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ABSTRACT

Beran (1977) showed that, under certain restrictive conditions, the minimum distance
estimator based on the Hellinger distance (MHDE) between a projection model density and a
nonparametric sample density is an exception to the usual perception that a robust estimator cannot
achieve full efficiency under the true model. We examine the MHDE in the case of estimation of the
mixing proportion in the mixture of two normals. We discuss the practical feasibility of employing the
MHDE in this setting and examine empirically its robustness properties. Our results indicate that the
MHDE obtains full efficiency at the true model while performing comparably with the minimum
distance estimator based on Cramér-von Mises distance under the symmetric departures from

component normality considered.
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1. INTRODUCTION

Several authors have examined the estimation of the proportions p,, py, ... ,p;m in the mixture

density

R2) = pifi(2) + p2fo(2) + -+ + Pmfm(2) (1.1)

where the component densities are specified as belonging to some parametric family, usually the
normal. Hasselblad (1966), Day (1969), Hosmer (1973), Fowlkes (1979), and Redner and Walker
(1984) have examined the use of maximum likelihood (ML) estimation of the parameters in (1.1) under
the assumption that the component distributions are normal. Woodward et. al. (1984) investigated the
use of minimum distance estimation based on a mixture-of-normals projection family and using
Cramer-von Mises distance as an alternative to maximum likelihood. We denote estimates obtained
in this manner as MCVMD estimates. They were able to show that the MCVMDE is more robust
than the MLE to symmetric departures from the component normality such as the double exponential,
t(4), and #(2) distributions. Not surprisingly, however, the MLE was shown to be superior to the

MCVMDE when the components were normal.

Intuitively, robust procedures are those which are insensitive to small deviations from the
assumptions. Donoho and Liu (1988) have shown that the class of minimum distance estimators has
“automatic” robustness properties over neighborhoods of the true model based on the distance
functional defining the estimator. However, robust procedures such as minimum distance estimators
typically obtain this robustness at the expense of not being optimal at the true model. In fact, Bickel
(1978) describes robustness as “paying a price in terms of efficiency at the (true) model in terms of
reasonably good maximum MSE over the neighborhood.” The behavior of the MCVMDE described
above is a good example of this trade-off. However, Beran (1977) has suggested the use of the

minimum Hellinger distance (MHD) estimator which has certain robustness properties and is



asymptotically efficient at the true model. Although Beran suggested a computational procedure for
evaluating the MHDE, he provided very limited empirical evidence concerning its performance as an
estimator. Eslinger and Woodward (1990) investigated the use of the MHDE for estimation of the
parameters of the normal distribution with unknown location and scale. They demonstrated the
practical feasibility of employing the MHDE in the normal setting and demonstrated empirical
robustness far outside Hellinger neighborhoods of the true model, and also demonstrated the true model
efficiency properties shown theoretically by Beran. Tamura and Boos (1986) have investigated the
performance of the MHDE in the estimation of location and covariance in multivariate data. The
empirical findings of Eslinger and Woodward and of Tamura and Boos indicate that the MHDE is an

attractive estimator.

In this paper we examine the use of MHD estimation in the mixture of two normals whose

density is given by

2 2
fo(2) = 455 p exp{—% (I—;T”l) } + %;—132 exp{—%(z—;zi"’) } (1.2)

where 0 = (1, 01, pa, 02, p)'. We will let (H) and p(L) denote the MHD and ML estimates of the

parameter p. In Section 2 we provide background material on the MHDE. In Section 3 we discuss its
application to (1.2) where p is unknown and the remaining parameters are known while in Section 4 we

investigate the case in which all five parameters are unknown.

