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Summary
Influence diagnostics for measurement error models are suggested
by an examination of influence functions. These diagnostics are
sensitive to extreme observations along the fitted plane and
orthogonal to it, in contrast to least squares diagnostics, which are
sensitive to extreme observations in vertical and horizontal

directions to the fitted plane.
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1. Introduction

Linear regression models U = m'B in which both the response and
one or more of the predictor variables m' = (m;, m,, ... , my) are
measured with error are referred to as linear measurement error
models. The published literature on measurement error models is
heavily concentrated on finding estimators of the model parameters and
on deriving asymptotic properties of the estimators. Very little
research has been conducted on other aspects of measurement error
model methodology such as influence diagnostics. Fuller (1987) and
Kelly (1984) are two exceptions. It is the purpose of this paper to
propose outlier diagnostics for linear measurement error models. These

diagnostics are restricted to several familiar ones, based on least



squares estimation, that have proven useful for traditional regression
models that assume error-free predictors.

Denote the (k+l)-dimensional observable variables by z; = £ + Wi,
for i=1,2,...,n, with zj' = (yi Xi'), €i' = (Vg ﬂi'), and wj' = (Vi
u;'). The unobservable measurment errors w; are assumed to be
distributed NID(O, Ayy), where the appropriate elements of Ay, are
zero for predictors that are measured without error. Partition Ayy

conformably with the w; and denote the components by 8y, Ayy, and Ayy-

2. Estimators

For functional measurement error models, assume that the m; are
constant vectors with the following limits finite and Tyq positive
definite:

Py = lim n~1 Z mi , Iyq = lim n-1 Z LEN Fl
For structural measurement error models assume that the mj are NID(p“ s
Aqq), independently of all the model errors, with Ay, at least positive
semidefinite and Ty = Apq + Byl  positive definite.

Two types of linear measurement error model estimators are considered. The
first estimator assumes that the measurement error covariance matrix Ay,, either
is completely known or is estimated by an estimator that is statistically
independent of the observed variates z;. When the error covariance matrix is
known or is estimated, a second component of error in the response variable,
called equation error by Fuller (1987, Section 2.2), can be included in the
model. For these models, let y; = U; + v; + gy, where qj represents the
equation error. The equation errors gqj are assumed to be distributed NID(O,

qu), independently of the measurement errors wj.



Denote the known or estimated covariance matrix of the measurement
errors by Syy. Assume that Sy, is an unbiased estimator of Ay, and is
a multiple of a Wishart matrix having d,, degrees of freedom. ©Note that
Sww = Dyw and dw—l = 0 if the measurement error covariance matrix is
known. Partition Sy, conformably with the w; and denote the components
by syvs Syvs, and Sy,,. Let My, = n~lx xi%X4', and Mxy =nlx XiVi-
Then an estimator of B is
2 = - -1 -

B - (Mxx Suu) (Mxy Suv) . (2.1)

A second estimator of B arises when the covariance matrix of the
measurement errors is only known up to a multiple. Let Ayy = Ty Oyws
where Ty, is assumed known and dy,, is an unknown constant. Then

B = (Myy = A Tyy) TMyy = A Tyy) (2.2)
where A = 0y, is the smallest root of |M,, - A Tyy| = O and Ty, has
componnents ty,, Tyy, and Ty,. Provided that the estimators of the
model covariance matrices are nonnegative, the estimators (2.1) and
(2.2) are maximum likelihood estimators.

Fuller (1987, Sections 2.2 and 2.3, respectively) presents

asymptotic normal distributions for first-order Taylor series

approximations to the estimators (2.1) and (2.2). Let v = lim n/d,, < =,
with v = 0 if the covariance matrix is known or known up to a multiple.
The covariance matrices of the asymptotic distributions of nl/2¢(g - 8)

for estimators (2.1) and (2.2) can then both be written in the form

-1
ABB - rﬂﬂ {(rﬂﬂ * Auu)(éqq * ﬁee) T Aue Aeu
-1
v (Auu 6ee te Aue Aeu)} rﬂﬂ ’ (2.3
where 8go = 8yy — 2A,4B + B'AyyB, and Aye = Ayy — ByyB - When the

error covariance matrix is completely known or is estimated, c¢ = 1.



When the error covariance matrix only is known up to a multiple, ¢ = -1

and 6qq is set to zero.

3. Influence Functions

Kelly (1984) derives a general expression for the influence
function of (2.2) for structural measurement error models when the
covariance matrix of the measurement errors is known up to a multiple
and the error distribution has finite fourth moments. A derivation of
the influence function as in Hampel, Ronchetti, Rousseeuw, and Stahel
(1986, p. 230) under the normality assumptions stated in the previous
section results in the following form for the influence function:

TFyL(d;B) = Typ~1(x - 6ge™) Byed)d . (3.1)
This influence function is appropriate for the estimator (2.1) if dgq
is replaced by qu + 0ge. In both cases, d = y - x'B represents the
deviation of the point (y x') from the model.

