" |

n=290
where

["z/%l( ~ 1)F2u)" %A~k +n)

Cn(/\) u) =
(W)= 2 — % 2mT)

is the Gegenbauer function (see e. g. Magnus et al.,, 1966). The spectrum associated

with (5) is

2 18(*™)|

P(f) =0q g
l6(e2™¥)|

{4(cos2mf —u)}™ . (6)
The frequency fj= (cos”tu)/2r at which the spectrum becomes unbounded because of
the Gegenbaiier component is called the Gegenbauer frequency or G frequency. When
v =1 the GARMA model reduces to a FARMA model. For |u| <1, Gray, Zhang, and



Woodward (1989) showed that the GARMA model is stationary and long memory
whenever 0 <A <1/2 and all of the roots of ¢(r) =0 lie outside the unit circle. For
|u| <1 and 0 <X <1/2, the autocorrelation function satisfies

Pr ~ k2’\'1cos(21rkf0)

as k—oo where f; is the G frequency. The notation 9.~ hk as k—oo indicates that
limk—»oo{gk/hk} = ¢ where c is a finite, nonzero constant. Thus, the GARMA model is

particularly appropriate for data with slowly damping autocorrelations which also have
a cyclic pattern.

3. The GARMA II Model

The FARMA model can be thought of as an extension of the ARIMA model in
that it models long memory behavior associated with a peak in the spectrum at f=0.
Similarly, the GARMA model relates to the ARUMA model in that it allows for long
memory behavior associated with any frequency. However, a limitation of the FARMA
model in (4) and the more general GARMA model in (5) is that they allow for only one
stationary, long-memory component. Gray, Zhang, and Woodward (1989) suggested the
inclusion of more than one Gegenbauer factor in the GARMA model, and Cheng (1993)
has studied the following simplest of models in this extension:

$(B)(1 — 2u, B + BY)M(1 - 2uyB + BY (Y — ) = 6(B)a, . (7)

We call this process a GARMA II process. The spectrum of the GARMA II process is
given by

Gk

P(f)=o0f 252
62"

{4(cos2n f —uy)?} ~ A1{4(cos21rf —ug)?} A (8)

- From (8) it is clear that if A; >0, then there is an unbounded peak in the spectrum at

the frequencies f.= (cos™ 1uz-)/ 2r, 1=12. As in the GARMA case, these two
frequencies are called Gegenbauer frequencies, or simply G frequencies.



Note that the spectrum of the GARMA 1I involves the multiplication of the two
Gegenbauer components in the model. However, even when the roots of ¢(r) = 0 are all
outside the unit circle, the multiplication of two stationary Gegenbauer factors in (7)
does not guarantee the stationarity of the corresponding GARMA II process. For
example, both of the factors (1 —1.6B + B2)%3 and (1—1.6B+ B2)%4 are associated
with stationary Gegenbauer factors individually; however, their multiplication
(1-1.6B + B2)%3(1 —~1.6B + B%)%4, which is a special case of the GARMA II model
with u; = uy, does not create a stationary GARMA II process since the result of the
multiplication is (1 —1.6B + B2)%7, a nonstationary Gegenbauer factor. The stationary
region of the GARMA 1I processes is specified in the following theorem whose proof is
given in Cheng, Woodward, and Gray (1994).

Theorem 1

A GARMA II process with all of the roots of ¢(r) = 0 outside the unit circle, is
stationary if one of the following conditions is satisfied.
@) Jugl <1, Jug| <1, uy #uy and/\1<%, /\2<%
() yy=ug=u, |u| <1 and/\1+/\2<%
(i) uy =ug= +1,and A\ +Xy <%
(V) u =1 ug= -1, <%and /\2<%
(v) up=£1, |uy| <1 quA1<%,A2<—%—

Cheng, Woodward, and Gray (1994) propose the following method for parameter
estimation and model identification of a GARMA II model.

Step 1. Determine values of {A;, uq, Ay, u5} to be considered in a grid
search by positions and magnitudes of the peaks in the spectrum.

Step 2. For each combination {A, u;, Ay, s}, backward forecast the time
points —1, —2, ..., — M +1 using a high order AR model, where

M is a sufficiently large integer. '

Step 3. Carry out the transformation

t+M-1 t+M-1
We=( 3 G MBS ol W) By,

to obtain the approximately ARIMA process, W;.



Step 4. Obtain the ARMA-based likelihood value for {W,}.

Step 5. The combination {);, u;, Ay, ug} which is associated with the largest
 likelihood value is the approximate maximum likelihood estimator.
Step 6. Calculate AIC (Akaike, 1974) for W, based on the obtained approximate
maximum likelihood estimates.
Step 7. To identify p and g, i. e. the order of ¢(B) and 6(B), Step 1 through Step 5

can be repeated for different values of {p, ¢}. The final model is the one

associated with the minimum AIC value.

Cheng, Woodward, and Gray (1994) demonstrated that the above procedure is

effective for identifying the appropriate model and for estimating the parameters of a
simulated GARMA 1I realization.