2. THE MINIMUM HELLINGER DISTANCE ESTIMATOR

Let X;, X5, . . ., Xp denote a random sample from some unknown population with
distribution function G. Further, let ¥ = {FO; 0¢©}, be a family of distributions, called the projection
family or projection model, depending on the (possibly vector valued) parameter §. We will assume

here that the distributions in F are mixtures of normals with densities of the form (1.2). A minimum



distance estimator of @ is a value  which minimizes the distance between the data distribution and the

projection model, usually by minimizing the “distance” between F0 and Gy where Gy is the empirical

distribution function

Gn(t) = %

Tige

(2.1)
%
where I denotes the indicator function. For example the MCVDE is obtained by using Cramér-von

Mises distance, w?, which for distribution functions @, and Q, is given by

(@ @) = [ () - QO 40, (22)

to compute the distance between Fj and Gy

The Hellinger distance between two absolutely continuous distributions with distribution

1 1
functions Q; and Q, is defined to be || ¢ — ¢3 || where ¢, and ¢, are the corresponding densities and

the notation || e || denotes the usual L, norm, i.e.

9 1/2
11 11
& —d&ll= [/(Qf - q%):l (2.3)

where the integration is with respect to Lebesgue measure on the real line. The MHD estimator of 6 is
1 1
defined as a value of 65 which minimizes || faz — §% || where §y is a suitable nonparametric density

estimator. We use the kernel density estimator

n. [z_X.
in(a) =g > o ’) (2.4)

=1

based on the Epanechnikov (1969) kernel w(z) = .75(1—z%) for | z | < 1.



Parzen (1962) found the h, which minimizes the integrated mean square error between a

kernel density estimator and the true density g. The optimal ky in this sense is hy, = a(w) B(g) /s
where
J v'(y)dy
afw) [ Z ]2/5 (2.5)
[ w(y) v*dy]
and

—-1/5

2
ﬂ(g):[ /(%;%”)) dz:I . (2.6)

For the Epanechnikov kernel a(w) = 1.71877, and when g¢(z) is a N(u,0?) density, i.e. with mean g
and variance o2, then #(g) = 1.3640. A natural implementation of the Epanechnikov kernel density

estimate is to use hy = (1.71877)(1.364sn)n-1/ ® where sy is an estimate of scale. In the case in which

%¢(2)\’
¢(2) is a mixture of normals as in (1.2), /{ 89(:)} dz is given by
T

2

JE5} = [ oo t) (oY

+ 2%% ¢(r, pa 05 [ 2) (Zz - 1)2

2 2
+ 2[)(1—’1))3 e_% (21 + 22)(21 _ 1)(22_1)}(12 (2_7)

3
27 0] 05

where z; = E;—lpl, 2y = z; : 2 and #(z; p, 0?) denotes the normal density function with mean y and

variance o2, In our implementation we used h, = 1.71877 ﬂ(g)n_l/5 where 3(g) was obtained using

numerical integration to approximate the integral in (2.7). From (2.7) it is seen that in this setting,



B(g) depends on all five of the mixture model parameters rather than simply being a function of scale

as in the univariate normal setting.
3. MHD ESTIMATION WHEN ONLY p IS UNKNOWN

(a) Theoretical Results

As a first step in examining the use of the MHDE in the mixture-of-normals setting, we
consider the case in which fo(z) is given by (1.2) and only p is unknown. In Theorems 3.1 and 3.2 we
provide conditions for which the MHD estimator in this setting is consistent and asymptotically
normal. The consistency of the MHDE follows from the Hellinger consistency of the kernel density
estimator together with the equivalence of the Hellinger metric on the probability distributions and the
Euclidean metric on the parameter space, see Theorem 3 in Beran (1977) or Theorem 3.1 in Tamura
and Boos (1986). In this section the Tamura and Boos paper will be referred to as TB. Either of these

theorems implies the following:

Theorem 3.1. Let fy(z) = 6f,(z) + (1 — 6)f,(z), where f, and f; are distinct, continuous densities on

R, and let 6 € [0,1] = ©. If §, is Hellinger consistent, then the MHDE is consistent.

The asymptotic distribution of 8, is described in the next theorem, which is a consequence of

TB’s Theorem 4.1.

Theorem 3.2. Let fy(z) be as in Theorem 3.1, and let 6 € (0,1) C [0,1] = ©. Denote by fn the MHDE
of 8 based on a random sample of size n from a population with density fg. Also suppose:
1. fl2*f,(2)dz< oo and [|2|*f,(x)dz < oo for every k > 0.

