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Abstract

Gray and Wang’s (1991) general method for approximating tail probabilities is applied to the
cases of noncentral x2, F and t distributions. The validity of such applications is established. The
resulting approximations are easy to compute. Numerical results show the great accuracy of the
approximations for all three most commonly used noncentral distributions.
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1. Introduction

Calculating the tail probabilities of noncentral distributions such as noncentral x?, F and t is a
major step in many statistical applications. However, these distributions do not have a simple closed
form for the camulative distribution functions (CDFs) which may be expressed in the form of infinite
series only. Many methods have been proposed for approximating the CDFs of these noncentral
distributions by truncating the infinite series or using central distributions as approximations. These
methods are designed for each specific distribution.

Taking a totally different approach from the viewpoint of the Generalized Jackknife, Gray and
Wang (1991) have introduced a general method referred to as the Gs,m)-transformation for finding
functions which are easy to evaluate and give very good approximations to tail probabilities. The
transformation is based only on a general class of differential equations that include the specified
density function in the solution set. As a result this method applies to a broad class of distributions.

Since the densities of noncentral distributions are themselves in the form of infinite series, it is far



(m)

from obvious how the conditions for the G, ’-transformation are met in these cases. In this note we
show that the three most commonly used noncentral distributions (noncentral x?, F and t) all satisfy
the conditions so that the Gl(lm)—transformation provides a good alternative in approximating the tail
probabilties of these distributions. Its high degree of accuracy even in the extreme tails is maintained,
as will be shown in numerical examples.

We first briefly review the Gl(lm)-tra.nsforma.tion. Let f be a density function and assume that we

wish to approximate the tail probability

G(x) = f(t) dt . (1)
/
Let
Up(x) = x .EO —x—l )

where @0 # 0 and ¢, is an integer with § <k Suppose that f(x) satisfies the following differential
equation
Um0 ™60 + Um0 7w 4+ 0,00 1) — 100 = 0, )
for some collection of U} ’s, where m is assumed to be the smallest possible integer such that (2) holds.
(m)

Using the idea of the Generalized Jackknife, Gray and Wang (1991) define the Gy ’-transformation

approximating G(x) in (1) as
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where

{xel_i+1f(x)}(j—l) , i=1,...,n,

¢, —i+n+1 (G-1) .
aij(x) = {x 2 f’(x)} ) i=n+l,...,2n,
€y —i+(m— - j—1
{x m=i+(m—1)n+1(m 1)(x)}(1 ) , = (meDatl, ... N,
forj=1,...,N+1, and N = mn.
As shown in Gray and Wang (1991), most commonly used simple continuous distributions
including those in the Pearson family satisfy (2) for m = 1. Furthermore, it has been shown that

under mild regularity conditions,

[o.¢]

Jim GO0 a(0] = () @)
Gray and Wang (1991) have examplified the extraordinary accuracy of the Ggm)-transform for n as

small as 2 or 3.

2. Noncentral x? distribution
The first application of the Gglm)-transformation we consider is to the noncentral chi-squared
distribution x{(z(k), where k is the degree of freedom and A is the noncentrality parameter. Cox and
Reid (1987) obtain an approximation to the distribution of x'i(z\) by adding a small perturbation to
the corresponding central xi‘; random variable when A is small relative to k. Cohen (1988) and Posten
(1989) have developed algorithms for the distribution of x'i‘;()‘). These algorithms require evaluating
either the central xf{ distribution function or the distribution functions of x’iz(A) for the lowest degrees

of freedom i = 1, 2 and 3.

The density of x’i(/\) can be expressed as (Johnson and Kotz, 1970, p. 132)

) = P2 = () K2+ 1

2k/z = rrIk/2+r)

, x> 0. (5)



Now note that
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where gk(x) =e 1/(1‘(%) 2k/ 2) is the density of xi )

oFi(—; b5 z) = § r!(zb)

r=

r

is a hypergeometric function (Rainville, 1960, p. 74) and

1, r=
(b} = { bb+1)...(b+r—1), r=

Let u = 4F,(—; b; z). It has been shown (Rainville, 1960, p. 109) that

d? d
z-d—;%+ba—lzl—u=0. )
Let b = 15‘ and z = ﬁ\‘—l’—‘ It follows from (7) that
2
Ly Bl ®
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Substituting u = e"* f(x)/g (x) into (8) and after some algebra we have

x 1(x) + (x + 2-5)) (o) + XK= g = 0, (9)

where we used the fact that g{‘(x) = (-—% + (l% — 1)/x) gy (x). We have therefore shown that f(x)
satisfies (2) with m = 2 and ¢; = ¢, = 0. Hence the application of the Ggm)-transform, denoted by
Gg2)[f(x); aij(x)], is straightforward as long as f(r)(x), r=0,1,...,2n+1, are obtained.

