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by

H. L. Gray and Gene Herrin

I. We assume a region R composed of regions R, and R,, i.e. R =R, U Ry, Ry, Ry # ¢. Using
the notation mbji € Rj to denote the occurrence of the ith event in Rj’ let
mbji = Aj + iji + cji’ mbji € Rj’ ] =12
and let
mbi = A+ BWi + ¢,
where mb, is equally likely to be from R; as R,. Further assume i ~ N(0,02) and let X, = mb, -
BW,. Then
EX] = 1A, + A)=A
and (1)
0',2( =02 +d?, where2d = A,- A, .
Without loss in generality, we assume A, > A,.
NOTE: The distribution of X is unimodal unless
|Ag - Ay] > 20.
Now the distribution of X is not normal but is a mixture of normals. Treating X as normal can lead
to significant errors if d is large. However we will now show that if 2d ~ & or 2d = ox (which is
approximately the case in the Shagon region) then X can be treated as normal for all practical
purposes. This can be shown as follows. Let Z, be the 100(1-a) percentile point of a N(0,1)

distribution. And we have

P[%SZMXGR]:l-ﬂ. @)



If X is normal @ = 3. The question here is how much does a differ from . But, again assuming

P[XeR,] = %, we have

X-A
= %PI: 01 < Zaog(+le€R1:]

P54 <74 | XeR]|= 1P %A <74 | XeR, | + JP[5A < 74| XeR,]

@)

X-A ]
+ %PI: 72 < Za;‘,xd|xGR2] .

Now suppose 2d=¢. Then from (3)

] X-
p[>g_;* < Zg | XER] = %P[ A1 15 Z2°‘+ Y XeRy

X-A, _ 5 Zq-1
+ %Pl: 72 < P5% | XeR,

or

P[%ASZQ1XGR]=%[¢(———EZ;+I)+ @(%)} =1-8, 4

where ® is the standard normal distribution function. Equation 4 can now be used to find 3. Table 1

below compares o with 3 when 2d = o. It is very clear that in the tails of the distribution there is no

practical loss in treating X as normal when the Ai are this close together.

TABLE 1

@ B
.100 101
.050 .050
.025 025

If d is slightly larger the approximation by a single

normal is still valid, although not quite as



good. For example, if 2d = o, then rather than Equation (4) we obtain

) 9ot 1\ 1x [ 2Zg+ 1
{XA<Z x1ﬂ=l¢ a lg| 22et1) _ 1. 3,
Tx SZa|XER|=3 5 /T2 I A

Table 2 below compares a and § for the case 2d = o .

TABLE 4
a | B
100 i 102
050 | 050
025 | 024
010 | 009

It is worth noting that the above results assume that X is equally likely to come from R,; as R,. If this
is not the case then
A1ty A+ A, + Ay
In fact if we assume X €A, with probability p; and X€A, with probability p,, then p; + p, = 1 and
E[X] = A =pA; + pA,
and (5)
0')2c = o® + 4p;p,d?,
2d=A,-A; .
Note that not only does A ;é + At A, but o x # 02 +4d%.

The implication of (5) is that care must be taken in formulating the assumptions when data
is best modeled as regionalized. It is interesting to note that although the mean and variance are
strongly effected by the p;» the approximation of the mixture distribution as a single normal is very
robust to the p; and actually depends primarily on the magnitude of d. That is, following our previous
steps it is easy to show in general that

1-8 = P[“X&:f‘ < Zq | XGR] = p1®({1+p1Ps Za+P2) + P2&({1+P1p2 Za-P1) (6)

Equation 6 can be used to calculate 8. Table 3 shows that treating X as Normal when 2d =



introduces only a small error. The result is entirely similar if 2d = oyx.*

TABLE 3
P2 a B P2 a B
1 .100 A11 N .100 .099
.1 .050 .052 N .050 .047
1 .025 .027 T .025 .022
3 .100 .102 9 .100 .098
3 .050 .052 .9 .050 .048
3 .025 027 9 .025 .024

II. Normalized mb and normalized mLg
We assume the basic relationship in I, where A;,A, and A are known, at least to a stated
precision. Now we assume that there exist constants é, §; and 3, 3,, B, such that
ngi =6+ Flog Yi +e¢ over R,
ngji = 6j + ﬂjlogYi + ¢;; over Rj, (G=1,2). @)
However (following the same reasoning as Russell) since Y; is unknown the é‘s and (‘s cannot be
estimated directly. Now by (1) and (7) (we restrict ourselves for now to R but the procedure is the

same over R‘j)

mb.-A € mLg;-6 €
Therefore
Be;
ngi=%mbi+6'%A+ei'fl
= C+ Dmb, + ¢, (9)

Zy +P2) )

*If 2d=0x, then 1-8 = pfb(%) + p2¢(m
-P1P2 -P1P2

For specific p; and a the results are about the same as Table 3.



where
C=6-%A,D=%, e{:e.-gc.. (10)

Since mbi and ngi are observable, least squares estimates can be obtained for C and D. That is

Y(mLg; - ng)(mbi-E)

C=mlg-Dmb, D= (11)

=32
From (10) we have
Now let
mb. - A mLg.-6
mb! = B and mLg] = i T (13)
g
Then
€ e. 5
¥ = i * _ i B 66
mbi_wi+§ andngi._(Wi+ﬁ)E+7

Note that if =4, then E[¢] = 6 and

e 2 e
* _ i, 86 _ i * _ Z
and hence E[ng;‘] = W,. Of course B # B and therefore E[ng;‘] # Y,. However, as has been

pointed out in the past, errors in 3 when Y, is in the neighborhood of 150 are not very significant.