Forecasting future values is one of the major purposes of ARIMA and ARUMA
models. For ARIMA processes the difference equation can be used to obtain the
minimum mean square error forecast (Box and Jenkins, 1976). However, this method is
not applicable to GARMA II processes because the order of the equation in this case is
infinite. Cheng, Woodward, and Gray (1994) use the 7-weights, i.e. the weights in the
infinite order autoregressive expansion for Y} in (7), i.e.

6= 1(B)¢(B)(1 — 2u, B + BY)M(1 — 2u,B + B 6(Y, - p) = a; ,

to obtain forecasts for a GARMA process, and in this case the forecast can be obtained
as a weighted average of previous observations and forecasts made at previous lead

times from the same origin ¢. The identity equation for the 7 weights is
5; 7 ;B? = 6~1(B)¢(B)(1 —2u, B+ B)M(1 — 2u,B + B%)™
& A A (=2
=9~ 1(B)¢(B) Z c.(- 1)(u1)12001( 2)(u2) _

The resulting forecasts can be written as

Xio(h) = ~ _ZI TiXtg+h—j -
]=

where the notation Xto(h) indicates a forecast if h>0 and the corresponding observed
value if h<0. This method will be used in the next section to forecast the global



carbon dioxide data.

4. Application to Atmospheric Carbon Dioxide Data

In this section we use the techniques presented here to model the carbon dioxide
data. There are several sets of atmospheric carbon dioxide data available. The one we
use here contains the largest such data set. It includes monthly measurements collected
since March 1958 at the summit of Mauna Loa in Hawaii (Keeling, et al., 1989). Figure
1 shows the realization, autocorrelation and spectral density of the atmospheric carbon
dioxide data. The slow decay rate of the autocorrelation function suggests that this is
possibly a long memory case. In this section we apply the GARMA 1II process to

atmospheric carbon dioxide data which has a multi-peak feature in its spectrum as
shown in Figure 1.

To examine the basic feature of this data set, the method of overfitting an AR
model discussed in Gray and Woodward (1986) is applied. Table 1 lists the factors of
AR(20) and AR(25) fits to this data set using the GW time series computing package.
In both cases the roots associated with the first three frequencies, namely 0.084, 0.0167
and 0.001, are very close to the unit circle. The first two correspond to the twelve and
six months cycles since 1/0.084 ~ 12 and 1/0.167 ~ 6, while the third relates to the
trend in the data, i.e. two unit roots. We will consider models for the CO, data which
contains either the Gegenbauer factors (1 —1.732B + Bz)'\1 and (1-B+ Bz)'\2 or the
nonstationary ARMA factors (1 —1.732B + B%) and (1 — B + B?). The third factor in
the factor table will be included in our models via the factor (1 — B)z. Therefore the
GARMA II model we suggest for this data set is

(1 - 2u,B + B2)M(1 — 2u,B + B%)*2(1 — B)2(B)(X,— X) = 6(B)a, ,

where u; =~ 0.866, uq 22 0.5, and ¢(B) and §(B) are of orders p and g respectively.

The ML procedure described in the previous section for estimating A; and ),
would require an excessive amount of computing time since we do not have prior
knowledge of the model parameters p and ¢. For example the parameter space
{02<X, <049, 02<X,<049, p<20, ¢<20} contains about one million
combinations for calculating the MLE if the increments of A; and Ay is 0.01. To reduce



the computing time one may consider some further approximation of the estimation
such as maximizing the likelihood based on estimates of A; and X, for a large value of p
and taking ¢=0, i. e. reducing the dimension of the parameter space. We did this for
the subspace {0.2<1X; <049, 02<X,<049, p=1, ¢=0} and {0.2<)X; <049,
0.2< Xy <049, p=20, ¢=0} which gave the estimates {}; =0.21, Ay = 0.27} and
{5\1 = 0.30, 3\2 = 0.49}, respectively. To examine these estimates we have listed the
factors of the data transformed by (1— B)%(1—1.7321B + B2)0-3)(1 — B 4 B2)0-49 iy
Table 2. It can be seen that the factor associated with period of 12 months is still very
strong after the transformation which would lead to a long-memory model which is
dominated by the short memory behavior, i.e. by the factor 1-1.723B+ 99182
associated with the frequency f=.083. We desire to obtain a long-memory model which
would explain the variation due to the dominant frequencies within the long-memory
components. In order to accomplish this we estimate A\; and Xy to be those values of A
which minimize the presence of f;=cos™ 1u1 /27 and fo=cos™ 1'¢12/27r in the
periodogram of the residuals of the original data. Since the periodogram at a frequency
represents the amount of variance associated with that frequency in the data, the
rationale behind this criterion can be understood as reducing the effect of these two
frequencies in the data set as much as possible so that the related near nonstationary
behavior can be removed. Using :\.1 = .49, 5\2 = .49, u) = .866, uy = .5, and (1 — B)? the
data are transformed to an ARIMA process.