The influence function (3.1) provides an interesting geometric
interpretation of the influence of an observation z = (y x')' on the
maximum likelihood intercept and slope estimators for measurement error
models. Partition B' as (Bp, By'), where B denotes the intercept
coefficient and 8, denotes the vector of m = k - 1 regression
coefficients for the nonconstant predictors. Partition x = (1, x,')"',
u= (0, uy')', and their mean vectors and covariance matrices

conformably. Then by partitioning (3.1),

IFq(d;Bg) = d - pp'IFvL(Bn)
IFML(d;Bm) = me'lrpro , (3.2)
where r, and r, are, respectively, the orthogonal and the planar

components of the influence function relative to the hyperplane of the

predictor variables. Specifically,



fl

5ee.ml/2 6ee‘1/2d

o

p T 'See.m—-l/2 6ee—l/z(xm = Pm ” 'See—l bped) ) (3.3)
where dge.m = Oce -~ AemA;éAme is the conditional variance of e given up and
Ape is the covariance matrix between uy and e. These influence function
expressions remain valid when some of the predictors are measured

without error if the appropriate elements in Ay, are set equal to zero

and removed from the expressions for Ap, and Ap,.

3.1 Least Squares

The influence function (3.1) reduces to the corresponding least
squares influence function given in Cook and Weisberg (1982 Section
3.3) or Hinkley (1977) when there are no measurement errors in Xx:

IFy;(d;B) = Ty~ lxd . (3.4)

It is well known that outliers in either the vertical direction or in
the horizontal direction, the latter known as leverage points, can
severely affect least squares estimates. The effect is quantified by
(3.4), where the derivation d imparts the contribution of outliers in
the vertical direction and the predictors x impart the contribution of
leverage points.

Vertical outliers at the centroid y, of the space of the non-
constant predictor variables only affect the least squares intercept
estimate. Similarly, leverage points that fall on the true regression
plane do not affect the intercept or the slope. These conclusions can
be confirmed by an examination of the least squares influence function.
Sample influence functions have similar properties with the appropriate

sample statistics inserted into the influence function expression.



3.2 Measurement Error Models

The influence functions (3.2) depict the influence of an
observation z on the maximum likelihood estimators as a function of
orthogonal and planar components. Orthogonal outliers along the normal
to the regression plane at the centroid py of the space of the
nonconstant predictors only affect the intercept estimate. Planar
outliers, the equivalent of leverage points, that fall on the
regression plane do not affect either the intercept or the slope
estimates. These conclusions follow from an examination of the form of

the influence function (3.2).

4. Least Squares Influence Diagnostics

Influence diagnostics for measurement error models can be
formulated with much the same motivation as those for least squares.
The diagnostics investigated in this research are patterned after
those of least squares, with adaptations to account for the effects of
measurement errors in the predictor variables.

Leverage values hj; (Hoaglin and Welch 1978) for least squares
estimators are the diagonal elements of H = X(X'X)~"1X', where X
represents the n x k matrix of predictor variables. Leverage values
are not only important diagnostics of extreme predictor-variable
values, they are fundamental to the efficient calculation of other
least squares influence diagnostics.

A measure of the effect of extreme predictor variable values on
the least squares estimators of the regression coefficients is the
statistic DFBETAS:

DFBETAS;j = (l;j - t;j(i))/{ijs(i)z}l/2
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where Bi(i) is the least squares estimator of Bj and S(i)2 is the mean
squared error, both from the fit without the ith observation, and €jj
is the jth diagonal elemeﬁt of (X'x)"1. A computationally efficient
form of these statistics utilizing leverage values is given in Belsley,
Kuh, and Welsch (1980, p. 13). The unscaled vector version of this
statistic has an unmistakable similarity to the influence function
(3.4):

DFBETA; = (8 - B(i)) = (X'X)~lxgri/(1 - hy;) . (4.1)
The quantity r;/(1 - hjj) is the deleted residual y; - ;i(i)'

Following Cook and Weisberg (1982), internally studentized
residuals are defined as tj = ri/{sz(l—hii)}l/z, where r; is the ith
(vertical) residual and s2 is the mean squared error, both from the
least squares fit to the complete data set. Cook's (1977) statistic is

Dy = (B(i) - B)'X'X(B(i) - B)/(ks2) . (4.2)
Using (4.1), D; is also directly related to the influence function

(3.4). An alternative form for D;

i, which is useful for computations,

is
Di = tizhii/{k(l - hii)}‘ (4.3)
The influence of vertical outliers (t;) and leverage points (hj;) on

this statistic are evident.

5. Measurement Error Model Influence Diagnostics
One key to the satisfactory implementation of measurement error
model influence diagnostics is a suitable definition of a leverage
value. The least squares definition is unsatisfactory because it is

based on presumably error-free predictor variables. We follow Fuller



(1987, Section 2.2.3) and use estimated predictor-variable values in

place of the observed values in the hat matrix:

H , X''= (x, , x e Xn) with
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(5.1)
Note that the measurement error model influence function (3.1) is

based on estimated predictors ii just as the least squares influence
function (3.4) is based on the observed predictors xj. The estimated
predictors ii in (5.1) are proportional to the planar components of the
influence functions (3.1) and (3.2).

