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Abstract: The usual form of cross-validation is global in character, and is designed to esti-
mate a density in some “average” sense over its entire support. In this paper we present a
local version of squared-error cross-validation, suitable for estimating a probability density
at a given point. It is shown theoretically to be asymptotically optimal in the sense of min-
imizing mean squared error. Numerical examples illustrate finite sample characteristics,

and show that local cross-validation is a practical algorithm.
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1. Introduction.

The technique of squared-error cross-validation was suggested by Rudemo (1982) and
Bowman (1984), and has had considerable influence on the practice and methodology of
nonparametric density estimation. It permits simple, automatic selection of a smoothing
parameter, for example of the window size in kernel density estimation. It is known to be
free from difficulties which can arise with other sorts of cross-validation, such as likelihood
cross-validation. In particular, it produces consistent, a.symétotica.]ly optimal estimators
under very mild conditions (Hall 1983, 198l5; Stone 1984). However, cross-validation is
presently available only for global problems — that is, problems where the density is
~ estimated throughout its support. In the present paper we introduce a local version of

cross-validation, suitable for estimating a density at a particular point.
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Our argument runs like this. Suppose we wish to estimate a density f at a point zg,
which we take without loss of generality to be the origin. Let ¢ > 0, and construct a small
region S, centred on zo = 0. If we were working in p = 1 dimension we might take S, to be
the interval (—¢, €); in p dimensions it might be a sphere of radius e or the cube (—¢,€)?.
When f is to be estimated globally, the cross-validatory criterion CV is constructed so that
CV + [ f? is an unbiased estimator of global mean integrated square error. By analogy,
in our local problem we construct CV = CV, so that CV + [ s, f? is unbiased for mean
squared error integrated over the region S.. Arguing as in Rudemo (1982), Hall (1983),
Bowman (1984) or Stone (1984), this prescription produces the criterion

Cv=[ -2 1Y I(X; € S)fi(X;),
Sc

=1

~

where n denotes sample size, f is the density estimator whose smoothing parameter we
wish to select, fj is the version of f computed on omitting the ;’th observation X; from
. the sample, and I(X; € S.) denotes the random variable which equals 1 if X; € S,
and 0 otherwise. Our idea is that if the set S. is allowed to shrink towards the origin
at a suitable rate as sample size increases, then minimization of CV with respect to the
smoothing parameter should be asymptotically equivalent to minimizing mean squared
error of f(0).

In Section 2 we verify this claim theoretically, under very general conditions. There
we take S, to be the scaled-down set ¢§ = {ex : z € §}, where § is a set such as a sphere
or a cube centred at the origin. We treat only the case of kernel estimators, although other
. types such as histogram estimators may be handled similarly.

Our theoretical results provide concise s{leﬁcient conditions on-the rate at which e
is permitted to decrease to zero, for asymptotfc optimality to obtain. Numerical work in
Section 3 explains the effect which selection of € has on the cross-validatory window and on
the final density estimate, for “finite samples”. It turns out that the influence is relatively

minor, much less than the effect which varying window size in the same manner has on. -



the final density estimate.

2. Methodology

We begin with notation. Given a random sample X;,..., X, from a distribution with
p-variate density f, construct kernel estimators
f@Ih)=(moa)™ Y K{(e =X/}, fi(z |h)={(n~1w}"' Y K{(z-X;)/h},
i=1 i

where K is a kernel function (a p-variate function integrating to unity), h = (h1,...,kp)
is the “window” (a vector of positive numbers), vy = []; hr, and for any p-vector z =
(Z1y---,%p), T/h = (21/hy,...,2p/hp) and zh = (z1h1,...,Tphp). Of course, fj is the
version of f when X is omitted from the sample, and is used to define the cross-validation
criterion. Our aim is to select the window so as to estimate f at, or in the vicinity of,
z=0.

