Asymptotically Efficient N onparametric
Estimation With Additional Dichotomous
Observations *

Yuly Koshevnik and William R. Schucany
Department of Statistical Science
Southern Methodist University

Abstract.

Nonparametric estimation of a cumulative distribution function, F' is accomplished from
data containing independent observations of two types. The first type observation is simply
a recorded value of a random variable X distributcd according to . The second type is
incomplete (or censored) information about X, namely only the indicator of the event [ X < d]
is available. The value d belongs to a grid {d; < d, < ... < d,}, so the second type can be
thought of as a stratified sample of dichotomous observations, each of them being represented
as a pair containing a nonrandom d; and realizations of the indicator ¥; = I[X < d;].

Asymptotically efficient estimates are derived for a cumulative distribution function
(CDF) and therefore, for a wide class of functionals that can be expressed via the CDF.
Their limit distribution turns out to be normal, while this asymptotic normality can be es-
tablished uniformly with respect to any precompact set of CDF’s. This uniformity implies
asymptotic efficiency of the proposed estimates.
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1 Introduction.

In this paper we consider nonparametric estimation of a cumulative distribution function,
F. The distinguishing feature of the problem considered here is that some of the observations
are complete and some others are radically censored. The proposed estimators efficiently
combine all of the available data. The problem was motivated by an econometric application
in which individuals’ “willingness to pay” were elicited in different ways. For example, one
questionaire may simply ask how much money one would pay for something, while another
approach would set a fixed level, say d, and ask whether the respondent would be willing to
pay that much. For more on the topic of contingent evaluation, see Desvousges et al. (1992).

To introduce some notation for such a data collection procedure, let Z be distributed
according to F. For a certain number of observations, the value of Z is recorded. These
records we denote by X. In other subsets of given sizes, the observations are simple dichoto-
mous indicators of the event [Z < d]. For definiteness, consider a fixed grid of r different
thresholds

d <dy <...< d,

for which independent samples of size m;, my, ..., m,, respectively are collected. The
partial information in the indicators we denote by ¥; = I[Z < d;], taking the values 1 and
0 according to whether the event is true or false, respectively.

At last, to describe the full data set, let

{Z;i: 1<i<mj; 0LZj<(r+1)} (1)

be independent real-valued random variables from the same CDF F. The completely ob-
servable sample is described by

{X,':Zo,,'l 1§z§m0 1S]<7‘} (2)
and binary data
{Yj,,' =I[Zj,,'de]: lgiSmj; 1§j<r}. (3)

The first natural question to ask is: how should one estimate F'(¢) having nothing more
than the data in (2) and (3)? That the answer is nontrivial, may be appreciated by sim-
ply noting that the estimate of F (d;) from the X’s will not usually agree with that from
Y:’s; and furthermore some less direct information may even be found in the Y,’s, and so
forth. The more general task is to estimate a median, another quantile, or a more sophisti-
cated functional A (F). Once an efficient estimate, £ (t), has been derived, the plug-in rule
generally provides satisfactory estimates of these functionals. '

Some notation for specific probabilities will be relevant. Let

F(d;) = pj = Pr[¥j = 1] 1<j<r (4)
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To avoid pathological problems we assume that all of the (r 4 1) cell probabilities defined
by the grid, i.e.

P1, P2 — P1, P3 — P2, .-+, L — Py
are strictly positive. The results here will allow one to test the null hypothesis (4) with
specified p; values against a general alternative that F' and p = (pi, ..., p;) are quite

arbitrary. However, our emphasis is on estimation. Another related issue arises in testing
that the X’s and Y’s are drawn from a common CDF, but we do not pursue that here.

