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ABSTRACT

The problem of association between two attributes in a p X g
contingency table can be looked upon as the problem of relationship
between two vector variables x and y. If there is only one true non-
zero canonical correlation between x and y, the association between the
two attributes is of rank 1 and in this case, one set of scores is ade-
quate to describe the association completely; these scores are nothing
but the coefficients in the canonical variates corresponding to the true

non-zero canonical correlation. Given a set of hypothetical scores

Oys Oy *° 7y ab for the rows, one is interested in testing their good-
ness of fit. Tests for this are suggested in this paper. For obtaining
these tests, a preliminary result about direction and collinearity factors
in discriminant analysis, when S irrelevant variables are eliminated, is

needed. This is derived in part one of this paper.

*
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Part I

1. Relationship between two vectors

The problem of association between two vectors x(p X 1) and
y(g x 1) arises in regression analysis, multivariate analysis of
variance, discriminant analysis and in contingency table analysis.
This relationship has different interpretations and implications in
these fields, but in each case it can be expressed in terms of canonical
correlations and canonical variables. The canonical correlations

rl, Ty "ty rp (p £ q) in a sample, are the roots of the equation

C
XX Xy
=0 (1.1)

C - r2 C
YX YY

2

and the canonical variables corresponding to r, are 4! x and g'(i)z

i (1)
(i=1, 2, «--, p), where the column vectors é(i)’ Mgy satisfy the

equation

i
"
e
~

=0 (1.2)

g

Here

(1.3)

is the matrix of the corrected sum of squares (s.s.) and sum of products

(s.p.) of observations on x and y and is based on n degrees of freedom (d.f.).



The true or population canonical correlations are denoted by
Pys Pys *°% pp. If all the p's are null, there is no association
between x and y and under the assumption of normality, this is tested

by using any one of the following criteria:

Wilks's (1932) A criterion; A = |a|/|a +B] (1.9)
or Pillai's (1955) criterion tr(A + B)-1B . (1.5)
-1 -1
where B=C C ' C ,A=C_=-C C C_,A+B=C (1.6)
Xy YY ¥X XX Xy YY yX XX
If only pl # 0 but p2 = ese = pp = 0, we say that the association between

x and y is of rank 1. 1In this case, the entire association can be ade-
quately described by the canonical variates corresponding to pl. In
discriminant analysis, this means that the means of g + 1 groups to be
discriminated are collinear and a single discriminant function is
adequate. Testing the goodness of fit of a single discriminant function

a'x = oy %y + ot o+ apxp , in this context, means that one wishes to test

(1) whether o'x agrees with the true canonical variate corresponding to

p. and (2) whether one linear function is adequate at all to describe

1

completely the relationship between x and y. (1) is called the 'direction'’
aspect and (2) is called the collinearity aspect of the goodness of fit
test. Bartlett (1951) and Williams (1955) derived tests for this purpose
by factorizing Wilks' A as

A= AjsAyhy . ' (1.7)
where (see Kshirsagar 1964)

A

1 o'Ag/o (A+B) g (1.8)

-1
@'B(A+B) “Ba/a'Boa
Ay = 1 T e aemig (-9




A3 = A//\.lA2 (1.10)

A2 is the direction factor and A3 is the 'partial' collinearity factor.

Bartlett has given an alternative factorization also viz.

A= AAN . (1.11)
where
=1
o'BA "By
= A [—SR— .
A, {1 * e (1.12)
Ay = A/A A, (1.13)

A4 is the collinearity factor and A5 is the 'partial' direction factor.
A statistic t is said to have a A(n, p, q) distribution, if it is distri-
p

buted as I1 U, where Ui's are independent and Ui has the distribution
i=1

n-g-i-1 g-2
Const. U, 2 (1 - U.) 2 du., (1.14)
1 1 1

Bartlett (1951) has shown that, in this case,

- {n - %(p + g + l)} loget (1.15)

has a xz distribution with pq 4.f. in large samples. If the null-
hypothesis of goodness of fit of g'x is true, he shows that A2 is a
A(n-1, 1, p-1) and A3 is an independent A(n-2, g-1, p-1). Alternatively
A4 is A(n~-1, g-1, p-1) and As is an independent A (n-q, 1, p-1). Briefly,
A2 is based on p-1 d4d.f., A3 on (p-1) (g~1) 4.f., A4 on (p-1) (g-1) 4.f.

and A5 on (p-1) d4.f.