2|:iﬂoo fi(z) =0,i=12.



3. f; and f, satisfy Condition 5 from TB’s Theorem 4.1.
4. The bandwidth for the kernel, k,, satisfies h, = an™° for some ¢ € (0, 1/4) and a>0.

Then \#(f, — 6 — Bn) 4 x5 (0, I(6)™"), where I(8) is the information matrix and By, is given by

Bn=2c¢,/¢em(ﬁ,—m) and  C5 Do

where E[§n] = §n.

As a result of Theorem 3.2 we see that §, is asymptotically fully efficient. Our utilization of
these results will be to the case in which f0 is the mixture of normals in (1.2) with u,, oy, p,, and o4

known, and as mentioned earlier, we will use the notation j(H) for fn.

(b) Implementation Details

11
The estimates may be obtained by minimizing — [ f;@ﬁ over # ¢ [0,1]. This minimization was

performed using a golden section search as described in Press, et. a. (1986). The starting values for this
optimization were obtained by examining the values of the integral over a grid of 8’s on [0,1]; the
optimization routine was always started in an interval which contained the global minimum of the
quantity over the grid values. The integral was estimated using Simpson’s rule with a mesh of 201
points over the support of gn. The bandwidth of the estimate §n, was obtained by plugging into (2.7)
the known p;, 0,, s, and o, along with the mixing proportion estimated by the quasi-clustering

technique in Woodward et. al. (1984).

(c¢) Simulation Results

Simulations were run in order to examine empirically the theoretical results of this section

using the parameter configurations employed by Woodward, et. al. (1984). Simulations reported in



this section and the next are based on mixing proportions .25, .5 and .75. For each of these mixing
proportions, we considered mixtures of the densities f;(z) and f,(z) where f,(z) is the density for the
random variable X = aY and f)(z) is the density associated with X = Y + b where a>0 and b>0.
Thus, a is the ratio of scale parameters which we take to be 1 and v2 while b was selected to provide
the desired overlap between the two distributions. We considered “overlaps”, as defined by Woodward,
et. al. (1984) of .03 and .1. In this section we consider the case in which Y is normally distributed.
For each set of configurations considered, 500 samples of size n=100 were generated from the
corresponding mixture distribution, and for each sample considered, the ML and MHD estimates were
obtained. In Table 3.1 we present the results of the simulations, showing simulation-based estimates of

the bias and MSE given by

& 1 B |
Bias = - > (p; — p)
$=1
. ns
MSE = & 3 (3; — )

i=1

where n,; denotes the number of samples (500 in our case) and p; denotes an estimate of p for the ith
sample. In the tables we report aMSE where n is the size of each sample (n = 100 in our case), and in
all cases, an approximate standard error of a tabled aMSE is (.0632)(nMSE). We also table empirical

measures of the relative efficiencies of the MHDE with the MLE, i.e.

MSE (MLE)

E=— .
MSE (MHDE)

Examination of the table shows that the asymptotic full efficiency with respect to the MLE guaranteed
by Theorem 3.2 holds approximately in the current setting with n=100 as evidenced by the fact that

all E values are near 1. In Figure 1 we show a normal probability plot of p;(H)and p,(L),i=1, ...,



500, obtained in the simulation for the case p = .25, ratio of scale parameters = 1 and overlap = .1.
There it can be seen that the sampling distribution for each estimator closely approximates a normal

curve.

It should be noted that the asymptotic result in Theorem 3.2 is for the case in which the
bandwidth k, is nonstochastic. In our implementation this bandwidth is random since it depends on
the starting value estimate of the parameter p. The simulations indicate that the results hold in this

case.

4. MHD ESTIMATION WHEN p, p;, 0,, ps AND ¢, ARE UNKNOWN

We consider in this section the case in which the five parameters p, u;, ,, py and o, in (1.2)
are all unknown, and we will again compare the MHD estimators with maximum likelihood. It is well-
known that the likelihood function is not bounded in this case (see Day 1969), and thus “ML”
estimators in this setting are obtained by finding an appropriate local maximum. We will empirically
compare the MHD and ML estimators in this setting using a large-scale simulation analysis in which

we examine the efficiency and robustness of the estimators.