Let J denote the unit radius p-dimensional op;an sphere centred at z = 0, and let
S be any other subset of IR? satisfying r;J C § C roJ for some 0 < r; < 3 < o0,
where rJ = {rz : z € J}. In this sense, S is “sphere-like”. We wish to choose % so as
to minimize integrated square error over ¢S, where ¢ = ¢(n) > 0, is bounded, and may

decrease to zero as n — oo. Define

ISEE/s(f—f)Z, .MrISEE/SE(f“—f)2 and

CV = / fi-2n"t Zn:r(x,- € S)f;(X;)
S =
to be integrated square error, mean integrated square error and the cross-validation crite-
rion, respectively. Since MISE = E(ISE) = E(CV)+ [ f2 then it is to be hoped that
the operations of minimizing ISE, MISE and CV will produce very similar windows. We
shall prove that this is indeed thc!a case.'
Assume that A is selected ﬁom a set H, of values, containing no more than O(n°®)

elements for some a.rbitra.ryx but fixed ¢ > 0, and satisfying

Cin~ "<y, and maxh;<Con™", allh€H,andalln>1, (2.1)
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for some 7n,C1, C2 > 0. To ensure that ¢ does not converge to zero too rapidly we ask that

e?? > Cv; ™", alh € H, and alln >1, (2.2)

for some n,C > 0. We suppose that the kernel K is bounded and compactly supported,
that f is bounded away from zero in a neighbourhood of the origin, and that f and its
one-dimensional marginals are bounded. Finally, defining A = fe s(E f-f )2, we ask that
for ¢ sufficiently small

CiA S & inf |Ef(z) - f(2)I" < € sup |Ef(2) - f(2)* < C2ir (2.3)
zEe TEES

for all h € Ha, all n > 1, and some C1,C; > 0. Then we have the following theorem.

Theorem. Under the conditions above,

CV = ISE — / fA-2n"t > F(X)I(X:€eS)+ Ry and ISE=MISE+R,,
€S

i=1
where

}fxé%*{(|R1| + |Rz|)/MISE — 0 (2.4)
almost surely as n — co.

Remarks. (We assume 7 has been chosen so small that the window h which minimizies
MISE satisfies (2.1) for all sufficiently large n.)

(i) In the case of a Holder-continuous kernel, result (2.4) is readily extended to the case
where M, denotes the set of all values A satisfying (2.1). This extension is readily obtained
in other cases, such as that where K is the uniform kernel, by using special properties of
the kernel. It is co%lvenient to assume, as we do below, that the extension is possible.

(ii) Let A den;)te that window which minimiizes CV over H,. It follows from our

theorem that

ISE(R)/ inf ISE—1 and ISE(R)/ inf MISE —1
heﬂn ’IGHn



almost surely, so that & provides asymptotic minimization of both ISE and MISE.

(iii) When estimating f at the origin we would want € to shrink to zero as n — oo,
-sufﬁciently slowly for (2.2) to hold. We claim that in this circumstance, the window which
minimizes CV is asymptotic to the window which minimizes §(k) = E{f(0 | )—f(0)}2. To
appreciate why, observe that in regular cases, MISE(h) ~ €?||5||6(h) where ||S|| denotes
the p-dimensional content of S. We may now deduce from our theorem that if A is the

window which minimizes CV then
MISE(R) ~ Jnf MISE(h) almost surely

or equivalently

§(h) ~ h}éng“ §(h) almost surely , (2.5)

which (again in regular cases) means that if A, minimizes §(h) then h/h, — 1 almost
surely.

In the case of p = 1 dimension, an example of the “regular cases” which we have in
mind is that where f has r bounded and continuous derivatives, f(0) # 0 # f(7(0), and

K is an r’th order kernel:
/K(z)dz:l and /zjK(::)dz=O fori1<j<r-1.

The assumption f(7(0) # 0 ensures condition (2.3), and continuity of (7 implies first
that (2.5) holds and thence that h/hn — 1 almost surely. In this circumstance, the window
which minimizes §(h) is of size n~1/(27+1) and condition (2.2) governing the size of e(n)

asks that e shrink to zero more slowly than n—1/{2(2r+1)}

3. Nﬁmerical results '

The cross-validatory criterion CV is particularly easy to compute in the univariate
case when K is the uniform kernel, K(z) = £ for |z| < 1 and K(z) = 0 otherwise. There,

if Sc = (—¢,€) and f is to be estimated at the origin,



CV =(2nh)"?> > max{0,min(e, X; + &, X; + k) + min(e, - X + h, —X; + h)}
: J .