The author has shown, in an unpublished paper (1969), that the other



criterion 1:]:_13(A+B)-1 can also be partitioned, analogous to this

factorization of A, as

-1
n trB(A+B) =Yy tYy, *Y; (1.16)
where
1, __ @B 1 _@BeB) 'y 1
nY1~ g (A+Blg "n '2 " o' B n V1
1 -1 1 1
and n y3 = trB(A+B) -2V n'Y2 (1.17)

Here Y2 is the 'direction' part and Y3 is the 'collinearity' part and
under the null hypothesis of goodness of fit of ¢g'x, they are distributed

2 . 2 . .
independently as ¥ with p - 1 d.f. and x with (p-1) (g-1) d.f. respectively,

in large samples.

2. Elimination of Irrelevant Variables

In some situations, it so happens that one is interested in studying
the relationship between ~-- not x and y --- but between residual variates
z and w, where the latter are obtained from x and y by eliminating the
first S sample canonical variables. These first S sample canonical

variables are known apriori to be irrelevant and are therefore to be

excluded. Let L.x and Ml , where
Ll = [.l_’(l) |£(2)' toe Ii(s)]' (2.1)
S Xp
and
Moo= gy lpg,l e lmg ) (2.2)

S X q



be the first S canonical variables. On account of (1.2), we find

L} — L
CxxLlR = nyml (2.3)
2
where R is the S X S diagonal matrix of r, (i=1 2, <+, S). One can
also show from (1.2) that
| I ]
BL1 = (A+B)L1R (2.4)
and ALi = (A+B)Li(I—R) (2.5)
Let L2 be a (p-S) X p matrix and M2 a (g-S) X q matrix such that
T _ | I
LC L1 =0 MZnyMI =0 (2.6)

i.e., L,x and Ll§ are uncorrelated and so also are My and My. From

(2.4), (2.5), (2.6) it can be seen easily that

| | .
L,B] =0 , L,ALl =0 (2.7)

We can now take

z = L x ; w = sz (2.8)

as our residual variables, after eliminating L._x and M,y. We now want

1
to test the goodness of fit of an assigned function g'x for the relation-
ship between z and w. It is obvious that this assigned function must be
so chosen that it is uncorrelated with the eliminated variables L,xi in
other words, it must be a linear function, say k'z of z alone. If so,

k will satisfy

— 1
a = Lk (2.9)

We define C_ , C_, C_-in the same way as in (1.3) and then A_, B_ and
zz’ Tzw’ Tww z’ Tz



A+ Bz as in (1.6). We can, then easily write down the new direction

A orr, ,r

and collinearity factors A2z B A3z s Byy s ASz .

32 etc. by
using k'z instead of ¢'x and Az’ Bz for A and B in (1.9), (1.10), (1.12),
(1.13), and (1.17). We must also replace n by n-S, p by p-s and q by
g-S as S variables have been eliminated from x and from y. We, however,
wish to express these test statistics in terms of our old matrices A, B

and the assigned vector g. This can be done as below:

From (2.3) and (2.6),

L -
L2nyM1 =0 (2.10)
Hence
B =c ct =1c cl 1
z ZW WW W2 2 XW WW WX 2
=1 lc ¢l -c mmec v tme Ju
2] xy yy yx xy 171 yy1l 1l yx| 2
= L2BL5 » ©on account of (2.10) (2.11)
Also
- —_— L
A+ B = czz = LZCXXLZ
— ]
=L, (A+B)L2 (2.12)
Let
L = U (2.13)
= T - .
2
p
-1 -1
Then (A+B) = L'(IC L') L
XX
-1
= ] 1 0
L LlexLl | L
1
0 | L2CxxL2

on account of (2.6)



2
:E : -1
= L.(L.C L') 'L, (2.14)
=R 1l XX 1 1
i=1
Hence
k'B (A + B y"1B k = k'L.BL! (L.C L') 1L_BL'k
-z 'z Z z— = 277272 xx 2 27 2~

it

-1 -1
] - ] [
o B{(A + B) Ll (LlC Ll) Ll} Bo

o'B@A + B) 'Ba . (2.15)

on account of (2.7). In exactly the same way, it can be shown that

E'BZA;IBZE - o'BA 1By (2.16)

Note also that

(Byang | 2203 ]

peal o lmant]
|a+B| |L(a+B)L" | |, 331 | L, (A+B) L) |
s |2, |
2 z
= 00T T is
i=1 zZ z
52
= AT (1-r)) , (2.17)
Zl 1

on account of (2.4) and (2.5). Also

k'Bk = k'L BL'k = o'By (2.18)
and k'Aa k = k'L .AL'k = o'Ay (2.19)
PA o~ 2 2—- — -—

Substituting (2.15), (2.16), (2.17), (2.18), and (2.19) in A, , A, ,

. ' v s .
A4z ; A5z s ¥y, and¥Y, , we find that these 'new' direction and



collinearity factors or parts are exactly the same as the old ones vis.