(a) Implementation Details

1 1
Since minimizing || f02 — §3 || is equivalent to maximizing

11
ff02 3?& ’ (41)

Beran (1977) and Eslinger and Woodward (1990) obtained MHD estimates by using Newton’s method
to maximize (4.1). One advantage of this approach is the fact that §, is zero outside a finite interval,

simplifying the integration in (4.1). Woodward and Eslinger (1983) investigated the corresponding use



10

of Newton’s method in the mixture-of-normals case with starting values for the iteration being obtained
using the quasi-clustering technique discussed by Woodward et. al. (1984) for obtaining starting values
of the mixture model parameters. However, they found that Newton’s method in this setting often
failed to converge to reasonable estimates, with convergence occurring in less than 80% of the
simulated samples from some configurations. Since the MHDE, @H, is defined to be a value which

minimizes the integral

I:/{f% - A%}z (42)
[} gn¢ >

we approximated this integral using the trapezoidal rule to obtain

1 1 z
I=ay é e (f92 (4) - o (‘i)) (4.3)
where a; = o = % and a; =1 for i=2,3,..., k—1 for a partition 1}, ¢, . . ., i of [a,}], a finite
interval. In our case we took k= 200 and [a,}] to be the interval [X;) — 3, X, + 3] where X,
denotes the jth order statistic. The procedure employed was to minimize the sum-of-squares in (4.3)
using IMSL routine ZXSSQ which utilizes the Marquardt-Levenberg algorithm (1963). Using this
procedure, the MHD estimates converged in at least 97.8% of the samples for each configuration
considered. In the simulations, if convergence to “reasonable” values was not obtained, the starting
values were used as the corresponding estimates. Specifically, if any of the conditions &, > X(") —
Xay 02> X — Xy b1 < Xy — (X(ny = X))/10 or jiz > X(ny + (X(ny — X1))/10 for any
estimate, the corresponding estimate was taken to be the starting value. The kernel density estimate
§n was obtained using the Epanechnikov kernel. In this case §(g) was obtained by substituting the
starting values for p,, oy, py, 0,5, and p into (2.7) and then performing the required integration

numerically.
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(b) Simulation Results

The MLE and MHDE estimates were examined using simulations based on the basic
framework used in Section 3, i.e. we considered the same mixing proportions, ratios of scale parameters
and overlaps as considered there. As before, 500 samples of size n=100 were generated from the
corresponding mixture distributions, and we considered the cases in which the simulated component
densities were normal, #(4) and #(2). For each sample considered, we computed the ML, MHD and
MCVMD estimates initialized employing the quasi-clustering technique used by Woodward et. al.
(1984). In Table 4.1 the simulation results for simulated mixtures of normal distributions indicate that
again, as in the results of Section 3, the MHDE appears to obtain full efficiency at the true model as
evidenced by E near one in all cases. However, the MCVMD estimators had larger MSE’s than did the
MLE in 9 of the 10 cases with some of the efficiencies near .5. In Table 4.2 we show similar results for
samples which were simulated as mixtures of #(4) components. All of the E’s in this table are greater
than one providing evidence that the MCVMDE and MHDE are more robust to the departures from
the assumption of normal components than is the MLE. Also, comparison of the MSE’s for the MHD
and MCVMD estimators indicate that the robustness of the MHDE is comparable to that of the
MCVMDE in this setting. In Table 4.3 we briefly consider the case in which the component
distributions are 1(2), i.e. the departure from normality is more extreme. In this setting the
performance of the MLE further deteriorates with respect to that of the two minimum distance

estimators.

Although theoretical results similar to Theorem 3.1 and 3.2 have not been shown in this case,
the simulation results suggest that such results hold. Although our emphasis here has been on the
estimation of the mixing proportion, p, the ML and MHD routines used here obtain estimates for all

five of the parameters in (1.2). The results for location and scale parameters are similar to those
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shown here for the mixing proportion when sampling from normal mixtures. In the case of simulations
from the non-normal components considered here, the results for the location parameters also exhibited
patterns similar to those shown in Tables 4.2-4.3. However, the scale estimates obtained by all three

estimation methods often exhibited substantial bias in these non-normal cases.

