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ABSTRACT
We derive a class of higher-order kernels for curve estimation and window width se-
lection which can be viewed as an extension of the second-order Gaussian kernel. These
kernels have some attractive properties such as smcothness, manageable convolution for-
mulae and Fourier transforms. Efficiency calculations indicate that the Gaussian-based
kernels perform almost as well as the optimal polynomial kernels when the order of the

derivative being estimated is low.

Running title: Gaussian-based kernels.



1. INTRODUCTION

Kernel estimators are a widely accepted means of estimating curves such as densities,
regression functions and failure rates without parametric assumptions. Derivatives of these
functions can also be estimated by straightforward extensions of kernel estimators. In this
note we shall confine our attention to estimation of densities and their derivatives, however
the essential theme applies to other settings.

Let X;,..., X, be a random sample having density f and assume that f has v + 2r
continuous derivatives, where v > 0 and r > 1 are integers. A class of kernel estimators
for f(*) is generated by taking the vth derivative of the usual kernel density estipator and

is given by

fiN(z) = n7thm ) i K3 {(z - X:)/h}, (1.1)

=1

where Ko, is a (27)th order kernel, that is, K2, has 2r — 1 vanishing moments. We also
assume that Ko, is bounded, v-times differentiable and satisfies [ Ko, = 1. It is well known
that the large sample performance of (1.1) is enhanced by increasing the value of r. This
is addressed in work by Singh (1977) and Schucany and Sommers (1977). By restricting
attention to symmetric functions, the odd moments are zero and only even-order kernels
are considered.

The parameter A = h(n), often referred to as the window width or bandwidth, is of
fundamental importance to the performance of f,(:') , since it controls the trade-off between
bias and variance. In an attempt to reduce the subjectivity in choosing h there recently
have been several proposals for automatic selection of h. Many of these are reviewed in
Marron (1988) and Park and Marron (1989). A feature of these selection rules is that
they also require the use of kernels. Some of these procedures, including those of Devroye
(1989) and Hall, Sheather, Jones and Marron (1989), require kernels of orders higher than
the one used in the actual curve estimator itself.

In the case where r = 1 a popular choice of kernel in (1.1) is the Gaussian kernel

é(z) = (27r)"2‘e‘z=/ 2. This kernel has a number of attractive features: it is infinitely
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smooth, it is well suited to Fourier transform techniques for rapid computation of the
estimator, and it has simple convolution properties. Each of these features is particularly
relevant to certain window width selection procedures such as least-squares cross validation
as discussed in Silverman (1986, pp.61-66).

In this note our main objective is to extend the Gaussian second-order kernel to a class
of kernels of order 2r for general r > 1 with the intention of preserving the smoothness and
convolution properties of ¢. We show that the appropriate (2r)th-order kernel is of the
form Gar = Q2r—2¢ Where Q2,_2 is a polynomial of degree 2r — 2. These kernels can be
interpreted in terms of the generalized jackknife as discussed by Schucany and Sommers
(1977). The kernel G2, also has a convenient representation in terms of higher derivatives
of ¢ which is very useful for Fourier transforms and convolution formulae.

A general class of kernel estimators of f(*) was studied by Miiller (1984) and Gasser,
Miiller and Mammitzsch (1985). This class has the form

faw(z) = n"th~(@+1) f: W,.x{(z — X:)/h}, (1.2)

=1
where £k > v+ 1 is an integer and v and k are either both even or both odd. The function

W, satisfies

/z-’Wl,,k(x) dz = { (-1)*! j=v,

Br #0 J=k.
The estimator at (1.1) is a special case of that in (1.2) with W, x = K,(cu_)v. By considering

the asymptotic integrated mean squared error of f, , these authors derive optimal kernels
for varying values of (v, k) with the restriction that the kernel has compact support. In the
work by Miiller an additional parameter p, indicating the number of continuous derivatives
of W, , is taken into account in the minimization. These optimal kernels are polynomials on
the interval [—1,1]. This can sometimes lead to problems, especially at the window width
selection stage, if the kernel is not sufficiently smooth. Polynomial kernels also suffer from

the fact that they do not, in general, have a reducible convolution representation or Fourier
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transform. This causes difficulties if one decides to use least-squares cross validation to
select a window width or the Fourier transform methods of computation. On the other
hand, in regression problems concerns about boundary bias argue for compact support.
Section 2 covers the derivation of the class of higher-order Gaussian-based kernels. In
Section 3 we present some efficiency calculations which indicate that there is only a small

loss in efficiency when a Gaussian kernel is used provided that the value of v is low.