There are at least two distinct limiting situations that may be meaningful. The first
is the reasonable notion that all subsample sizes are of the same order of magnitude. By
setting N = 37_ym;, the corresponding requirement is that the fractions

%’-—*m>0 0<j<r (5)
converge to strictly positive (possibly unkncwn) numbers. The problem is therefore consid-
ered asymptotically, as items in an array indexed by a subscript m = (my,...,m,), under
the assumption (5). _

An alternative asymptotic condition reflecting a realistic case is to assume that all the
fractions {2——1; : 1 <5 <r}t converge to 0, as N — oo. In this case, however, the estima-
tion problem becomes asymptotically equivalent to the one with precisely specified values
(F(d;): 1 <3 <r) which has been already solved; see (Pfanzagl, 1982) for details and ref-
erences. (Under this assumption, the best one can achieve estimating the cell probabilities
comes out from the Y; observations, while the completely recorded X values form a very

small sample and can be ignored.) This case is briefly considered-in Section 4. An example
with 7 = 2 is also presented there.

Techniques and tools. Some necessary elements of the geometric approach presented in
Koshevnik and Levit (1976), Pfanzagl (1982), and Millar (1983) are recalled in Section 2.
Also, asymptotic normality and asymptotic efficiency results for the proposed estimates are
formulated in this section. Section 3 contains proofs and necessary auxiliary results. Section
4 presents several examples, including those already mentioned, some concluding remarks
and further developments.

It turns out that asymptotic normality holdg uniformly in F' € U, where U is a small
but fixed neighborhood of the unknown true distribution. Uniform weak convergence was
initially studied by E. Parzen (1954). Some further extensions concerning uniformity in
nonparametric CDF estimation are recalled from Koshevnik (1982, 1984). These results
have been extended and cover a stratified sample case. Uniformity results combined with
the description of lower bounds of risks, which is similar to Koshevnik and Levit (1980), lead
to asymptotic efficiency for the proposed estimates.



2 Main Ideas and Results.

First we need to consider a geometric interpretation of the proposed estimate for F'(t).
Its efficiency will be derived as a result of asymptotic normality uniformly in F' € U, with U
being a small arbitrary neighborhood with respect to a certain topology in F. More will be
said about this topology in the next section.

2.1 Estimated orthogonal projection.

To describe an estimate of F'(t) from all of the data (2) and (3), set n = mg and let F'
be the usual empirical CDF based only on the n complete observations, (2),

F)=-y 11X,

1=1

Recall that p = (p;: 1 <j <) is a vector of probabilities directly related to the data

set (3). For any j, there are at least two natural estimates for p;, namely the value of the
empirical CDF at d;, ;

; Y.
F(dJ) and p; = ﬁ == ;El__YJ_"

m; my

’

the empirical frequency of the event (Z;; < d;]. To make proper use of the additional obser-
vations (3) to improve F' (t), consider first the case with no relation between the unknown F
and p. Then the (r + 1) data sets (2) and (3) should be processed separately to produce an
empirical estimate F'(t) for F'(t) and empirical probabilities p; for each p;. The constraints
in (4) require that we do more.

Under (4), introduce a family of linear combinations

r

Foty=F(t) -3 a;(t) (F(d5) - 5;), (6)

i=1

indexed by a = (a;: 1 <j <'r). If a vector a is chosen to minimize the variance of (6),
it corresponds to orthogonal projection of the fupction U (X) = * ¥, I[X; <t] onto a
subspace spanned by the random variables

{vj(x,yl,...,y,) -1y (I[X,-de] - %) : 15j5r}
1=1 J

“with respect to the Hilbert norm defined by a joint distribution F N of all N variables
(1). Each of the terms subtracted from the initial estimate F (t) to obtain (6) has zero



expectation, due to (4), therefore for every a, the estimate E, (t) is unbiased for F(t).
Numbers {a; : 1 £ j < r} must be chosen to minimize the variance of (6). As will be shown
later, the asymptotic variance (as well as any other rather general risk) will be also minimized,
under limiting conditions (5). Some additional notation is useful for the theorems that follow.