A2 s Ay s Ay s Ag v, , Y5 for x and y, except that A must be changed to

S
A/ (Y - ri), n ton-S, p to p-S and q to g-S.
1

We are now in a position to apply these results to the analysis of

a contingency table, which we do in Part 2 of this paper.

3. Association between Two Attributes

Part 2

Consider a p X q contingency table with the rows corresponding to

p categories a), @

categories bl’ b2, cee, bq

2)

of another attribute

see aP of an attribute'a' and columns to q

Let n, .
1)

j=1, ¢++, q) be the frequency in the (ioj)th cell. Let n,,

be the row totals and n-j (j

n=23 n,, = Z n-j be the total frequency. We define

i j

and

ij]

1,

+++, g) be the column totals.

=1’ ccc’ P;
=1’ 000, p)
Let

(3.1)

(3.2)

(3.3)
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The problem of assigning optimum scores to the rows and columns has
received considerable attention in the literature (Yates 1948, Fisher
1940, 1950, Maung 1941, Bartlett 1951, Williams 1952). It has been
shown that the vectors of optimum scores E and ﬂ corresponding to the

" a's and b's are obtainable from the equations

(3.4)

If we, therefore, consider two vector variables x(p X 1) and y (g x 1),

with the variance-covariance matrix,

v |

J (3.5)
Ll

'y are nothing but the canonical

it is evident from (3.4) that E'x and
variates corresponding to the canonical correlation r2. In other words,
the association between two sets of categories in a contingency table can
also be looked upon as a problem of relationship between two vector
variables. 1In general, one set of scores will not be adequate to describe
the association between 'a' and 'b' completely. We shall need as many
sets of scores, as there are significant canonical correlations between

x and y. If, however, only one canonical correlation is significant,

one set of scores will be adequate. We say, in this case, that the
association is 'linear' or of rank 1.

In the notation of section 1 (of Part 1), Cxx =D ny = N and

1!

C = D, and hence
ha'4 2
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-1 g nyn
B=nN, N =| ) 12l (i, h=1, +«+, p) (3.6)
2 ; nej
j=1
A =D, ~ ND_IN' (3.7)
1 2
A+B=D (3.8)

O

We shall denote by A, B, and D1 , the matrices obtained from A, B,

and D1 respectively, by deleting the last row and the last column. It
is readily observed from (1.1) that r2 = 1 is a canonical correlation
between x and y, the corresponding canonical variates being Xy + e + xP
and ¥y + oo + yq- Obviously, these are irrelevant to our present problem
of assigning scores to the a's and b's. We must therefore eliminate these

variables and study the residual variates z and w as in section 2. By

p - g
taking regression on in and Zyﬁ , we can take the new variables to be
‘ 1l 1

1 N
z; = X o (x1 + e +x) ; i=1, 2, p-1
(3.9)
n'.
and wj:yj—-—-ln (Yl-'.-.- +yq) ; J:l, 2, cee, q_l

(3.10)

We can easily calculate sz, C , C_and hence Az, Bz from these. They

ZW wWw

turn out to be

A=A , B =B -1aa B (3.11)
z o Z o n To-o
where,
n
iy 8,
d - 20 s d = (3012)
0 - n
—— : p'
.
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Note that

= |p° -1 o= ces
A +B|=|p -=ad|=nn, n,./n (3.13)

Consider now the problem of testing the goodness of fit of a set of

hypothetical scores o s, ab for the rows. The null hypothesis

1} az}
here comprises of two aspects (i) the association between a's and b's is
linear and (ii) the true scores corresponding to this linear association

are o Uy “*°s ab. (i) is the collinearity part and (ii) is the direction

part of the null hypothesis.

P
Since we have eliminated X X;,the assigned function g'x , where
1
o' = [al 3 0, ap] ; must - as we noticed in section 2 - be uncorrelated
with Z x; i.e.
d'a = 0 (3.14)

On account of this, @'x can be written, in terms of the residual variables

z as k'z , where

t = - hd LR 2N 4 -
k' = [al @, s o ab P , o qp] (3.15)

We cannot obtain the 'direction' and 'collinearity' factors straightaway
from section 2, in this case, because they involve |a], A' and these do
not exist in the present case, as

Ae = 0 . (3.16)

where

i%; =M, 1 -, 1] = [Eélll (3.17)

and thus A is singular. We must, therefore find the direction and
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collinearity factors by directly working with Az and Bz , especially
for A3 , A4 and A5. A2 does not involve A~l and can be written
directly.