~ {n(n = DR 2 D KX~ Xyl Sh, —eS Xy o). (3.1)

Thus, only counting methods are needed for calculation. For a general nonnegative sym-
metric kernel, and provided the origin is not a point of inflexion of f, the window which

minimizes E{f(0) — f(O)}2 is asymptotic to
ho = 73 (ry /K1) P {£(0)/ £ (0)*}/° (3:2)

where x; = [ 22K(z)dz and k2 = [ K(z)?dz. In the special case of the uniform kernel,
fhe ratio xz/x7 equals 9/2. Thus, for particularly simple calculations in the case of a
general nonnegative symmetric kernel K, h may be chosen to minimize CV defined at
(3.1), and k. an asymptotically optimal window for the given kernel K, be taken equal
to (2x2)1/3(9x2)=1/54. It should be stressed that our use of the uniform is a device for
reducing the heavy computational burden that would be required for calculation of local
bandwidths at a sequence of X values

We applied formula (3.1), with various values of ¢, to numerous samples of size n =
30 from the Standard Normal distribution. There, when K is the uniform kernel, thé
“optimal” window ho defined by (3.2) is ko = .74. Figure 1 illustrates the behavior of CV

as a function of log,y(%) for our first six data sets with e = 1.0.

Figure 1 near here

These are fairly typical of the difficulties posed by the better-known global squared-error
cross validation. As usual, the possibility exists that a spurious, extremely small value of
h may be indicated.

The cross-validatory score function would be less noisy if one were to employ the
triangular kernel. This or even Epanechnikov’s quadratic kernel would increase the com-

putation somewhat and yet still permit a reasonably manageable formula along the lines
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of (3.1). To illustrate the potential effect of such an approach we overlay the results of a
| five-point moving average smoother on the first realization. There is no change in location
of the minimum; The values of 4 that minimize CV in (3.1) are presénted in Table 1 along

with the corresponding values of f(0;%).

Table 1 near here

The selection of a value for € is not extremely critical. A reasonable value may be
based upon a “pilot” estimate for A. For a Standard Normal kernel Silverman (1986)

-1/5

recommends A = .94n , where A = min{s,&}, s is the sample standard deviation

and & = interquartile range/1.34. Converting this coefficient to pertain to the uniform

1/10 we obtain a candidate value for e that adequately reflects scale

kernel and using n
and sample size. Furthermore, to illustrate the relative insensitivity to the choice of € the
second of our samples (for which A = .77) was reanalyzed for numerous alternative values
of € ranging from 0.8 to 3.0. The value of % was the same for all of these. At e =0.75 the
minimum of (3.1) switched locations to A = .12.

VVith an increased sample size of n = 100, which is still not large for density esti-
mation, we estimated f at zo = 0.0, 0.5 and 1.0. (The latter choice violates (2.3); see
following paragraph. However, it is just this feature that makes o = 1.0 interesting.) By
translating the data so that =y becomes the origin, formula (3.1) may be used to obtain
the corresponding adaptive windows. A typical set of results for the Standard Normal
again with € = 1.0 is summarized in Table 2. These examples are not offered in support
of a recommendation of our implementation. We only wish to show that the approach is

feasible and yields different bandwidths at different z values. Refinements are in order and

the analyst is well advised to examine plots of the cross-valida.tory score function.

- _ Table 2 near here
It may be shown as in Hall and Marron (1987a, p.572) that if an r’th order kernel

is used in a global setting, then the relative error of the cross-validatory window h is of
size n~1/{2@7+D} (Our Remark (iii) at the end of Section 2 defines an r’th order kernel.)

Therefore numerical results can be quite erratic if r is large. This is a feature of the
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problem, not of the method of cross-validation, as has been shown by Hall and Marron
(1987b). Exactly the same behaviour is observed when estimating the density at a point
of inflexion, suéh as o = +1 in the case of our Standard Normal example. There, the
estimation problem has all the features of using a fourth order kernel, since terms in h, A2
and A% vanish from the bias. In consequence, relative error increases from order n=1/10 at
points zg # %1, to n~1/18 at zo = 1. Numerical studies~do reveal a considerable increase

in the fuctuation of A when estimating at +1.
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Appendix: Proof of Theorem
Put U(z,y) = vy ' K{(y — 2)/R}(y € &5) — [.5 FE(f),
Veew) = [ [rtK{(u - a)/hE (s~ )/h} — (EF)Y] d,

Ui(z) = E{U(z,X)}, Ua(a) = E{U(X,2)}, () = E{V(z,X)} = B{V(X,2)},
A(z,y) = U(z,y) - Ui(2) = Ua(y) and B(z,y) = V(z,y) — Vi(z) — Vi(y). Then

%(ISE —Cv - [ f‘2> = {n(n —1)}~ Z}: AKX, X;) +n S UKD, (AL

ISE — MISE =n™? Z#Z B(X:, X;) +2n~? ;{Vl(x,-) — Ui(X;)} — 2n2 Z Vi(Xs)