5. CONCLUDING REMARKS

Our results indicate that the MHDE obtains full efficiency at the true model while performing
comparably with the MCVMDE under the symmetric departures from component normality
considered. Thus, the MHDE is a very attractive alternative to both the MLE and the MCVMDE in

these settings.

The computation of the MHDE in this setting is quite straightforward, yet in the cases
considered here, it took from 1.5 to 5 times longer to calculate than the MLE and about 2.5 times
longer than the MCVMDE. However, Eslinger and Woodward (1990) have shown that for very large
sample sizes, the MHDE can be faster to compute than competing estimators because of the fact that it
requires only one pass through the data to evaluate the kernel density estimator at the appropriate grid

points for numerical integration.

As would be expected, the performance of the estimators declines as the overlap between the
two components increases. The sensitivity to overlap was more extreme in the case in which all five
parameters are unknown since the location and scale of each component must then be estimated from
the data. Estimation in the case in which all five parameters are unknown can be a difficult problem
when there is not substantial separation between the components. In our simulations, the estimators
were quite poor at .1 overlap when all five parameters were estimated. In fact, in these cases the
starting values often outperformed the maximum likelihood and minimum distance estimators. This

behavior has been previously observed by Woodward, et. al. (1984) and Woodward and Gunst (1987).
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APPENDIX

Proof of Theorem 3.2: The proof proceeds by verifying conditions 1-7 of TB’s Theorem 4.1. We begin
by setting up the notation.
Let f, f, be continuous densities on R, and for 0 ¢ [0, 1] = © let fy = 6f; + (1—0)f,, so that f,

is a simple mixture of f; and f,. As in TB, we let

s0=1{%

S0 = 30 %0 = 2 fo (h—1£) Isupp f0 ’

1 —3/2

.8.0 = —3 fg (fl“f2)2 Isupp f0 ’

and

-1
bo(a) = = 540 1) @] o)

= 1 fl(l)—fg(l') I
10) " f(z) “supp fy(2)’

where Isupp =) denotes the indicator function of the support of f{z) and where /(@) is the Fisher

Information which is in this case equal to

/ (h=F)?
Jo

Note that I(f) > 0 if f, and f, are not equal. Also, if § €(0,1), J() < oo, since
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(h—h)? [+ 5 ﬁ 5’
[E sz [hgE <o [z

f
7 0f

—ofl , 1

= 2(0 + 1—0) :

Finally, note that we often drop the constant a in the bandwidth A, = an™°; this does not effect the

result.

TB.1  The conditions on the kernel are satisfied by the Epanechnikov kernel (symmetric, compact

support = [—1, 1]). Our condition on &, implies nhky — oo and hy — 0.

TB.2  Condition 2.b holds: © = [0, 1] is compact, fo(z) is continuous in 6 and 6, # 0, = f #

f‘_9 , on a set of positive Lebesgue measure.
TB.3 Let ap = hy ' and let X ~ f0’ Xf1 ~ f, and Xfl ~ fi. Then for te[-1,1],
n Prob, {| X — hpt| > an}
=n0 Probfl {I Xf1 — hpt| > an}

+ n(1-0) Prob, { | Xp — hat|> a,,}

IA

_ k, k
né Ef1 I Xf1 hut| ¥/aqn

+ n(1—0) By | X; — hnt | krok
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Since hy > 0asn — oo and E | X — hpt Ik is a continuous function of hyt (this is particularly easy
to see for k an even integer), Efll Xfl — hyt Ik and Ef2| Xf2 — hpt Ik —~ Eg | Xf1 |k and Ef2| Xf2|k,

respectively, uniformly over ¢ ¢ [—1,1] . Thus,

ntes[ufl’llProbe{l X — hpt|> an} <0 (n a,,_k) .

k

A choice of k can be made so that nay, * — 0 as n — o0.

