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An Automatic Procedure for Fitting Variograms
by Cressie’s Approximate Weighted Least Squares Criterion

Abstract

Cressie (1985) proposed weighted least squares as a reasonable compromise between
the efficiency of generalized least squares and the simplicity of ordinary least squares for
fitting a variogram model to a sample variogram. He introduced an approximation to
the weighted least squares criterion which reduced the estimation problem to iteratively
reweighted least squares. Golway (1991) provided some details as to how the minimization
could be achieved, but still left a large number of confusing choices to be made by the user.
In this paper we present an algorithm for minimizing Cressie’s approximate weighted least
squares criterion with little intervention on the part of the user.

1. Introduction. A standard problem in spatial statistics is given a second-order sta-

tionary random process {Z(s) : s € D} where D is a subset of Euclidean space, estimate
its variogram

2y(b;6) = Var(Z(s;) — Z(s;))

where h = s; —s,. Typically, the first step is to estimate the variogram by either the
method-of-moments estimator

2y(h; 0 ( )| > (Z(si) - 2(s)))*, he®

N
where N(h) = {(s;,8;) : 8; —s; = h;4,j = 1,...,n} and |[N(h)| is the number of distinct
pairs in N(h), or by Cressw s robust estimator
4
27(h; 0) = > 12(s;) — Z(s;)|M* } (0.457 +0.494/|N()))™, he R

( [N ol

Unfortunately, the estimates are rarely conditional non-negative definite. This short-
coming is often overcome by fitting one of the isotropic variogram models below:
1. White noise (pure nugget effect):

0,0 h=0
h;6) = ’ -
7(8; %) {%,h¢g
for 6, > 0.
2. Linear model: 0 L= 0
wwi8)={ 2 =0,
6o + 6:1]/b]l, b#0Q,

1



for9020and0120.
. De Wijs (logarithmic) model:

(h-e)—{o’ B=d
TEEZ 60 + 61 log 1], b #0,
for 8y > 0 and 6, > 0.
. Power model: 0 b= 0
h; 0 — 9 = T X
7(8:8) {90 + 6|, h#0,
for 8o > 0,6, >0and 0< 6, < 2.
. Exponential model:
(h-e)—{o’ e=9
TEE 160 + 6111 - exp(—[B/62)], b#0,
for 00 2 0, 91 Z 0, and 92 2 0.
. Gaussian model:
0 h=0
h; 0) = { ’ c
058 = 10y + 6311 — exp(—{Ibll/6,12), B £0,

for0020,01 20, a,nd9220
. Rational Quadratic model

(b; 8) = {0’ N
T T 80 + 6 (Il /6212/(1 + (I /621%), b

for 8p > 0,60, >0, and 6, > 0.
. Spherical model:

(==l

b

Mo

0, h= Q,
7(b;8) = § 6o + 61(5[|bll/62 — 3(Ib]l/62]*), O < |lbl| < 62,
8o + 61, bl > 62,

for 6p > 0,6, > 0, and 6, > 0.

Until recently, the most common methods of fitting variogram models to sample vari-

ogram models were by eye or by ordinary least squares. While ordinary least squares is an
improvement over visual fitting, it ignores the covariances between variogram estimates.
Fitting by generalized least squares requires calculating the variances of the estimates of
the sample variogram at each lag and covariances between them, which is very complicated

(Cressie 1985). Weighted least squares is less efficient, but only requires calculating the
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variances. The loss of efficiency is small (Zimmerman and Zimmerman 1991), so Cressie
argued that weighted least squares is an acceptable compromise between efficiency and
simplicity. Cressie simplified the fitting process even further by proving that

K . 2
C(6) = 3 IN(;)l (V?S;’)@ } 1)

is a good approximation to the weighted least squares criterion, where h,,... ,h; are
equally spaced lags at which the variogram is estimated and ¢(-) is either the method-of-
moments or robust estimator.

Minimizing C(6) is not entirely straightforward. Examining the first-order conditions

u IN(hj)|g(I—1j)

0v(h;; 8
VOO =23, =50 T

(7(1_1,';@ - Q(J_lj)) o0

reveals that the problem can be recast as iteratively reweighted least squares ( Cressie 1991)

with weights

w; = |N(hj)|g(hj).

’73(hj; 9)

However, models (4)-(8) above are not linear in . Golway (1991) explored minimizing C(6)
by using PROC NLIN in SAS without resolving the choice of minimization method (e.g.
steepest descent, Newton, modified Gauss-Newton, Marquardt, secant), step size, starting
values or grid size. In this paper we propose an automatic procedure for variogram fitting
that relieves the user of these many confusing choices.