Following our previous notation, let

mb.. - A. ng-- - 6.
1'1'1bj]“l = —EB——‘] and ng;i = +’ y J = 1’ 2 ) (14)
J



where we assume f3, ,Bj , and Aj are known and 5j is determined by (12) with the data restricted to Rj'
Then

cov{(mbi*-wi),(ng;‘-wi)|R} = LCov{(mb}-w,),(mLg-w,)IR,}
+ % Cov{mb;‘ - wi),(ng;‘-wi)|R2}
= %{Cov[(mb’{i—wi),(ng’{i-wi)] + Cov[(mb;i-wi),(ngzi-wi)]}. (15)

Now let

a’mb*(Rj) =o0; and ang*(Rj) =0, j=12.
Then from (15), denoting the correlation between mg* and mLg* by p’{2 )

010,
Umb*(R)Um

Pla(R) = 3 —® [P1a(Ry) + pfy(RD)] - (16)
g

Therefore if pJo(R;) = p]o(Rs), then

010,

* *
P12(R) = P12(R1) . (17)
From (17), if also ang*(R) = ang*(Rj), then

Pla(R) = "—m;(R) p1a(Ry) (18)

or



* * tTmb"‘(R) *
P12(R2) = P12(R1) = —Ul P12(R)

|6mb*(R)—d2

Note that if 2d = amb*(R), then

PlaRe) = £ #1a(R) = 115 pfp(R) (20)

But if 2d = ¢, (R,), then

PhaRe) = 2 p1y(B) = 112 pfy(R) (21)

Notice that (assuming the ﬂj are known) from Section I it follows that if o (Rj) = oy, then

mLg
a’ng(R) = ang(Rj) if and only E[mLg;;] = E[mLg,.] = E[mLg;]. Therefore, if we claim ’Bj = B,
R)=¢ (Rj) if and only if 6j = §é.  From (12) it is clear, that if independent estimates

“mLg mLg

(independent of 6j) of A; and A,, can be obtained such as that obtained for A, then we can test the
hypothesis that all of the reduction in variance of the difference in mb and mLg is due to a reduced
variance in mb by testing the hypothesis that 6§, = §,. Even if 'Bj # [ but we assumed the 'Bj are
known, the hypothesis can be tested.

ITII. The Unified estimate

Let
* *
u= &—;m_Lg_ ,  A? = Var[mLg* - mb*].
Then
2 _ 1,2 2 *
oq = 4(Umb* + ang* + 2 (amb*ang*pm) , (22)
and



2 __ 2 2 _ *
A= Umb* + O'ng* 2 amb*ang*pl2 : (23)
Therefore
1
_x 2 *2 212
”ng* = P120'mb* + [Umb*(p12 - 1) + A ] . (24)

If we are given o A, and p’i‘2, we can calculate a’ng* from (24) and hence obtain oy and the

mb*’

accompanying F number.

The assumption that T b and p’i‘2 are known can be reduced to either 7 b* O p’i‘2 is

known by the added assumption that o k= In this case, it follows at once from (23)

mLg*
that

P, S— (25)

£ =
mb \[2(1‘/"{2)

and, for each fixed p’i‘2,

2 o’ b* *
(max)oy = '“I%—(l + pl9) =

214 p¥
» T (26)

1- ]y

As a functionof ¢ _ 4 and o i. e. for fixed p’i‘z, a% is clearly a maximum when o =

mb mLg*’ mb*

ang*. Equation 26 gives an expression for max 0'121 as a function of p’i‘2. It could of course be just
as easily given in terms of T b That is, the assumption T bt a’ng* also easily yields, for each
*
fixed P19
2
(max)a% = ar2nb* - ’\71— . (27)

Whether you use (26) or (27) depends on whether you transport o b+ O p’i‘2. If you transport both
2

you get an estimate of 6121 instead of an estimated bound on o] .

If A; and A, are given and é; and §, are estimated, from our previous remarks,



A,-A
a?nb*(Rl) = arzrlb*(R) - (_22 1)2

>

2 — 2 _ 2‘81 2

o2 LB = ot @) (57)

. oo prRIT L (R)

P12(R1) = 3 P12(R)-
Umb*(R’l)ang*(R)

Therefore all of the parameters can be translated to the subregion required to get a%(Ri) and thus
F(Rj).
Estimated A2, 83 =3

ngi=C+Dmbi+ei',

| %ei, (¢; ~ mbg; , ¢ ~ mb,).

!
e. = e. -
1 1

Now if 3 = 8, E[6 - 6] = 0, so that E[ng;‘] = E[mbi"] =W, and
A= Var(ng; - mbik) = E[(ngi" - mb;‘)z] .
A=

ﬁ (mLg - mb})? .

=M

More than one CORRTEX

If more than 1 CORRTEX is available or the historical data is valid, it is not necessary to
*
assume O'mb* or p12 .
In that event, let
u, =m, - Wi , 1=1,2,..., k,

w, = observed log yield. Then letting A =%, and

m -A
4 _ Tk+1
Wk+1 =—F

it can be shown that



1
o2 = k2

0121 can then be estimated from the sample variance of the u, and a test can be obtained which does not
depend on o b* Ot p’{z.
If k>1 calibration shots are available, a bound on the variance of a%v and hence a bound on

the F-number for R and Rj could therefore be obtained without assuming pIz or o ik by using the

methodology of Alwine, Gray and McCartor (1988).
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