We can describe the coefficients a = (a;) in (6) as a solution of the linear system, which is
formed by “normal equations”,

> Cia=D; 1<j<r, (7)
=1

involving large sample covariances for any pair of distinct j and /,

Cia = = [F (min(dj, &) ~ F (&) F (d)], ©)
for any 7, , 1 _
Gis = (242 ) P@ Q- F@), ®
and )
D; = D;(t) = — [F(min(s, &) ~ F(0) F (d;)]. (10)

These are all functionals of the unknown distribution F , so their natural estimates have F’
replacing F in (8), (9) and (10). The same applies to the solution of (7), i.e., if F is replaced
by F, then the corresponding value of a; (F) will be denoted as a;.

2..2 Theorems.

The first theorem describes a limiting behavior of the proposed projection when the true
solution to (7), the theoretical values a; = a; (F) are used in (6). It is similar to a projection
described in-Koshevnik and Levit (1976) for a one sample study with moment constraints
imposed on an underlying distribution.

Let B designate an F-Brownian bridge, i.e. a Gaussian process with zero mean and
variance—covariance as follows:

N

E[B () B(s)] = F(mint,s]) — F(£)- F(s).

Further let B = (B,..., B,) be a Gaussian vector, having componenfs that are independent
from each other and from the process B, each of them with zero mean and variances

Var [B;] = p; - (1 = p;),



for every j. The limiting process W is defined by

' 1 ", a;

W(t) = —B(t) - ), B,

where (g; : 0 < j < r) denote the limiting fractions in (5).

Theoretically, it is convenient to assume that F' belongs a precompact set U/ in the space
C = C[—00,00] of all continuous functions with finite limits as ¢ — too. For such a set I,
as shown in Koshevnik (1982), weak convergence for the empirical CDF F' holds uniformly
in F € U. Equivalently, as n — oo, empirical processes

B* = v [F() - F ()]
converge weakly to the corresponding (F')-Brownian bridge B and moreover, for any con-
tinuous and bounded functional I' on the space C convergence is uniform, i.e.

lim sup |E[ (B")] — E[I'(B)]| = 0.

n—oo Fe

Theorem 1. Suppose that F' is defined by (6) with coefficients defined by (7). Then, under
(5), convergence in distribution

VN [F(t) - F()] -2 W (1) (11)
holds uniformly in FF € U. :

The formulated result is not sufficient for statistical purposes. Asymptotic efficiency of
the estimate /" (t) cannot be claimed, since the coefficients (a;) depend on the unknown
distribution F'. The next step is a plug—in rule that replaces F' by its empirical analogue F’
and a; by @; = a; (F) This will produce asymptotic efficiency.

Theorem 2. Suppose that coefficients a = {a; : 1 < j < k} are replaced by their empir-
ical versions '

i={a;:1<j<r}.
Also assume that asymptotic conditions (5) hold. Then the procedure (6) leads to an estimate
F; (t) for F (t), such that the corresponding version of (11) also holds uniformly in F' € U.

Lower bounds of risks and limiting behavior~of the proposed estimate can be derived
easily. In particular, the following result can be derived similar to many other Information
Inequalities, see Begun et al. (1983) for instance. Recall that a nonnegative loss function L
defined on a Euclidean r-dimensional space R is called lower semicontinuous (semicontin-
uous from below) and subconvex if a set {v € R such that L (v) < u} is both closed and
convex, for any positive u. We also assume that L is symmetric, i.e. L(—u) = L (u) for any
u. Only loss functions with these.properties are considered here. As far as a neighborhood
U is concerned, the following assumtion is needed.
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Extensiveness of neighborhood. If F' € U, then for any finite collection
(he() €L (F): 1<k < K)

of functions with zero mean and for every positive 6, there exists a regular parametric
submodel Us C I of probability distributions indexed by ¢ € R¥ such that ¢ is close to the
origin, and their densities with respect to F' = F admit the representation

L+ 3 ahi()

1<k<K

with A deviating from Ay less than by 6 in L? (F)-norm.

