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Abstract:

Sufficient conditions are given for the consistency of the jackknife variance
estimator for R-estimators of locatio::n in the one- and two-sample problems. An
efficient algorithm for computing the variance estimator is pmséhted. Some Monte
Carlo evidence of the small sample efﬁciency. is reported. Extensions of the results

to R-estimators in the linear model context are discussed.

Keywords:

Differentiability, Hodges-Lehmann, rank estimator, standard error.




1. Introduction

The properties of the jackknife and its associated estimator of standard error have
been reported for several large classes of statistics. A variety of consistency results
have been obtained for U-statistics [Arvesen (1969)], maximum likelihood and M-
estimators [Brillinger (1977) and Reeds (1978)], L-statistics [Parr and Schucany
(1982)] and V-statistics [Sén (1977)]. The fundamental issue of smoothness of the
functional, T, of the empirical distribution, F,, that is being jackknifed is addressed
by Parr (1985). He unifies many of the existing results by stating suﬁicient
conditions involving Fréchet differentiability of 7. It is noteworthy that various
authors compile related results from M-, L- and R-estimators [see for example
Serfling (1980, Chapter 7, 8 and 9) or Fernholz (1983, Chapter S)] and yet the R-
estimators have not been covered as one of the classes of estimators that behave
properly under jackknifing.

One possible reason fbr this is that the sample median, which is sometimes
viewed as the “smoking gun” against the jackknife, is an R-estimator for the one-
sample location problem with sign-test scores. Consider the random sample
X1, ..., X, from the distribution F. Under the assumption that F is absolutely
continuous and symmeitric, the best known R’Testimator is the one based on
Wilcoxon scores. This estimator is usually reférred to as the Hodges-Lehmann
estim:ator after Hodges and Lehmann (1963). The widely used computational form
of this statistic is the median of the pairwise averages, (X; +X;)/2, 1<i<j<n.
This involvement of the “median” may.be enough to lead many to suspect that this

Hodges-Lehmann estimator is subject to the same inconsistency of the jackknife




variance estimator that plagues the sample median.

One purpose of the present note is to examine the conditions under which
R-estimators will admit consistent jackknife estimators of variance. It will be seen
that the familiar Hodges-Lehmann estimator may be jackknifed to yield a
consistent estimate of its standard error. Some Monte Carlo results in-small
samples are quite promising. A natural question to address before continuing is
- whether an estimate of standard error is actually needed.

In the one-sample problem one often has no pressing need to estimate the
standard error of an R-estimator. Given symmetry, the distribution-free nature of
the associated signed-rank test yields an exact confidence interval from the ordered
pairwise averages. However, there are a number of circumstances in which it is
necessary to ‘estimate standard errors. For example, suppose we have independent
sets of observations leading to estimates of 8, 6;, 83 and that we are interested in
A =0y - 26, + 63. Then the exact confidence intervals for 8y, 8, and 63 cannot
be translated into an exact confidence interval for A, except by being very
conservative. Approximate methods have to be used and one of the most direct
ones is based on the standard error of the estimate of A, calculated in the obvious
way using the standard errors of the individual estimates. In addition, when the
problem involves R-estimation in regression models, convenient approaches to
interval estiimation like those in th';c one-sample problem do not apply. The large
sample normality and formulas for the asymptoﬁc standard errors have formed the
basis for current approaches [see for example Hettmansperger (1984, Chapter 5)].
The asymptotic standard error of the Hodges-Lehmann is proportional to I f 2
where f=F’ is the density of the additive error term. Nonparametric estimation

schemes for this integral of the squared density all involve selection of a




smoothing parameter with all of the accompanying difficulties [see for example,
Koul, Sievers and McKean (1987), Schweder (1975) and Sheather (1987)].
Consequently in this setting a reliable and less involved estimator of standard error
would be a welcome addition. Finally, even thoughA with adequate computing
support the bootstrap is an obvious candidate, the current view [see Hall (1988)] is
that studentized quantities lead to better approximate conﬁde_nce intervals. In other
words, to use the percentile- method one must produce bootstrap replicates of
coefficients that have been standardized by estimates of standard error. Therefore,
this refined and more accurate version of the bootstrap does not obviate the need to

estimate standard errors.