2. Exact Solutions. In a few cases, it is possible to calculate exact solutions to the
minimization problem. For the white noise model (1)

Yo IV (By)lg*(hy)
et IN(Ry)lg(By)

When the nugget 6, is constrained to be zero, one may calculate an exact solution for
the linear model (2)

9=

Yien IN(R)lg(h;) /)2
S IN()lg(h;)/b;]
as well as for the De Wijs model (3)

Y IN(hy)lg(h;)/ logh,]?
S IN()Ilg(h;)/ logh;]
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3. Iteratively Reweighted Linear Least Squares. Each of the first three models
(white noise, linear, and De Wijs) are linear in their parameters. Therefore, they may be
fit by iteratively reweighted linear least squares. This avoids calculating the Hessian of
the criterion function. We recommend using the ordinary least squares estimates as the
starting values. Experience has shown that the white noise model always converges, and
the linear and De Wijs models fit converge whenever the functional form is a reasonable

candidate for the sample variogram.

4. Minimizing the Profile Criterion Function. The remaining models (exponential,
Gaussian, rational quadratic, and spherical) are linear in the first two parameters, but
not in the third. This suggests that we may proceed by minimizing the profile criterion
function

P(02) = min 0(90, 91,62)
60,61

to obtain the optimal value of §; and then use iteratively reweighted linear least squares
to obtain the best 6y and 6;. When 6, is positive, P(6;) may be evaluated by iteratively
reweighted linear least squares starting at the ordinary least squares estimate. When
6, = 0, the profile criterion function is set to the minimized value of C(6,) for the white
noise model (1). In evaluating P(6;) we again avoid calculating the Hessian, and experience
has shown that the iteration converges if the functional form of the model is a reasonable
candidate for the sample variogram and 65 is not too distant from the optimal §;. When
the iteration fails to converge we set P(6) equal to a huge number.

Examining the functional form of models (4)-(8) suggests that the profile criterion
function P(6;) could be multimodal or wildly fluctuating. Furthermore, the calculation of
P'(6,) is far from straightforward. Therefore, we will find its minimum by a golden section
search (Kennedy and Gentle 1980, pp. 432-3). Given an initial bracket, the golden section
search reduces the size of the bracket by a factor of (3 — 1/5)/2 ~ 0.382 on each the step.
The profile criterion function is evaluated at about 38.2% of the way from the left endpoint
to the right endpoint and also at about 38.2% of the way from the right endpoint to the
left endpoint. The interval is then revised to reflect where the minimum must lie in light
of the profile criterion function values.

- It remains, then, to choose the initial bracket. For the power model (4), the permissible
values of 6, form a bounded set [0,2). Therefore, we perform a grid search over the set
with a grid size equal to one-fifth. The initial bracket is the value of 6, that provides the
smallest value of P(62) plus and minus one-fifth, subject to the constraint that the initial
bracket must be a subset of [0,2]. |

For the last four models (exponential, Gaussian, rational quadratic, and spherical),

the third parameter may be interpreted as the range of the variogram, that is, the value
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of the argument at which the variogram levels off. Hence the profile criterion function is
evaluated at each of the lags at which the variogram is estimated. If the largest lag produces
the smallest value of P(6,), more equally spaced lags are generated and evaluated until
the profile criterion function begins to rise. The initial bracket is then the value of §; that
corresponds to the smallest value of P(6;) plus and minus the (common) distance between
adjacent lags, subject to the constraint that the left endpoint may not be negative.

5. Discussion and Summary. Some caution is recommended before employing the
algorithms described above. Each of the last four models is convex. When fitting one of
these models to a sample variogram that is concave, the optimal value for the range is
clearly infinite, so the algorithm to search for the initial bracket will usually be caught in
an infinite loop. Also, when the optimum value of 6, is larger than the largest experimental
lag, the algorithm implicitly assumes that the first minimum after the largest experimental
lag is the global minimum, although this may not be true. Finally, all of the linear least
squares calculations are unconstrained, and so they may produce invalid values for the first
two parameters. If 6, is negative, the user should fit a model with no nugget (i.e. set 8,
to zero). If 8; is negative, the sample variogram is decreasing and the user should fit the
white noise model (1).

We have described algorithms for fitting experimental variograms to variogram models
by Cressie’s approximate weighted least squares criterion. The only input required from
the user is the convergence criterion for the iteratively reweighted least squares and the
number of iterations permitted. There is no theory as to why the procedures described
in sections 3 and 4 should produce a global minimum, however, the procedures work well
nevertheless. A program that implements the algorithms detailed above is available from
the author.
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