Theorem 3. Let L be an arbitrary lower semicontinuous and semiconvex symmetric loss
function. The following inequality holds for any estimator V* of avector V. = {F(d;): 1 <j <r}:

liminf sup Er [L (VN (V* = V))] > sup E[L(WF)] (12)
Feu Feld

provided that the neighborhood U satisfies the extensiveness propertyr;

Theorems 3 and 4 are proved in Koshevnik (1993) under more general setup, while some
of their consequences are exploited to demonstrate why the plug-in rule works out for the
problem under consideration. In particular, Fj () turns out to be asymptotically efficient
for F'(t) at any fixed point t. »

Theorem 4 relates to estimation problems requiring the entire CDF F'(-) to be estimated
as an element of the space C. It implies that a wide class of functionals, including various
M—functionals and some others, can be efliciently estimated via the plug-in device. The
notion of efficiency in this case means more than in Theorem 3: F (t) is not only estimated

for a fixed point ¢ or a given grid of ¢ values, but as the whole curve, see Millar (1983) and
Koshevnik and Levit (1980) for more details.

Theorem 4. The estimate Fj (-), defined in Theorem 2 is asymptotically efficient for the
entire function F (-). Weak convergence of random functions

Vi [Fa () =F ()]
to a Gaussian process W holds uniformly in F' € U.

Having constructed an asymptotically efficient estimate 3 (-) for F' (-), one can again use
the plug-in device and estimate any affine functional, i.e.

AF) = [ 2(2) dF (2) (13)
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by substituting £ for F. Using arguments from Koshevnik and Levit (1976), for functionals
that can be represented as a composition L (A (F)) of a function L with an s-dimensional
argument and a vector of s affine functionals, say A (F)) = (Ay,...,A,), estimation can be
conducted in the same manner. General results from (Koshevnik, 1984) imply that both
uniform weak convergence and lower bounds of risks are described in terms of the same
limiting Gaussian vectors and processes, so that the natural conclusions can be extended to
a wider class of functionals.



3 Proofs.

In this section some proofs are given and others outlined. Some more details can be
found in (Koshevnik, 1984). In particular, uniform weak convergence for empirical CDF’s is
usually implied by a requirement that a set & of CDF’s is precompact in C. This suggests
that we consider, as a suitable replacement for a small neighborhood in the family F, only
those which are open (with respect to an initially given topology) and at the same time
precompact with respect to the topology in C. (It is not surprising for infinite dimensional
- parameter sets that a subset U fails to be both open and precompact with respect to the
same topology.)

3.1 Uniform weak convergence: some results.

Let F' denote the empirical CDF based on n ii.d. random variables with CDF F.

Lemma 1. IfU is precompact in C, then weak convergence

va [F() - F()] > B, (14)

asn — oo Is uniform in F € U.

This is proved in (Koshevnik, 1982). It is shown there that the result also holds for a
multivariate distribution F. Applying Lemma 1 to observable data (2) and (3), the next
result can be derived. Its proof is quite standard and omitted here.

Lemma 2. If N — oo and (5) holds, then the joint distribution of a function and a finite
dimensional vector

VNA[F() = FO), 6 = oy ooy [ — 1)} (15)

converges weakly to the distribution of

{iB(-), (iBl,...,;%:BT)}. (16)

Moreover, this holds uniformly in F € U, whenever U is precompact in C.

Orthogonality and Projections. Let us turn now to the orthogonal projections that
play such an important role here. First, they appear in the lower bounds of risks, derived
- in Koshevnik and Levit (1976). Furthermore, Pfanzagl (1982) and Begun et al. (1983)
also provide necessary explanations of this procedure. The second reason to illustrate their
importance is that in this case the projection is performed empirically. The theoretical
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procedure adjusting the initial estimate, such as F (t) for F (t), essentially depends on a
true distribution F itself, while using F again to estimate the orthogonal projection matrix
by its estimate, the same limiting behavior can be derived for a proposed estimate. This
phenomenon can be referred to as adaptiveness. Having known the vector a = a(F) it is
possible to improve the initial estimate. Otherwise, the estimate @, adapted to the observed
data, replaces the unknown a, and the improvement is also realized.