2. Conditions for Consistency

Consider the one-sample location problem in which X, X,,..., X, are
independent and identically distributed from F, an absolutely continuous
distribution with unknown centre of symmetry 8g. Let R;(8) = rank of |X; — 6|

among the n absolute residuals. A signed-rank test statistic has the form

12 Ri(6

Va(®) = — T o{——
i=1

sgn (X; — 6)}, 2.1)

| where ¢(u) is a noﬂ| negative and non decreasing score function on 0 < # < 1 such
.' l 1 .

that Jo ¢(u) du < e and Io ¢2(u) du < e, Further, the definition of ¢ is extended to
(-1, 1) by ¢(—u) =—¢(u) so that ¢ is odd. The R-estimator, 5, corresponding to

(2.1) is aroot of




Va(8)=0. 2.2)

The fact that V, is discontinuous implies that an exact root does not exist and g is
taken to be the value at which V, changes sign. If there are multiple roots, they
form an interval and the choice is the midpoint of this interval.

Hettmansperger (1984, pp.99-100) proves that the defining equation (2.2)

leads to an asymptotically equivalent equation,

7 64F %) - F(~x+26)}dF (x) = 0. 2.3)

The location functional such that 8y = T (F) is defined implicitly as the solution of
(2.3). An R-estimator is given by T (F,), where F, is the empirical distribution
function.

~To discuss the jackknife we require some additional notation for an
empirical distribution function based on the (n—1) observations with X; held out.
For a review of the jackknife see Miller (1974). For a recent bibliography see
Frangos (1987). Let

Fu@)=(-1"'3IX;<x), i=1,2,...,n
z |
i

and then the usual jackknife estimate of the variance of T (F,) may be written
{

SF=(-1 S [T Fw)-n" ETENP. 24
i=1 j=1

Under smoothness conditions on T and F, specified below in (i) and (ii), we have
Vn [T (F,) - T (F)] = N (0, ¢2) in distribution and S? — o2 with probability 1 as

n —> oo,



Working with the sup nomm, ||F-G||=__37F _IF®-G@)|

Fernholz (1983) establishes Hadamard differentiability of certain R-estimator
functionals, and then asymptotic normality as a consequence. With the additional
condition that its asymptotic variance functional is continuous at we. may employ
Theorem 2.1 of Sen (1988) to conclude that S 12 converges almost surely to o2.
This theorem of Sen relaxes the requirements for strong Fréchet differentiability by
Parr (1985). In particular this result holds if we assume that

(i) ¢ 1is continuous, odd, increasing and piecewise differentiable with
bounded, piecewise continuous derivative, ¢’, and there exists an 7 > 0 such that
¢’(u) 2 m for all u in some neighbourhood of zero; and

(ii) F is symmetric about 8y with bounded and continuous density
function, f.

Only condition (ii) is slightly more restrictive than is required by Femholz
(1983, p-100), but these are sufficient to ensure that the Hadamard differential

exists and is continuous. Sen (1988) requires the continuity at F of
T1(G)=[v?x;G)dG (), 2.5)

where the influence curve here is

¢{2F (x) - £ 1}. 26
2[¢'{2F ) - 1} F20) dy

wx;F)=

Clearly, if y is a continuous functional, then T is also. We do not need to restrict
the class of R-estimators sufficiently to yield continuity in (2.6). However, it may
be eaSier to verify than (2.5). For the case of immediate interest ¢(u) = u and (2.6)

reduces to {F (x) - ‘/z}/f f 2(y) dy. This is clearly bounded and continuous. This




latter property gives the Hodges-Lehmann estimator a degree of robustness not
shared by the median. Interestingly, another robustness feature, the ‘“change-of-
variance” discussed by Hampel et al. (1986), also involves smoothness of the
asymptotic variance functional, (2.5). Other popular R;estimators which satisfy the
conditions in (i) are those associated with Winsorized Wilcoxon scores and
Winsorized normal scores. Finally, it should be noted that the sign-test score
function associated with the median as an R-estimator does not satisfy the
smoothness conditions in (i).

In the two-sample problem we have independent samples X, X3, ..., X,
and Yy,Y,,...,Y, from F(x) and G(x)=F (x —A), respectively. The
conditions for strong consistency of the jackknife estimate of the variance of an R-
estimate in this case are the same as (i) and (ii) expect that symmetry of F is no
longer required.

General results on strong consistency of the jackknife standard error estimate
for non linear statistical functionals have been restricted to the i.i.d. case. The
extension of these results to the regression case requires a further apprqximau'on,
since F, 1s based on residuals which are dependent. There is no reason to suspect

that the strong consistency result will not hold in this case.