Taking r-th derivative of (9) and after some algebra we have the recursive formula



£ = {(g —2rx) €70 4 (=X 1) ) - f(r—l)(x)}/x, (10)

forr=1,2,... . From (9) it is easily seen that equation (10) is also valid for r = 0 if we define

f(—l)(x) = 0. Thus we need only to evaluate f(x) and f/(x). But from (6) we have

0 = (- 3+ 522) 100 + & Vg0 oF (= 5% Xx). (1)

By (6) and (11), it is sufficient to compute a hypergeometric function of the form

oFy(—; b; 2) = )°:°; r,(b) =5 o (12)

r=0 r=0

®Q .t
where ¢y = 1, ¢ = m ¢r—1; I > 1. The series in (12) converges as quickly as 21 (ril)i
=1 (I

asymptotically. Note that Levine and Sidi’s (1981) d-transformation is useful to accelerate the

convergence of the series in (12).

(2

To compute Gp )[f(x); aij(x)] in (3) a subroutine for computing the determinant of a matrix is

normally required. But when n = 1 it is easily derived that in the noncentral x2 case,

G100 a0 = 38 (13)

where
A(x) = I: z(x—fi—l-‘—/\+6) k 3 ]fa(x)

+ %(f5x+A+5k—20)—(l§‘ ~2)(% —3):|f’(x)f’(x)

+ [—2x?+(k—4)x f(x)(f'(x))z—xz(f’(x)f ,
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B(x) = [§(—x+k+,\-4)—§+2] (f00) +[§(—x+ 3k +r—6) + %(k+,\-4)(2—k)]¢(x)f'(x)
- ilt-i(-xﬁupa\—‘t)2 2(x).

Table 1 provides some selected values of GSIZ). Rapid convergence of Gl(lg) as n increases is
evident; great accuracy is obtained for n as small as 2. It is seen that the approximation is particularly
useful for extreme tails. We used a finite sum to approximate the series in (12), and therefore f(x) and
f/(x). In Table 1, 15-40 terms were needed depending on different parameters to get at least 12
significant digits correct for f(x) and f'(x). Applying Levine and Sidi’s (1981) acceleration method
improves this by at least 3 more significant digits. However the quick convergence in (12) makes it
generally unnecessary to use Levine and Sidi’s method. In this and the following applications, we used

the IMSL subroutine LINV3F to calculate determinants. Any other efficient algorithms can be used for

this purpose.

3. Noncentral F distribution
We now consider the application of the Ggm)~transform to noncentral F distributions. Despite
the different structures of the noncentral F and noncentral x? distributions, a similar procedure can be
developed. Like in the noncentral x? case our approach is different from those usual ones which use
central F distributions as approximations; see Hirotsu (1979). The density of a noncentral F

distribution with degrees of freedom k and p and noncentrality parameter A (denoted by F{( p(/\)) is

(Johnson and Kotz, 1970, p. 191)

—A/2 . k/2 kf2 —1 k+ Ak
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where
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)
W) (145,

is the density for a central F distribution with degrees of freedom k and p, and

1Fq(a; b; z) = % (a)l-

=0 r'(b)l'
is a hypergeometric function. Since
00 00 00
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we need only to consider the transformed density f(x). Let u = ,F,(a; b; z). Using the fact that

(Rainville, 1960, p. 124)

d2+(b —) e —au=0 (17)

and after lengthy algebra similar to those in Section 2 we can obtain that

f'(x) = {k&‘i - k;zfij)“ + s )2} f(x) + B32 {(k+A o(k -5 ‘(‘;:‘_’““)ﬁ}f(x). (18)

Comparing (18) with (2), it is readily seen that m = 2, ¢, = 1 and ¢, = 2.
A recursive formula for higher order derivatives of f(x) can be easily obtained by taking

derivatives on both sides of (18) and by the fact that

(ba(3) ()" = 20() 2o i, =12,
£



It is therefore only necessary to evaluate f(x) and f'(x). But

—A/2 k/2 — 1
_[x=2 _ k+p e (k+p)A x k+p+2 k42, )
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so that the essential part is to compute ,F,(a; b; z). Similar to (12),

0
1Fi(a; by2) =3 dr, (20)

r=0
- ® T
where dy = 1, d; = 5—?;:1_—_11; dr—;,r=1,2,.... Therefore ,F,(a; b; z) converges as fast as 21%
. =

asymptotically.