TB.4 We examine

IA
3
[
2

[y
|-

+
3

(T
[
-]

(3]
|~

This converges to zero since 0 < ¢ < i.

TB.5 We must show

fg(z + hat)
sup sup -

| z] < € te[-1,1] fo(2) =0(1) .



Note

fo(z + bnt) _ fi(z + hni) _py 22(z + Bat)
e T hm T T
< fi(z + kyt) I Lz + hgt)

R AG) supp f,(z) f(2) Isupp L(z)

The result follows from our Condition 3.

TB.6

1. / ¥y fy = I(0) 7" < oo, since f; # f,.

2. / vp(z + a) fy(z) dz = K(6) / (ﬁ(x+;;(;+£2)(z+a)) fol2) dz

_s [ (filz+e) — fi(zra))
<0~ [ ( e )f(,m &z

2
<107 | (,l, 5 l—i—o) foa) ds < o,

independent of a.

3 [(vea+ 0 = wy@) Sy de

2
_ 19 (f1(2+a)—fz(r+a)_fl(r)—fz(Z)) 70 de
@ @ v

16
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<IO)~"%| fa(z)1/4 (f1(2+;;(:+1;2)(2+a) _ fl(z)fo?z)fz(z)) ”20 / JT@ .

The integral [ m < oo since the tails of f; and f, (and so fB) decrease faster than n_b, for any b > 0.

Thus, we need to show the Lo norm goes to 0 as a — 0. To see this, note first that both

fi(z+a) — fr(z+a) 1 1
e | Setie
and
fi(z) — f(2)
‘—IWL [ < 611 + T—i—o .
Thus
| et = Bt ot < (34 1) f@ 7 = 0

fo(z+a)

as | z| — oo by Condition 2. Given e >0 3 M > 0such that V | z| > M and any a € R,

| Alz+a) = fo(zta) /

4
f9(2+a) < €f2.

| fp(2)’

For |z | < M,

h(zt+a) — f(z+e) _ fi(2) — H(D)) , /4
( 1 fg(-"’"‘ag fg(”) )fg( ) 0

as @ — 0 uniformly over | z| < M. So 3 é§ > 0 with |a| < § implying
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I f01/4(z) (fl(ﬂ;;(;f:)(ﬁa) - fl(z)fa_(-z)fz(z)) l, <e€-

TB.7

1. Lemma 1 of Beran

@) % sg(z) = : fg—l/z(fl—fz), which is continuous in § V z € supp fp.

(ii)  We need to show || 3| is continuous. We will show the stronger condition, that 5,

is L, continuous.
First note
/§z=%1(0)<oo,sothatéoeL2.

We now compare 3 ) and 3 0+A0°

/ (35 - 50+A0)2 = (A0)? / (h=h)*

1
f0f0+A0(J_f_9 + Jfo+Ao)2

2 4 1
<0? [ Gt gl

2 [ fi+fe hthe (fl_f2)2
< (49) / fo Joxne fo
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fi—f)?
< (a6)° ((% + 1io)(o+1Ao + 1—(01+A0)) / ( 5

which converges to zero as A§ — 0.

Lemma 2 of Beran:

i) $,= -1 f—3/2 (fi—f2)?, which is continuous in 8 V z € supp f,
9= —49 1—J2) PP Jg-

(i)  To show 5y € L, and || §4|| is continuous, we will show that ¥, is in fact

L, continuous.

First note

/ (.3.0)2 =& / th fﬁfz)

(i—-f)? (h+h)?
Ty %

116( +1 0) / (fl"fz) < oo.

Next we argue that § is L, continuous:

/(m £ G fz)’)’
&

fyao

IA

I/\

<2 [i- fz)(f )2

g ftﬂ+A0



3.

2
+2 [Gi-p) ( A )

fof:a+A9 fz+Ae

_, / (h—f)* ( A8 (fi—1,)

o \{Tolgras ({7 + [Tora6)

v [ U0 (Aa ¢t fz))
forae \ Tolotne

From here, one may proceed as in Lemma 1 part (ii).

0 = 4(fp) € (0,1), since 6 € (0,1) .