The data transformed by the Gegenbauer II component and the factor (1 — B)2
are then modeled as an AR(17) based on standard ARMA model identification
techniques such as AIC (Akaike, 1974) and array methods such as GPAC (Woodward
and Gray, 1981). Thus the final GARMA II model for this data set is

(1—1.732B + B%)%49(1 — B + B2)049(1 — B)2§(B)(X, — jiz) = ¢
where éS(B) represents the maximum entropy estimates (Burg, 1975)

$(B) =1+2.32B +3.23B2 + 3.52B% + 3.42B* + 3.27B5 + 3.25 BS
+3.31B7 +3.29B8 + 3.09B° +2.86B10 4 2.54 B11 1 1.83B!2
+0.91B18 4+ 0.17B14 —0.21 B — 0.20B16 — 0.08 B7
with fi, = 327.57 and 42, = 1.5.

Forecasts for this GARMA II model are shown in Figure 2 where the forecasts



and the actual data are represented by the solid line and the dashed line, respectively.
The FORTRAN program used for this purpose is available in Cheng (1993). It can be

seen that the forecasts are excellent, having the same cycles and the upward trend
present in the data.

As an alternative model for the carbon dioxide data, we change the values of A,

and )y to one, which changes the GARMA II process to a nonstationary ARMA process

(1-1.732B + B2)(i — B+ B%)(1- B)?$,(B)(X;— X) = 6,(B)a,

Applying the GPAC and S-array (Woodward and Gray, 1981) to the data
transformed by the two nonstationary second order factors and (1 — B)2, we identify the

transformed data as a stationary AR(11). The Burg procedure gives the following
estimates of the coefficients:

#(B) = 1+3.64B +6.99B2 + 8.92B3 + 7.84B* + 4.07B% — 0.28 BS
~2.99B7 —3.290B% —2.14B% —0.90B!0 — 0.20B!!

Figure 3 shows the forecasts for the same 60 observations considered in the
GARMA 1I forecasts. The forecasts have the same cycle as the data, but they fail to

follow the same upward trend after one or two cycles.

Table 3 lists the mean square error of the forecasts from six different forecast
origins for both the GARMA II and ARMA models. The ARMA model has smaller

MSE in short term forecasts while the GARMA II model performs better in the long
term.

From the analysis carried out above one can see that the long memory GARMA
IT is a reasonable model for the global carbon dioxide data. One can also conclude that
for the long term forecasts considered here the GARMA II model is more suitable than
the ARMA model with nonstationary components. Also, it should be noted that based

on either model, if conditions remain unchanged, the upward trend is predicted to

continue.
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" TABLE 1
FACTOR TABLE FOR GLOBAL CARBON DIOXIDE DATA

p=20
Absolute reciprocal
of root Frequency Factors
0.999 0.084 1—1.729B+0. 999132
0.997 0.167 1—0.997B+0. 9933
0.995 0.001 1—1.990B +0. 9903
0.931 0.243 1—0.079B +0. 867B
0.916 0.339 140.973B+0. 8393
0.889 0.414 1+1.526B+0. 7903
0.863 0.472 1+1.698B+0. 7443
0.750 0.278 1+40.264B+0. 5o3B
0.748 0.110 1—-1.151B+0. 5603
0.487 0.369 1+ 0.660B + 0.237B>
p=25
1.000 0.084 1—1.729B +0. 999192
0.998 0.167 1—0.998B +0. 997B
0.994 0.001 1—1.988B+0. 9893
0.964 0.337 14 0.996B+0. 9283
0.957 0.249 1—0.013B+0. 917B
0.951 0.421 1+1.671B+0. 9053
0.927 0.378 1+1.334B40. 8603
0.926 0.465 1+1.808B+0. 8583
0.925 0.126 1—1.300B +0. 8563
0.920 0.292 14+0.484B+0. 8463
0.913 0.217 1—0.379B + 0.834 B2
0.885 0.500 1+40.885B
0.821 0.042 1—1.586B+ 0.674B2
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TABLE 2
FACTOR TABLE FOR GLOBAL CARBON DIOXIDE DATA
TRANSFORMED BY (1 — B)%(1 —1.7321B + B%)0-39(1 _ B4 p2)0-49
p=20

Absolute reciprocal

of root Frequency Factors
0.995 0.083 1-1.723B+0. 99132
0.953 0.241 1-0.105B+0. 9093
0.940 0.334 1+40.948B+0. 884B
0.930 0.167 1 —0.922B + 0.864 B>
0.920 0.421 1+1.619B+0. 8463
0.911 0.473 1+4+1.797B+0. 830B
0.889 0.278 1+0.313B+0.790 B>
0.865 0.375 1 +1.226B +0.748B7
0.747 0.131 1—1.014B + 0.558 B2
0.624 0.000 1-0.623B
0.538 0.500 1+ 0.538

TABLE 3

MEAN SQUARE ERROR FOR THE GARMA II AND ARMA MODELS FOR THE
Mauna Loa CARBON DIOXIDE DATA

~ Forecast Origin ¢

Model 370 360 350 340 330 320
GARMA II 1.48 1.28 5.85 2.05 2.70 0.47
ARMA 0.62 0.17 1.98 3.73 6.49 5.83
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FIGURE 3. Forecasts of the last 60 observations of global carbon dioxide data

based on an ARMA model

17



