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ABSTRACT

A random walk describes the movement of a particle in discrete time,
with the direction and the distance traversed in one step being governed by
a probability distribution. 1In a correlated random walk (CRW) the movement
follows a Markov chain and induces correlatioﬁ in the state of the walk at
various epochs. Then, the walk can be modelled as a bivariate Markov chain
with the location of the particle and the direction of movement as the two
variables. 1In such random walks, normally, the particle is not allowed to
stay at one location from one step to the next. 1In this paper we derive
explicit results for the following characteristics of the CRW when it is
allowed to stay at the same location, directly from its transition
probability matrix: (i) equilibrium solution and the first passage
probabilities for the CRW restricted on one side, and (ii) equilibrium
solution and first passage characteristics for the CRW restricted on both

sides (i.e., with finite state space).

Key words: Correlated random walk, Markov chain, equilibrium solution,

first passage time.



1. INTRODUCTION

A random walk describes the movement of a particle in discrete time,
with the direction and the distance traversed in one step being governed by
a probability distribution. In a correlated random walk (CRW) the
probability distribution at successive epochs of the walk are dependent on
the preceding steps in a Markovian strucutre. Consequently the walk itself
becomes a correlated process. Starting with Gillis (1955) and Mohan (1955)
several autho;s have investigated problems related to CRW in one and more
dimensions, and its special cases such as the symmetric CRW which has the
same probability for proceeding in the same direction in successive epochs.
All these investigations»have used the classical approach of difference
equations and generating functions. Except for Nain and Sen (1979a), the
papers by Gupta (1958), Seth (1963), Jain (1971, 1973), Darroch and
Whitford (1972), Proudfoot and Lampard (1972), Nain and Sen (1979b, 1980),
Renshaw and Henderson (1981), Henderson et al. (1983, 1984), Bender and
Richmond (1984) and Roerdink (1985) have considered CRW in which the
particle is not allowed to stay at the same location from one epoch to the
next. Also in most of these investigations first passage problems are of
primary interest. In the lone investigation of unrestricted CRW with stay,
Nain and Sen (1979a) consider characteristics such as first passage to a
specific state, return to the origin, passage to a state a given number of
times, and transitions crossing the x-axis and rebounding from it. The
results are mostly in terms of generating functions. 1In this investigation
we propose to concentrate on the equilibrium distribution of the walk when
restrictions are imposed on theqstate space on one or both sides and some

characteristics such as the probability of first return into a set of



contiguous states and first passage probabilites and mean passage times
with respect to specified states. All reéults are either in explicit or in
easily computable expressions.

The investigation is facilitated by representing CRW by a bivariate
process {(W,,Up), n = 0,1,2,...}, where W, is the location of the particle
after n steps and U, is the nature of the step signified by -1, for a move
to the left, 0 for stay in the same state, and +1 for a move to the right.
We consider the walk restricted to the non-negative integers, thus

resulting in a product space for the walk with factors
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The process {U,} determining the direction of the walk is a Markov

chain with transition probability matrix

+] 0 -1
+1 a b 1-a-b
Py= 0| ¢ d l-c-d (1.1)
-1 g h 1-g-h
_ _

We also assume that the elements are such that this Markov chain is
irreducible and aperiodic. As n ~» =, {U;, n=0, 1, 2, ... } has the

following properties.



Let m = (my), Mg, m-1) be the limiting distribution of U,. Using well

known properties of Markov chains (mPy = m and m e = 1), we get
. _ hc + (1-d)g .
+1 (1-a)(1l-d)-bec "-1 (1.2)
n = bg + (1-a)h m
0 (l-d)(l-a)-bc "-1
leading to the result
141 = [he + (1-d)gl/uw
'mg = [bg + (1-a)h]/w (1.3)
m_1 = [(1-a)(1-d) - bc]/w
where
o = (1-d)(l-a+g) + h(l-a+c) + b(g-c).
Assuming that Uy has the distribution given by (1.3), the serial
correlation with lag 1 of the process {U,} can be obtained as
p = [(2a+b-1)n,y - (2g+h-1)n_y - [E(U)]2]/V(V)
where
E(U) = myy - 13
V(U) = myey + oy - [E(U)]2 (1.4)

The transition probability matrix of the CRW can be now given as follows,



_(0’0)(0’—1) (17+1)(130)(17-1) (27+1)(270)(27_1) (37+1)(370)(37—1)
(0,0) d 0 1-d 0 0
0 0
(0,-1) h 0 1-h 0 0
(1,+1) 0 l-a-b 0 b 0 a 0 0
P = (1,0) 0 l-¢c-d 0 d 0 c 0 0 0
(1,-1)) 0 1-g-H 0 h 0 g 0 0
(2,+1) 0 0 1-a-b 0 b 0 a 0 0
(2,0) : o | 0 0 l1-c-d 0 d 0 c 0 0
(2,-1) 0 0 1l-g-h 0 h 0 g 0 0
0 1 2 3
o[ A B T
1 C Z Y
= 2 X Z Y (1.5)
3 X Z Y
where




[0 l-a-b | [0 0 1l-a-b |
C = 0 l-c-d , X = 0 0 1-c-d
0 l-g-h 0 O l1-g-h
[ a 0 0 | [0 b 0 |
Y=| ¢ 0 0 , Z = 0 d 0 (1.6)
g 0 0 0 h 0

Note that Py = X + Y + 2.