+n72 Y {V(Xi, Xi) - BV(X1, X1)} - (A2)

i . i
Put u(z) = Uz(z) — {f(z)I(z € eS) - [,5 f2}. By'(A.1) and (A.2) we have for each integer
v 2> 1 and each t > 0, using Markov’s inequality,

w1 (h) = P”CV —ISE+2n"! Z f(X)I(X; € e85) - / . f2| > t{e?(nva) ! + A}




2v

n=? Z#Z AX X;)

2v
n~! Z u(X;) } : (A4.3)

72(h) = P[|ISE — MISE| > t{e?(nvs) ™ + A}] < C(v)t™"{’(nva)™! + A} ™%

< CW)t™ 2 {(nvy)~! + A}'”{E

+E

2v 2v
X I:E n=2 Z#JZB(X,-,XJ-) + F n~! Z{.VI(X') - Ul(Xl)}
2v
+E|n7 ) Vi(X)) ] : : (A.4)

Let D denote either A or B, and observe that E{D(X;, X;) | Xi} = E{D(X;, X;) |
X;} = 0. Therefore, with ¥; = 3., {D(X;, X;) + D(X;, X;)} we have E(Y; | Xi,...
...,Xi-1) = 0, implying that the Y;’s are martingale differences. It now follows by
Burkholder’s and Rosenthal’s inequalities (Hall and Heyde 1980, p.87) that for any v > 1,

2|22 pex, x| =L

=2

2v

=E

2v n
< Cv)n ' Y EYi.

=2

Conditional on X;, Y; is a sum of ¢ — 1 independent and identically distributed random

variables, whence it follows by Rosenthal’s inequality (Hall and Heyde 1980, p.23) that
E(Yi* | X;) < C(n?[E{D*(Xi, X1) | X:}]” +n¥ [E{D*(X1, Xi) | X:}]”
+nE{|D(X;, X1)[* + |D(X1, X:)*" | Xi})

for 2 <i < n. A little algebra shows that E{D?*(z,X) + D*(X,z)} < Cv;* uniformly in
z, and E{|D(X;,X,)|?*} < Cv;?**!. Therefore

n=? Z Z D(X;,X;)

i]

2v

E

S C(n—Zuv;u + n—3v+1v;2u+1)
= C{e?(nva) "} {(va/€¥?)" + (ne*")™*nvs} .

Since C1n™1*7 < v, < Cyn~", and €?P > Cv,~", then for some ¢ > 0 and all v > 1,

E’n-2 > DX, X;)

by < C(v){n~¢eP(nuvs) "1} . (A.5)_
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Note that E{u(X)} = 0 and |u(z)| < C(A/e?)? uniformly in z. Therefore by Rosen-
thal’s inequality, and for any é > 0,

n=1 Zu(X,-)

2v

E < CL{(A/ne?)” +nt=(A/e)"} < 2C1(A/neP)”

< 4Cy [{n ™0 (nva) T 1P + (nPund/e¥P)?]

< Cy[n=¢{e?(nvp) "t + A}, (4.6)

on choosing § > 0 and ( > 0 small. An identical argument, noting that E{U;(X) —
Vi(X)} = 0 and [Us(2) - Va(2)| < C(A/¢?)} gives

2v

E < Cn~¢{e?(nva) ™ + A}] . (4.7)

n~1 Z{U1(Xi) - Vai(X9)}

And since E{V1(X)} =0, |Vi(z)| < C and |V(z,z)| < Cv;?! then

2v
<Cin7¥ < C'g{n"%ep(nvh)q}z” , (A.8)

E‘n-2 Zvl(xi)

2v
-3v,  —2v
< Cn™v;

E

n=? Z{V(Xiaxi) - EV(X;,X41)}

= C{(nte?) 1el(nuvy) "1} . (A.9)

Formulae (A.5)—(A.9) provide bounds for the right-hand sides of (A.3) and (A.4), from

which we may now deduce that for each ¢ > 0,
max {m (h) + m2(h)} = O(n™°).

Since #HM, = O(n%) for some d > 0 then by the Borel-Cantelli lemma,

hné%*i{ CV —-ISE+2n™! xf(X,-)I(X,- €eS)— /;sfz‘+ |ISE — MIS’EI}

C x{@(w)Tt £A}T S0 | (4.10)

almost surely as n — co. Finally, observe that

MIS'E:/ var (f) + A > CeP(nvy) ™t + A
S
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for some C > 0, and so the theorem follows from (A.10).
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Figure 1

Squared-error Cross-validation Criterion as a function of Window Width.
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