2. GAUSSIAN-BASED KERNELS
The motivation for using higher-order kernels is the reduction in the order of mag-
nitude of the bias of the curve estimator leading to a faster rate of convergence of the
integrated mean squared error. This is demonstrated in Singh (1977) in the context of
density derivative estimation. In the context of density estimation this principle is also
discussed by Schucany and Sommers (1977). As an illustration of the generalized jackknife,
they introduced a class of fourth order kernels {Ky ., ¢ > 0} that could be constructed

from a second order kernel K via the formula
Ki.(z) = {Ka2(z) — S’ Ka(ez)}/(1 - 7).

Therefore, there is a class of fourth-order kernels based on the Gaussian kernel having the

form
Ga,e = {#(2) — ¢(ez)}/(1 - ¢?)

for positive values of c. Calculations along the lines of those performed by Schucany (1989)
yield ¢ = 1 as the value of ¢ that minimizes the asymptotic integrated mean squared error
of f,(,"). The expression for G4 ; is indeterminant, however application of L’Hospital’s rule

yields the kernel

Gy(z) = 4(3 - 2%)8(2).

[T

This kernel is briefly discussed by Silverman (1986 p.69). It is straightforward to show that

G, is the only kernel of the form Qo¢, where Q5 is a quadratic polynomial. It therefore
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seems reasonable that a (2r)th-order kernel would be of the form Gar = Q2,-2¢, where

Q2r-2 is a polynomial of degree 2r — 2. In fact there is only one such kernel, and this is

provided by

Theorem 2.1. Forr > 1 let Q2.—5 be the polynomial given by Qa,—2(z) = Z:;(} Co; 22
where
o = (_1)i2i—2r+l(2r)!
2T+ ) (r—i - 1)

t=0,...,r—1. (2.1)

Then Q4. is the unique polynomial of degree less than or equal to 2r — 2 for which

G2y = Q2,29 is a (2r)th-order kernel.

Table 2.1 contains the first five Gaussian-based even-order kernels.

The proof of Theorem 2.1 is in the appendix. A key observation in this proof is that

G, can be represented as

(=1 g~V (z)
2r-(r—1)lz

Gar (2:) =

normalized Hermite polynomial defined by H,(z) = (—1)¢(z)~ 149 (z), j > 0. Stuart
and Ord (1983, p.221) list the first ten such polynomials. These polynomials also satisfy

the following recurrence formula for 57 > 2:
Hj(z) — zH;-1(z) + (1 — 1) Hj-2(z) =0 (2.2)

which can be used to establish that

r—1

Gor =) (;—ls)!qs(z’). (2.3)

a=0
This representation is very useful for implementation of the Fourier transform methods of

computation since it follows from (2.3) that the Fourier transform of G5, is simply

r—1

Garlt) = 3(8) 3

a=0

t28
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where @ is the Fourier transform of ¢. We can also use (2.3) to find closed form convolution
formulae. This is particularly useful for least-squares cross-validatory choice of h as dis-
cussed in Hardle, Marron and Wand (1989), because one needs to minimize an expression

involving G.gz) * Gg‘;) (where * denotes convolution). Appealing to the convolution result
(¢(s) " ¢(t))(z) — 2—-’2-(a+t+1)¢(a+t)(x/2-})

we arrive at

r—1r—1
S v o1 1 —1)*+t 1
G G (z) =3 g(z/2H) YD :%,_z—slgHz(wwu)(x/?’)-
0=01t=0

3. EFFICIENCY CALCULATIONS

The price we pay for using a Gaussian-based kernel Ga, to estimate f(*) is the loss in
efficiency compared to the optimal polynomial-based kernels of Miiller (1984) and Gasser,
Miiller and Mammitzsch (1985). If we only require that our estimators are continuous
functions then the appropriate class of optimal kernels is the family of kernels W, ; with
p =1 in the notation of Miiller (1984). These kernels correspond to the optimal kernels of
Gasser et al (1985) and include the Epanechnikov kernel when v = 0 and k& = 2r = 2. For
a general comparison, the efficiency of Gs,, with respect to W, (2r = k — v), is denoted

by eff(2r,v), where
eff(2r,1) = {C\ (Wi pt2,)/Co (GE)) Jlér+2v+1)/(4r) (3.1)
and

4r/(4r+2v+1) (4v+2) /(4r+20+1)
C.(Kary) = { / KS,.,,} { / x2’+"ng} . (3.2)

Note that in (3.1) we are taking Ks., to be W, 42, in the numerator and G’g‘;) in the

denominator when applying the definition at (3.2). This is the generalization of Silverman’s
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(1986) definition of efficiency for estimating f with a second order kernel. The motivation
for such a definition is that, for large n, the integrated mean squared error of the estimate
of f{*) will be the same using n observations and the kernel Go, as it will using eff(2r,v)n
observations and the kernel W, ., 42,.

