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Graphical techniques for presenting data on finite groups that do not have linear orderings are
almost nonexistent. In particular, exploratory graphical methods are critically needed for data on the
symmetric group on n elements, Sy, and related groupe of cosets such as the alternating group, Ap.
Because, unlike points on the real line, the elements of the symmetric group have several reasonable
measures of distance which induce partial, but not linear, orderings, graéhical methods such as
histograms and bar graphs are not available. Graphical techniques related to histograms and bar
graphs can be developed for ranked data to illustrate the probability density function by using
permutation polytopes. A polytope is the convex hull of a finite set of points in R”, and a permutation
polytope is the convex hull of the n! permutations of n elements when regarded as vectors in R? (see,
for example, Yemelichev et. al. (1984)). This concept is closely related to the observation by

McCullagh (1990) that the n! elements of Sy, lie on the surface of a sphere in rR™L

To illustrate a rudimentary version of the proposed graphical technique, we will consider the
paired ranking data of Critchlow and Verducci (1989) in which n=4. This data consists of pairs of
orderings in which 38 students have ranked 4 styles of literary criticism in their order of preference,
both before and after taking a course. The question of interest is whether the students’ preferences
have moved toward the teacher’s preferred ordering <p,c,s,t>, i.e, toward the ordering in which style p
is ranked first, style ¢ is ranked second, style a is ranked third, and style t is ranked fourth. As
illustrated by Figure 1 of McCullagh (1990), the 24 possible orderings of 4 items form the vertices of an
Achimedian solid, the truncated octahedron, which is the permutational polytope for n=4. The edges

connect orderings that differ by exactly one pairwise transposition so that Kendall’s  is the minimum



number of edges that must be traversed to get from one ordering to another. The straight line distance
between two points is proportional to Spearman’s p. In the proposed graphical technique, the
frequency with which each ordering appears in a data set is visually indicated, for example, by the size
of a dot, at the corresponding vertex. The frequencies of the 38 pre-rankings are shown in Figure 1 and
the 38 post-rankings are shown in Figure 2; the radius of the circle is proportional to the frequency.

insert Figures 1 and 2 here

Although the bivariate nature of the data is lost, valuable insight into this data can be
obtained from the above figures. (Similarly, with paired univariate data it is not at all unusual, and
often fruitful, to do exploratory data analysis by comparing the histograms of the “before” and “after”
components.) The most obvious observation is that the frequencies do change a great deal between the
two sets of rankings. First, there seems to be a notable increase in the frequencies of the vertices of the
hexagon cotresponding to the 6 orderings beginning with c. In fact, one might hypothesize that the
orderings have moved toward <c,p,t,a> because almost half of the post-rankings lie either on
<c,p,t,a> or on the three vertices within one edge (pairwise transposition) of <c,p,t,a>. (This is not
inconsistent, however, with the movement toward <p,c,a,t> indicated by the results of Critchlow and
Verducci’s test statistic.) Also, there is a decrease in the frequencies of the 6 vertices corresponding to
orderings that end with ¢, and we might hypothesize that ¢ has a higher level of preference in the post-
rankings than in the pre-rankings. Other observations include 1) style a is rarely chosen as either first
or second choice after the course is completed; 2) the incidence of style t as a first choice decreases; and
3) there does not seem to be any movement toward <a,c,p,t>, the ordering of the styles on the second
questionaire. Different rotations of Figures 1 and 2 would make some of these observations more

apparent.

Figures 1 and 2 are fairly elementary examples of the potential of permutation polytopes in
developing graphical techniques for ranked data. Significant improvements are immediately possible in
the following three areas. First, the availabilty of information would be greatly enhanced if the

truncated octohedrons could be arbitrarily rotated about any axis. This can be accomplished via



interactive software, especially if the coordinates of the permutational polytope are known. For Sy the
coordinates of the vertices of the permutation polytope in R™! with center at 0 are found by using the
Helmert transformation. Let x=(x,,%3,...,xp)'¢S® be any ranking (not ordering) of n items. This
means that item i has ranking x,. Let r bethen dimensional column vector in which every element
equals (n+1)/2, and let H be the Helmert transformation which maps the hyperplane izn:lxi=0 onto the
hyperplane x; =0 . Note that H is orthogonal and preserves Euclidian distances. T;e coordinates of
the vertices of the permutation polytope in R are H(x—1) , 7eS". At the same time capabilities
are introduced to rotate the polytopes, the frequencies associated with each vertex could be color coded
on a scale chosen to highlight desired features. With color and rotational capabilities, it also might be
worthwhile to experiment with illustrating the observed frequencies on the duals of the polytopes. For
n=4, the dual of the truncated octohedron is the tetrakis hexahedron. It has 24 faces which, instead of
the 24 vertices of the truncated octahedron, would correspond to the 24 possible orderings. See Cundy

and Rollett (1951) for a discussion of the duals of Achimedian solids.

Second, these graphical techniques can be extended to the case where n is greater than 4 even
though the dimension of the corresponding permutational polytope is greater than three. One approach
to this is interactive software to successively view adjacent three dimensional faces. Possibly, the faces
of greatest interest are those generated by the set of orderings in which four items are permuted while
the remaining n-4 items remain fixed. Characterizations of all of the faces of permutational polytopes
are given by Yemelichev et. al. (1984). The application of other new graphical methods of viewing

higher dimensions may be very useful.

Third, the above arguments can be extended to partially ranked data by considering the
multiset M=(lal, 232, ey kak). This multiset has k levels and 3, items are ranked together in the ith
level. It is assumed that ai€Z+ and izk:lai=n . Stanley (1986) discusses multisets. The set of
permutations of M, when regarded as vect:)rs in R™, become the vertices of an integral polytope. These

vertices can be shown to lie on an n—1 dimensional sphere in R®. Just as with fully ranked data,

software to rotate the vertices and techniques to view the three dimensional faces for n>4 are needed.



The characterisations of the faces of integral polytopes formed by permutations of multisets is a
straightforward generalization of the resullts in Yemelichev et. al. (1984) for permutation polytopes.
These integral polytopes can also be thought of as Cayley diagrams (see Coxeter (1980)) and have
interesting connections with the generators of the corresponding group S,,/IIS,i . Furthermore, they
induce an interesting extension of Kendall’s r to partially ranked data that has properties quite
different from both the Haussdorf metric (Critchlow (1985)) and the metric i(x) discussed by Diaconis

. Similarly, the straight line distance between vertices in is an extension of Spearman’s p .
(1988). Similarly, the straight line di be ices in R® i ion of S )
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