Partition A, B and ¢ as

= |Bo® [P | AR |k , a=| % | P?
t'{ b 1 -t'} a o 1 (3.18)
- pp - PP p
p-1l 1

From (3.16) and (3.18)

Ag, =t
Let £
1 £
Bg=1f= : = =0 (3.20)
: £
£
P b
29>
so that f, = n /
& 13"h3% " 5
Then e'f = e' Bg = d'ag = 0 on account of (3.14). The eqguations

in the p unknowns g' = I[g crr,g 1 = [go' Igp] are soluble. A solution

1’ ) o
is
g=AaA £ (3.22)

where A is a pseudo inverse of A(see Rao 1962). But (3.21) and (3.18)
yvield

A, " Gt &

-1 -1
or o~ %P E=A L
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-1
or go ge = Az fo {on account of 3.19) (3.23)
Also observe that
Bk=(B ~~dd') (@ - ae)
== %% ThS% ¢ %o
= Bag +at=*%f , on account of (3.20)
Hence
X'BA Bk = £ Alf
- Tz 'z ~0 z ~o
_ v -
= zo(go ge) , from (3.23)
=1f'g
=£'2 £
=g'BA By (3.24)

Hence A4z and ASz are the same as A4 and A5 , even if A-l does not exist,

provided we use A for A-l. Hence the direction and collinearity factors

are
\ -1
«'B(A+B) "By/¢o'By
AZZ = A2 =1-
o'Aa/o’ (A+B) o
P __}_fz/ P
DL DEAA
- 1;?1 - 1 (3.25)
1= X fo./ ), o
4 i“i i-~i
i=1 1
But
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'Azl/lAz+leAle22

n|a_|
Z
= (3.26)
P, , P
(nl.nz...onp_) (1 - Z;—— fi/ Zaifi)
1l i 1
P
n|Azl 2:i‘figi
A = —— l + — (3.27)
4z (n, n, **°n_,) P
1-72. b S o
i~i
1
b
Lny.ey Ta.f,
1 ii
and A, = 2 ’ 2
Zng oy = Tfoy  Ingo; - Dfey + $fyg,

A, is A(n-2, 1, p=2). A__ is A(n-3, g-2, p-2) , A

5z 3z is A(n-2, g-2, p-2)

4z
and A5z is A(n-q, 1, p-2). Under the null hypothesis, therefore, from (1.15)

1 . 2 .
- {(n—Z) -3 (1+p—2+l)}rlogeA2z is %~ with p-2 4.f.

is ¥ with (p-2) (g-2) d.f.

2 3z

and - {(n—B) -1 (q—2+p—2+1)} log3A
They pertain to the direction and collinearity aspects respectively of the
goodness of fit test. We can write down similar results for A4z and Asz of
the alternative factorization.

The validity of such tests based on the assumption of normality of
X , for application to discrete data of contingency tables is questionable.
Williams (1952) justifies this by an appeal to asymptotic normality and

also by the result that elementary symmetric functions of ri have the same

expected values in contingency tables, as for normally distributed x. The
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above tests therefore are approximate but, as pointed out by Williams
(1952), adequate for practical purposes, especially when n is large.
In the above analysis, we have used Wilks' A as the over-all
criterion for testing the association between the two attributes 'a’
and 'b'. However, the usual practice, while dealing with contingency

. 2 : . : s s
tables, is to use the y test viz., if there is no association

P g ,
Y=n{ X I n /(o n_.)-1 (3.28)
i=1 j=1 e

has a x? distribution with (p-1) (g-1) d.f. But (3.28) is nothing but

-1
n tr Bz(Az + Bz) (3.29)
or Pillai's criterion. This can be written, more simply as
-1
n[tr B (A+B) - 1) (3.30)

The quantity subtracted in the larger bracket of (3.30) is the eliminated

P
root r2 = 1 , corrxesponding to % X, -
1

The 'direction' and 'collinearity' parts,'Y22 and'Y3z of this over-

all x2 of (3.29) are easily seen, from (1.16), (1.17) and (3.30), to be

g 1 2
—_f, .
1 Ry d z aifi
Y,, =n|—*+— - 221 , 4d.f. (p-2) (3.31)
z P Zn
= aifi i-%
1
2
nx fi/ni'

and Y32 7Y T TTqr, d.f. (p-2) (q-2) (3.32)
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Under the null hypothesis, they have x2 distributions, for large n.
Williams (1952) has given the test of goodness of fit of a set of

hypothetical scores, only for the particular cases q = 2, 3. We have

here the tests for any p and q. Further, we have also given the tests,

based on the alternative criterion (Pillai), which in this case is the

usual X? of a contingency table and is thus more in tune with the classical

method of partitioning an over-all X?: corresponding to suspected sources

of association.
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