3.2 Lower bounds of risks.

To avoid some technical difficulties, only Theorem 3 is proved here rather than its natural
extension covering the more general situation of estimating the whole CDF F. Consider a
finite dimensional vector representing the values taken by F' on a given grid that includes
several t values. This includes the case when the estimand is a set of values taken by
F on the grid d = (d; <...<d,). The unknown CDF F is, therefore, replaced by a
vector V = (F(d;): 1 <j <r). The empirical frequencies {nj = nF(d]-) :1<5< r}
and {Y;: 1 < j < r} together form a sufficient statistic for V. The initially nonparametric
problem therefore becomes a parametric one, with a likelihood function

L(p) = Const [ II (- pj-l)"’} (1-p,)"™ [ I1 »7 (1—py)™ ).

1<5<r 1<ji<r

The interpretation of a maximum likelihood estimate (MLE) and its one step approximation
in terms of efficiency is based on a geometric approach and can be performed as in Millar
(1983). The 2r-dimensional parameter relevant for an alternative hypothesis, under the
assumption (4), turns into an r—dimensional one, so that a one step approximation just
leads to the efficiency. Limiting behavior of the one step maximum likelihood procedure is
described by means of the same orthogonal projection as in Theorems 1, 2 and 4.

Proof of Theorem 4 is suggested by Lemma 2 and the following extension of the Continu-
ous Mapping Theorem established in Koshevnik (1982). For the sake of simplicity, our goals
do not go further and are limited by finite dimensional vectors only. Finally, we address the
proof that using empirical values, @;, still yields asymptotically efficient estimates.

Lemma 3. Suppose that random vectors Vj* converge weakly to V,, as n — oo uniformly
in @ € ©. If the functions (Ky: 6 € ©) mapping each v into another finite dimensional
vector, Kyv, satisfy the Lipschitz condition, with the same constant C, i.e.

p2 (Ko (u), Ko (v)] < Cp1[u, 9]

for any pair u, v, any 8 € ©, where p; and p; denote distance functions in 'V and Z, respec-
tively, then transformed random variables Kq (V') converge weakly to Kq (Vy) uniformly in
0 €O, asn — oo.
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This result can be verified by means of standard arguments. Suppose first that the values
a; (F) from (7) are all given. These values enable one to improve the initial estimates of F ().
Actually, only the estimates &; are available. We can derive, invoking Lemma 3, that weak
convergence in Theorem 1 holds for any fixed given set of coefficients (a; (F): 1 < j <),
uniformly in a € A, whatever a precompact set A is chosen. Therefore, using a consistent
estimate @ replacing a, the adaptive estimates under consideration converge to the same
limit as for the theoretical values. In fact, this is just the uniform version of the well known
Slutsky’s theorem.
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4 Some Examples and Further Developments.

Consider a simple example that motivated more attention to the general problem. A hypo-
thetical survey asked n = 100 respondents a direct question to obtain X = (X;: 1 <1 <100).
In two additional surveys of m; = m, = 100, the respondents were summarized by Y; and
Y3, respectively.

4.1 Calculations for the case of a two—point grid.

Suppose that the grid 0 < d; < d; < oo is given. The primary concern is to estimate
the two values V' = (F (dy), F(dz)). In this case, Theorem 3 is not actually needed for
efficiency, since everything can be reduced to the case of a multinomial distribution for
frequencies from (2), n; = n F(d;), and their analogues Y; and Y2, calculated from the
dichotomous data (3).