Our efficiency calculations are limited to the case of second-, fourth- and sixth-order

kernels. Using the formulae on page 241 of Gasser et al (1985) it can be shown that

(2v + 3)!x3

ff 2’ = 3
e ( V) (21/ + 5)(2u+3)/2(u + 1)1
~ 2(2v +5)!rt
eff(4,v) = (2v + 9)(2v+0)/4(2y + T)(2v+1)/4(y + 2)!
and
' Py
eff(6,v) = o sk ik

(402 + 48v + 151)(2v + 13)(2v+7)/6{(2v + 11)(2v + 9) }(2»+1)/6 (v 4 3)1”

Values of these for v = 0,1,2 are listed in Table 3.1. Note that for v = 0, the important
special case of density estimation, there is only a slight loss in efficiency incurred by a
Gaussian-based kernel compared to the optimal polynomial kernel. These results represent
a higher-order extension of the well known result concerning the efficiency of the second-
order Gaussian kernel compared to the Epanechnikov kernel. For v as great as 2, however,
the efficiencies are considerably lower. It appears that the advantages of Gaussian-based
kernels may not as attractive for larger values of v since they must be reconciled against
a sizeable loss in efficiency. Nevertheless, one should keep in mind that in Table 3.1 the
Gaussian-based kernels are being compared to the least smooth polynomial kernels. Higher
values of the smoothness index pu (see Miller (1984)) would result in an improvement in

the relative efficiencies of the infinitely smooth Gaussian-based kernels.

APPENDIX
Proof of Theorem 2.1
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Define

_ (=1)rglr=Y(g)
Gar(2) = 2r=i(r— 1)z

We first show that Ga, is a (2r)th order kernel. To prove that G, integrates to unity we

need to show that
[ 6@y dz = cyrie -y ez

Writing the left-hand side as — [ 7! Ha,_ (z)#(z) dz and applying the recurrence formula

at (2.2) yields this result. It is easily established by induction that

2p 1 (2q - 0 < g,
/x & )(x)dx_{zq_p@p)!/(p_q)! 223_ (A.1)

Let 1 < 7 <r—1 and observe that

25 _ =y / 25—1 4(2r—1) _ (=y*t / 25 3(27) () dz = O
/ ¥ Gap (z) —_—_2"—1(1' — T ) (z)dz —2’]'(r Y ¢\ (z) dz
from integration by parts and (A.1). Clearly [ z%~1G,.(z) dz = 0 for all j > 1. The first

non-vanishing moment of G-, is given by

(1

/zergr(z) dz = ———/x2'¢(2’)(x) dz =

2rr!

(=1)7+t(2r)!
27r!

Therefore G, is a second-order kernel. Notice that G2, (z) = Q2r—2(z)¢(z) where Qq,~2
is the (2r — 2)th degree polynomial given by Qz,.—2(z) = {27"*(r — )}~ Hop—1(z)/z.
The expression for Qo,_2(z) with coefficients given by (2.1) can be derived using the ex-
plicit formula for normalized Hermite polynomials. Abramowitz and Stegun (1972, p.775)
present a version of this formula.

The uniqueness of Q2,5 follows from the invertibility of the matrix E(M,ML.) where
M, =(1,22,...,2%~2) and Z is a standard normal random variable. This matrix arises
in the system of equations when one solves for the coefficients of Q5,—-2. Let b be an

arbitrary non-zero r-vector and observe that

b'E(M,M.)b = E{(b'M,)?} > Var(b'M,).
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Clearly Var(b’M,) > 0 unless b = (k,0,...,0) for some k # 0 in which case E{(b'M,)?} =
k? > 0. Therefore E(M,M') is positive definite and hence invertible. ¥
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Table 2.1

Gaussian-based kernels of orders 2,4,6,8 and 10

2r Gg,- (I)

2 ()

4 13- 27)4(2)

6 1(15 — 1022 + z*)¢(z)

8 + (105 — 1052% + 21z* — z%)¢(z)

10 357 (945 — 1260z + 378z* — 362° + 2°)¢(z)
Table 3.1

Efficiencies of Gaussian-based kernels compared to
optimal kernels (2r = 2,4,6; v = 0,1, 2)

2r v eff (2r,v)
2 0 0.9512
2 1 0.8203
2 2 0.6808
4 0 0.9320
4 1 0.7841
4 2 0.6414
6 0 0.9200
6 1 0.7601
6 2 0.6144
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