Selected values of the ng)-transform (n =1, 2, 3) are given in Table 2. It is clearly seen that n
= 2 or 3 is generally sufficient in most applications. In Table 2, up to 50 terms in (20) were used to
approximate f(x) in (16) and f/(x) in (19) to at least 12 significant digits. The last column is the
Edgeworth-series approximation by Mudholkar, Chaubey and Lin (1976). Table .1 shows that for n as
small as 3 the general method Gg) is more accurate in the tail than the Edgeworth-series

approximation designed only for the noncentral F.

4. Noncentral t distribution
This section concerns with noncentral t distributions. Kraemer and Paik (1979) proposed
approximations based on central t distributions assuming that the noncentrality parameter is small
relative to the degree of freedom. As we have mentioned earlier, our method does not require such
assumption on the noncentrality parameter. The density of a noncentral t distribution with k degrees

of freedom and noncentrality parameter A (denoted by t{(()«)) is (Johnson and Kotz, 1970, p. 205)

-2 (k+1)/
TS ) gy
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Let x = 1 + y?/k. It follows that
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f; and f2 are defined by the first and second term in (23), respectively. It is easily derived that

f'(x) = {2(;31) = -2'-‘)%} f(x)

(25)

(k+2)(A\?-3) k+2)(k+1+2?)
{2 (oL, ) - Gl

since using (17) and the same technique as that used in Sections 2 and 3 we can show that both f;(x)
and fy(x) satisfy the differential equation (25). Comparing (25) with (2) we have m =2, ¢, = 1 and ¢,

= 2. As in the case of the noncentral x? (or F), a recursive formula for f(l)(x) i=213,...)in terms



of lower order derivatives can be easily obtained from (25). Thus we need only the evaluation of f(x)

and f'(x) to calculate all required derivatives. It is easily obtained from (24) that

—'\2/2 k+1\ 2
e r A2(k+1

(-1 x4l (5F) ¥+ (s 5 1
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It follows from (23) that evaluation of hypergeometric functions of type ,F,(a; b; z) is a main step
which has been addressed in Section 3.
Some numerical results are given in Table 3 to show the quick convergence of the ng)—transform.

Like in the previous cases, n = 2 or 3 is usually sufficiently accurate.

5. Conclusion
In this paper, we have considered the applications of the general method of Gglm)—transform for
tail probabilities to the three most commonly used noncentral distributions. The validity of such
applications was verified and accurate numerical results were given.
Except for calculating the density and its derivatives, the Gl(lm)-transform does not use any
particular properties of a specified distribution, making it a very general method. The method is also

easily implemented in practice. A short self-explanatory FORTRAN subroutine for the Ggm)—

transform is given in the appendix.
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APPENDIX: A SUBROUTINE FOR THE Ggm)-TRANSFORM

SUBROUTINE GMNTRANS (M, N, L, X, FDVEC, GMN)

THIS SUBROUTINE CALCULATES THE GMN-TRANSFORM.

INPUT: M, N, L, X, FDVEC; = OUTPUT: GMN(1),...,GMN(N).

M IS DEFINED IN EQUATION (2);

N IS THE MAXIMUM ORDER OF THE TRANSFORM;

L = (L(1),...,L(M)) IS DEFINED IN EQUATION (2) (SET
L(I)=I, IF L(I) UNKNOWN);

FDVEC = (FDVEC(1),...,FDVEC(M*N+M)), WHERE FDVEC(I)
IS THE (I-1)TH DERIVATIVE OF THE DENSITY AT X.

00O OOOOO0N

IMPLICIT REAL#*8 (A-H,0-Z)
DIMENSION FDVEC(31), L(3), A1(30,30), A2(30,30), GMN(15)
DIMENSION WKA(30), JVEC(30,30), PDM(30,31), B(1)
IJOB = 4
DO 100 NI=1, N
NTL = 1+M*NI
Al(1,1) = 1.DO
A2(1,1) = 0.DO
DO 10 J = 2, NTL
Al(1, 0.D0
10 A2(1, FDVEC(J-1)
DO 40 J = 1, NTL
JVEC(1,J) = 1
JVEC(J,J) = 1
IF (J.EQ.1.0R.J.EQ.2) GO TO 40
IF (J.EQ.3) GO TO 30
JMD2 = J/2-1
DO 20 K = 1, JMD2
JVEC (K+1,J)
20 JVEC(J-K,J)
30 JD = (J-1)/2
IF (J-1.EQ.JD*2) JVEC(JD+1,J) = JVEC(JID,J)*(JD+1)/JD
40 CONTINUE
DO 60 K = 0, M-1
DO 60 I = 1, NI
POW = L(K+1)-I+1
PDM(I+K*NI+1,1) = X**POW
DO 60 J = 1, NTL
PDM(I+K*NI+1,J+1) = PDM(I+K#*NI+1,J)#*(POW-J+1)/X
Al(I+K*NI+1,J) = 0.DO
DO 50 I1 =1, J