To estimate F'(d;) and F (d;) we apply the general procedure. It is simplified under the
assumption r = 2, as the system of equations can be easily solved in this case. With these
simplifications, for ¢ = d;, the asymptotically efficient estimate of F' (dl) from (6) is

. ~ - Y] . Y;
Fu(dy) = F(d) = a1 (dy) [F(dl) - —L] — oz (dy) [F(dz) - —-"’—].
my my
A similar expression works out to estimate F'(d;).
To find the coefficients a; and ag, the linear system (7) must be solved. Coeflicients Cj;
in this system are simply

Cij = ("1—+ —1—) F(dj) (1 - F(dj))_

n mJ-

for 7 = 1,2, while the cross covariance coeflicient is
1

The right side term is a vector with components

D;(t) = L (F(min(t,d)) — F(t) F(d;)].

S

The exact solution @ = a(F) = (a;,a3) of the system can be explicitly written as a
vector-functional. Then replacing all the unknown values by their empirical analogues, the
estimates of the two coefficients are obtained. Hence the initial estimate ' (d;) is adjusted
up to Fj (dy). Similarly, the value F (t) at any ¢ can be estimated via the same procedure.
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Numerical Illustration. Suppose that our study produced the following initial estimates:

. . Y,
F(d) =.30; F(dy)=.60 — = .35; Y _ 0

m mo
The coefficients C;; in (8) and (9) have the values
Chn = 0.0042, Cy2 = Cy = 0.0012, and Cq = 0.0048;
while the D; values from (10) for ¢t = d; and t = d, are respectively
Dy (dy) = 0.0021, D, (d;) = 0.0009

and

Solving the system (7) twice, for d; and d;, we obtain the following data adaptive values of
a, and as:
(at dy) @ =0481 and &, =0.067;

(at dy) @ =0.154 and &, = 0.462.

Using these values, the improved estimate for F'(d,) is

A

Fy(dy) = 0.30 — 0.481 (0.30 — 0.35) — 0.067 (0.60 — 0.70) = 0.331

and similarly for F'(d,),

A

Fy (dy) = 0.60 — 0.154 (0.3 — 0.35) — 0.462 (0.6 — 0.7) = 0.654.

4.2 Some Comments on Singular Asymptotics.

We have assumed mostly that the subsample sizes mg, m;, and m, are of the same mag-
nitude. If the two sizes corresponding to incomplete observations substantially dominate
the set of completely recorded data, then the problem is asymptotically equivalent to the
case with precisely known cell probabilities. Indeed, using summaries drawn from incom-
plete data, say Y and Y, we can ignore the possible improvement to estimates of the cell
_ probabilities made by the data set X, since the fractions ™ and 7 both tend to zero.

Therefore, the incomplete data enable one to replace the initial estimation problem with
unknown cell probabilities by the one where these probabilities are estimated with the higher
accuracy level. Asymptotically, an expensive part of the survey, which is represented by (2),
can be simply ignored. With the probabilities §; and p, estimated from the incomplete data,
the estimate F'(t) can be improved, using the same method that is described in Pfanzagl
(1982) with completely known cell probabilities p; and p,.
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This case appears to involve a singularity, since the significant improvement can be
guaranteed for estimation of F' (t) only between the grid points, i.e. for ¢t < dy, d; < t < ds,
and ¢ > d;. As far as efficient estimation of F'(d;) and F (d;) is concerned, this can be

performed from the incomplete data (3) alone and asymptotically nothing else can work
better.

4.3 Further Developments.

Certainly, the model considered here relates to the area of censored data. Connections
between this case and more common censoring are investigated in Koshevnik (1993). In a
model under random right censoring, a pair of random variables ' = survival time and
C = censoring time are replaced by Y = min (7, C) and an indicator of the event (T" < C).
The same approach leads in this case to a modification of the well known Kaplan—Meier
estimate for F' ().

Another extension is a biased sampling model, involving several constraints (possibly
infinite dimensional) imposed on the underlying distributions of different strata. In the
present case, the constraints (4) are simple. A similar procedure can be proposed in this
case as well. However, the estimates for a finite-dimensional vector a of unknown coefficients
require, as an intermediate step, estimation of an auxiliary infinite-dimensional parameter.
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