3. Small Sample Implementation

To investigate the finite sample efficiency of.the jackknife estimator of variance,
S#, a computationally efficient algorithm for the one- and two-sample settings can
“be described. In other words, when the pairwise averages or differences are used
to compute the R-estimator, then these same quantities permit the quick

identification of the wvalues of the “leave-out” estimators, T (F,;). The



implementation will be discussed in the context of the Hodges-L.ehmann estimator
the one-sample problem and some illustrative simulation results described.

The first step is to calculate and store the M = n(n+ 1)/2 pairwise averages.
In two vectors of the same length save the indices i and j that correspond to the
pair of ordered X values averaged at each of the M entries. In an unpublished
University of New South Wales Working Paper, Robinson and Sheather show that
it is possible to reduce the number of averages by about a factor greater than two
because only certain middle values are candidates for the median. However,
except for large-scale simulation studies, the bookkeeping of the pertinent indices
may outweigh the greater computational efficiency that follows from only needing
to calculate and sort about half as many pairwise averages.

The second step is to sort the M averages. A routine such as (SVRGP) in
IMSL also returns an array of indices that permits the permutation of the two
vectors of indices to follow the rearrangement of the pairwise averages. In other
words, the original X values that enter each ordered average can still be identified
easily by reference to the two permuted vectors of indices.

The third step is to select the n values of the Hodges-Lehmann estimator
corresponding to the reduced samples associated with successively deleting each
X;. For each subsample there are M | = M - n pairwise averages to consider. The
savings that may be realized involve usi\ng the existing array of ordereid pairwise
averages and ignoring those n averages involving the particular X;. The Hodges-"
Lehmann estimate, 5, for the full sample is the median of the M pairwise averages.
The “delete-one” values, é,-, are each medians of subsets of M ; pairwise averages.

For a fixed index, iy, to be deleted, the vectors of indices are examined from the

beginning (which corresponds to the minimum pairwise average). If neither index



equals i, then the corresponding average is counted as belonging to the relevant
subset. In this way the middle value(s) can be identified efficiently; no
recalculation, no additional sorting and only integer comparisons and counting are
needed. |

The final step is the calculation of the jackknife standard error estimate,
SE; = S;/Nm, where S# is from (2.4) with T (F») = 6;.

Some simple Monte Carlo runs for comparison with bootstrap estimates of
standard error, SEp, are reported in Table 1. For comparison with asymptotic
values and comparability across distributions, the numbers reported in Table 1 are
standard deviations (and their estimates) divided by 1N12n I f 2, At n=10 and
n =18 the jackknife calculations are particularly simple because M and
M =M — n are both odd and so each of the pertinent medians is a single pairwise
average rather than the midpoint of two. For these special cases calculations for
the jackknife are about 50 times as fast as the bootstrap with B = 100. To obtain
stable estimates of average values 10,000 repetitions were used. Normal deviafes,
z, and Uniform deviates, 4, were generated directly from IMSL routines; the
Laplace variates by the inverse edf transformation and Slash by z/u. Matched
pairs z-tests for all differences between average values of SE; and SEg were highly
significant.

The excellent agreement between the averages of SE 7 and standard deviation
of @ calculated from the 10,000 samples is obvi'oﬁs. Cleai'ly the ja‘ckknife is not as
sensitive to heavy tails as the bootstrap, e.g., slash inflates SEg and its standard
deviation. However, the jackknife does give up something in statistical efficiency

for distributions with light to moderate tail weight.
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Table 1

Jackknife and bootstrap Monte Carlo estimates of moments of estimators

n=10

6
SE;(8)

SEp(6)

n=18

6
SE(6)

SEp(8)

for the standard error of the Hodges-Lehménn estimator

S.E.

Mean
(8.D.)

Mean
(S.D.)

S.E.

Mean
(8.D.)

Mean
(S.D.)

Uniform

1.150

1.138
(.437)

1.049
(.209)

1.109

1.125
(.337)

1.105
(.178)

Normal

1.015

1.019
(.394)

0.999
(.255)

1.019

1.010
(.308)

1.003
(.209)

Estimated standard error of means = S.D./100.

Laplace

1.062

1.077
(.503)

1.199
(.426)

1.048

1.046
(.378)

1.096
(.297)

Slash

1.272

1.261
(1.233)

8.534
(74.53)

1.114

1.094
(511)

1.661
(3.913)
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