)
)

=

JVEC(K,J) * (J-K) /K
JVEC (K+1,J)

50 Al (I+K#NI+1,J) = Al (I+K*NI+1,J)+JVEC(I1,J)
$ #PDM(I+K*NI+1,I1) *FDVEC (J-I1+K+1)
A2 (I+K#*NI+1,J) = Al(I+K*NI+1,J)
60 CONTINUE
D1 = 10.DO

CALL LINV3F(Al, B, IJOB, NTL, 30, D1, D2, WKA, IER)
HERE WE USE IMSL SUBROUTINE LINV3F TO CALCULATE
THE DETERMINANT OF A MATRIX.

OTHER EFFICIENT SUBROUTINES CAN ALSO BE USED HERE.

D3 = 10.D0

CALL LINV3F(A2, B, 1JOB, NTL, 30, D3, D4, WKA, IER)

100 GMN(NI) = D3/D1#*2.DO**(D4-D2)

RETURN
END

(oMo Ne]
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Table 1. Relative error = R[approx.] = { | approx.—true |/true}

of approximations to the upper tail of x'kz(,\).

k A x true value G RG] rel®)

5 1 8 .2466 1.1(2)* 1.5(4) 1.1(4)
13 07332 2.8(3) 1.5(5) 4.5(7)

21 003156 4.6(4) 5.1(7) 3.8(9)

5 10 20 2189 6.2(2) 7.9(4) 8.3(6)
26 07497 1.9(2) 1.5(4) 8.4(7)

43 001521 2.3(3) 5.4(6) 5.5(9)

25 10 44 1674 8.1(2) 8.0(3) 6.6(4)
50 06824 3.2(2) 1.8(3) 9.9(5)

70 001337 3.7(3) 4.8(5) 7.8(7)

25 25 62 1616 9.5(2) 9.4(3) 7.4(4)
70 .06159 3.7(2) 2.0(3) 1.0(4)

94 001295 41(3) 6.4(5) 1.1(6)

*1.1(2) = 1.1 x 102
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Table 2. Relative error = R{approx.] = { | approx. — true | /true}
of approximations to the upper tail of Fi 1)(,\).
il

k p A y true value R[ng)] R[ng)] Edgeworth
2 4 2 5 .2003 2.6(4)* 1.4(7) 1.7(5)
10 .07906 2.1(5) 4.2(9) 2.9(3)
33 .01065 2.1(7) 5.1(12) 6.1(3)
2 4 15 20 2135 9.1(4) 4.9(7) 4.2(4)
42 .06946 3.3(5) 5.5(9) 8.1(3)
106 01353 6.1(7) 2.3(11) 7.6(3)
2 2 10 10 1817 1.5(2) 1.3(5) 1.5(3)
15 05327 1.7(3) 6.4(7) 3.0(3)
25 005622 1.2(4) 5.3(8) 5.9(3)
20 20 20 3 1775 1.7(2) 8.1(4) 4.5(4)
4 05722 2.2(3) 5.3(5) 6.6(5)
10 002323 1.0(5) 3.0(8) 1.2(2)

* 2.6(4) = 2.6 x 10~*
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Table 3. Relative error = R[approx.] = { | approx.—true |/true}

of approximations to the upper tail of ti(,\).

k A y true value R[ng)] R[ng)] R[G:(;z)]
3 1 .2564 2.5(2)* 1.1(3) 1.2(4)
4 .06390 1.3(3) 3.8(6) 5.7(8)

01012 7.3(5) 1.0(8) 1.9(11)
3 7 12 .2087 2.9(2) 5.4(4) 7.1(4)
19 .06397 3.4(3) 3.6(5) 1.9(5)
37 .009575 2.0(4) 1.4(8) 1.9(9)
10 7 10 .1263 5.2(2) 1.7(3) 3.5(5)
12 .04187 1.6(2) 2.2(4) 2.1(6)
17 .003113 2.5(3) 6.9(6) 1.3(8)

*2.5(2) =25 x 1072
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