The diagonal elements of H can be used in the computation of
diagnostics similar to those of least squares, with xX; replacing X3
where appropriate. Unlike least squares, however, deleted residuals
are not algebraically equal to ri/(l—ﬁii). There does not appear to be
an algebraically simple formula for calculating deleted residuals using
the estimators (2.1) or (2.2). Nevertheless, the approximation
ri/(l—ﬁii) has been examined on numerous data sets and found to be
quite adequate for use in influence diagnostics.

DFBETAS, studentized residuals, and Cook's statistics can all be
calculated using the formulas shown above with appropriate
substitution of estimators from the measurement error model fit.
Consider, for example, Cook's statistic (4.2). The general form of
this statistic is (Cook and Weisberg 1982, Section 3.5.1):

D, = (Byy - BYM(B .,y - B)/e . (5.2)
For measurement error models, Ml is replaced by an estimator of the
covariance matrix of B - B, Agp, and c is replaced by Kk,

the number of predictor variables.



The estimators of Agg that were investigated for use in (5.2) are
based on inserting consistent moment estimators of the covariance terms in
(2.3). These estimators (Fuller 1987, Sections 2.2 and 2.3) are based on
the delta method and are equivalent to methods based on influence functions
and the infinitesimal jackknife (Efron 1981). This type of estimator of the
covariance matrix performed well in Kelly's (1984) simulation when the data
were normally distributed.

The form of Cook's statistic (5.2) proposed for use as a

measurement error model influence diagnostic is

~ ~ o~ =1~ -
D, = (Beyy - B By, (Beay - Bk (5.3)
An approximation to (5.3) using the computational form (4.3) provides
excellent agreement on all data sets examined to date. The formula

(4.3) is exactly equal to (5.3) when the estimator (2.2) is used and

v = 0.

6. Concrete Compressive Strength Data

Figure 1 displays a scatterplot of the compressive strengths of
4] samples of concrete. The plotted data are measurements of the
compressive strengths of each sample taken two and twenty-eight days
after pouring. The investigators wish to determine a prediction
equation for the strength of concrete twenty-eight days after pouring
using the measurements taken two days after pouring.

Overlaid on the plots are two regression fits, least squares and
a measurement error model fit. Estimator (2.2) was used for the
measurement error model fit, assuming that Ty, = diag (1, 0, 1). The
zero diagonal element in Ty, corresponds to the constant term. It is

clear that the least squares and the measurement error model fits are
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different, with the measurement error model fit appearing to be
greatly affected by observation 21 in the upper right portion of the
scatterplot.

Table 1 contains influence diagnostics for several observations.
Observation 21 has greater leverage for the measurement error model
fit, and great influence on both of the fits, as indicated by the
DFBETAS, and Cook's statistics. The internally studentized residuals tj
indicate that this extreme observation is more poorly fit using the
least squares fit than the measurement error model fit. Each of these
conclusions is supported by the fits in Figure 1 and by the estimated
coefficients and fitted responses in Table 2.

Each of the other observations listed in Table 1 appears to be
better fit by one of the estimators, attesting to the need for
different diagnostics for the least squares and measurement error model
fits. In each case, the ability of an estimator to closely fit an
observation depends on whether the observation is an outlier in the
vertical or the orthogonal directions as indicated by the respective tj
values.

Fuller (1987) uses the §i in various plots to diagnose
model inadequacy. He suggests (p.l121) that residuals r; and
;i could be input to least squares computer programs and
used for diagnostic checking. The results presented in this paper
provide a theoretical basis for and confirm the appropriateness of that

suggestion.
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Table 1. Comparison of Least Squares and Measurenent Error Model
Influence Diagnostics.

Least Squares Measurement Error Model
Obsn. Leverage ty D; DFBETAS Leverage ty D; DFBETAS
17 .031 -1.849 .055 .158 .080 -1.274 .070 312
21 . 159 4.168 1.640 2.208 .450 2.488 2.538 2.191
22 .197 -.431 .023 .198 .165 1.328 174 -.545
34 117 .712 .034 -.230 .059 1.739 .095 -.335

37 .108 1.581 .150 -.492 .034 2.356 .097 -.233



Table 2. Comparison of Fits.

(a) Complete Data Set

Least Squares

Measurement Error Model

Intercept 4,636
Slope 0.798
Fitted yo,* 5,602

61
1.514

6,488

(b) Observation 21 Deleted

Least Squares

Measurement Error Model

Intercept 3,016 1,731
Slope 0.516 0.945
%

Observed ypy = 7,695

13



Day 28

8000

70001

60001

50001

40001

3000+

FIG. 1. CONCRETE COMPRESSIVE STRENGTH DATA

Measurement Error Mode!

Least Squares —  -meseee-

1000

2000 3000 4000

5000