/'s'e f;/zzzl(ﬂ)_1 < o0

)2

20
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Table 3.1 Simulation Results for Mixtures of Normal Components
With Only p Unknown

Sample Size = 100

Number of Samples = 500

.10 Overlap .03 Overlap

Ratio of i A X A

p  Scale Factors (a) Estimator Bias aMSE E Bias sMSE E

.25 1 MHDE 011 297 1.04 —.000 212 .99
MLE —.003 .310 —.002 .209

.50 1 MHDE .000 .309 1.11 .003 281 1.00
MLE .000 343 .002 .280

.25 N2 MHDE 010 311 .96 .000 207 .98
MLE 001 299 —.001 .203

50 2 MHDE 002 315 1.05 .003 302 .99
MLE —.002 332 .001 .300

.75 ﬁ MHDE -.010 297 1.07 —.000 216 1.03
‘ MLE —.002 319 —.001 222



Table 4.1 Simulation Results for Mixtures of Normal Components

With All 5 Parameters Unknown

Sample Size = 100

Number of Samples = 500

.10 Overlap .03 Overlap
Ratio of A R A A
p  Scale Factors (a) Estimator Bias aMSE E Bias aMSE E
.25 1 MHDE 064  4.723 1.06 .006 435 103
MCVMDE  .142 8.944 .56 028  1.029 44
MLE 063  5.003 .088 449
.50 1 MHDE 009 2733 1.16 .005 403 1.02
MCVMDE -.009 3.683 .86 .004 440 94
MLE .007  3.158 .004 412
.25 2 MHDE —.006 2.005 1.06 —.003 383 1.25
MCVMDE  .080 5.228 .40 .019 .831 .58
MLE —.005  2.117 .005 479
.50 {2 MHDE —.021  2.005 1.29 —.006 376 1.07
MCVMDE .005 2.951 .88 | —.000 393 1.02
MLE —.014  2.584 —.002 .402
.75 2 MHDE —.073  4.660 1.07 —.003 396 1.29
MCVMDE -.119 7.742 .64 | —.022 1.020 .50
MLE —.077  4.993 —.002 512



Table 4.2 Simulation Results for Mixtures of #4) Components

With All 5 Parameters Unknown

Sample Size = 100

Number of Samples = 500

.10 Overlap .03 Overlap
Ratio of . A X A
p  Scale Factors (a) Estimator Bias =sMSE E Bias aMSE E
.25 1 MHDE .056  4.862 1.18 015 297 277
MCVMDE 066  4.144 1.38 023 428 1.92
MLE 069  5.725 035 823
.50 1 MHDE 002  3.489 1.56 .000 314 1.51
MCVMDE .003 1.855 2.94 .001 301 1.57
MLE .024  5.457 .003 473
.25 N2 MHDE 076  4.348 1.17 .014 404 248
MCVMDE 095 4.968 1.02 031 .652 1.54
MLE .090  5.080 .046 1.003
.50 \2 MHDE 039  3.300 1.52 —.003 .250 1.82
MCVMDE 025 1.978 2.54 —.000 .254 1.80
MLE 024 5.030 .009 .456
.75 {2 MHDE —.031 4.780 1.77 —.012 273 1.90
MCVMDE —.055 4.045 2.10 —.019 .396 1.31
MLE —.078  8.483 —.014 .519



Table 4.3 Simulation Results for Mixtures of #(2) Components
With All 5 Parameters Unknown

Sample Size = 100
Number of Samples = 500

.10 Overlap .03 Overlap
Ratio of X A . R
p  Scale Factors (a) Estimator Bias aMSE E Bias aMSE E
.25 1 MHDE 123 6.996 1.14 .013 257  6.05
MCVMDE 079 3.745 2.13 .024 328 4.74
MLE 097  7.962 .069  1.555
.50 1 MHDE —.007  4.547 2.20 —.002 285  2.96
MCVMDE .006 1.172 8.55 —.002 282 2.99
MLE —.003 10.016 .004 .843
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Figure 1: Normal Probability Plots of MLE and MHDE Estimates
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