We shall exploit the structure of the submatrices defined in (1.6) and
the transition probability matrix P to obtain explicit expressions for the
distribution characteristic of CRW.

In section 2 we obtain the limiting distribution of the CRW with
transition probability matrix (l1.5) and related first passage
characteristics. In Section 3 similar properties are investigated for the

CRW when state space is made finite by placing restrictions on both sides.

2. CRW Restricted on One Side

The condition for the existence of an equilibrium solution is given by

the following theorem.



Theorem 2.1

The necessary and sufficient condition for the Markov chain with he
transition probability matrix (l.5) to have an equilibrium solution is

given by

a(l-d)+bc
(1-d)(1-g)~hc

<1 . S (2.1)
Proof: Following Neuts (1981, p. 32), the necessary and sufficient
condition for-the existence of the equilibrium solution may be stated as

nYe < mXe (2.2)

where m is the limiting distribution of the Markov chain {U,} as given in
(1.3). Going back to the equations mPy = m, i.e., M(X+Y+Z) = m, we

observe,

mYe = my)
(2.3)
TXe = M_)
Thus, the condition (2.2) reduces to
'“+1 < '"_1 (2'4)

Substituting from (1.3);

he + (l-d)g < (l-a)(1-d) = bc



which on simplification reduces to the condition (2.1). o

Let

X = (’_‘O, X1 §2s ves)

where Xp is a two element row vector and xj (i =

(2.5)

1,2,...) are three element

row vectors, be the limiting distribution of the Markov chain. Following

Neuts (1981, p. 25) we have
x; = x)Ri7L i =1, 2,

where R is the rate matrix of the Markov chain P.

following lemma.

Lemma 2.1

r_a an ap

Ri = gi-lr i=1,2,3..

where

« = ah+b(l-g) g = bec+a(1l-d)
(1-d)(1-g)-hc ’ (1-d)(1-g)-hc

(2.6)

It is obtained in the

(2.7)

(2.8)

(2.9)



Proof: The rate matrix R satisfies the matrix equation
R =Y + RZ + R2X
which can be written as
R = v(1-2)"1 + R2x(1-2)"1 (2.10)

Let R, be the nth iterate of R, such that

_ oyl 2 R |
R = Y(I-2) " + R X(I-2) (2.11)
We have,
[ 1 b/(1-d) 0 |
(1-2)~1 =| o 1/(1-d) 0
0 h/(1-d) 1
Substituting in (2.11) we get
"~ h(l-a-b) .| [ ab . |
n 0 1-d 1-a-b a I-d 0
_ 52 h(l-c-d) o cb
Rn =R 0 1=d | 1-c-d + c 1-d 0 (2.12)
3 h(l—g"h) o _&b
© T4 I-g-h & 1q °

By induction we can show that, for n 2 1,




e N
a l_d(b+hKn) aKn
c
Rn = c m(b*-hKn) CKrl (2.13)
_8
g (b+hK ) K
| 1-d n & n__|

where K, satisfies the recurrence relation

~
it

be hc bc hc
n I:a + 14 + (g + —l"_d) Kn-l:I [l—a - 124 + G—g - ‘1—__‘&) Kn—l] (2.14) |

As n » =, R 5 R; hence K, » K as well. Thus K can be determined by

solving

_ _be _he\ | _. _ _bc ., _ _hc) . |
K—,:a+l_d+ <g+l—d> K—I [la T-d (l l—d) K‘_l
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+

(l—a - l—E—%) (g+11_1—:> _/ K + (g+Tt_l§) (1— -l—}_l:—DKz (2.15)

After simplification the discriminant of equation (2.15) can be written as

— 2
b+h .
= l E%:%—l +a+ g-1 (2.16)



and the two possible roots of the equation are

a(l-d)+bc (1-a)(1-d)-bc (2.17)

K= -d)-hc °’ 2(1-d)+hc

From (2.6) we may note that RJ ~ 0 as j » =. Using this condition we can
show that the second solution is inadmissible. The lemma now follows using
the first solution in (2.13) and simplifying. o
We may also note that the condition (2.1) is necessary for R} - 0 as
j oo .
Using R, the -equilibrium solution is determined in the following

theorem.

Theorem 2.2

When

a(l-d)+bc
(1-d)(1l-g)-hc

<1

the limiting distribution of CRW is given by

x = (%0, X], X2, --+- )

where

_ (1-d)(1-a-g) ~ c(h+b)
X0 = ((I-d)(I-g)~hc)(2(I-d)+hsp) s (1~ (2.18)
o o U-d)(U-d)(U-ag) - c(wb)) [ _aQ-a)sbe |7}
=3 ((1-d)(1-g)~hc)(2(1-d)+h+b) (1-d)(1l-g)-hc

| b(l-g)+ah a(l-d)+bc |
> (1-d)(1l-g)-hc ’ (1-d)(l-g)-hc

10



i=1,2, .... (2.19)
Proof: Writing out xXP = X, we have

xpA + x1C = Xy

§OB + _)EIZ + §2X = Xi (2.20)

w
N

Xi-1Y + X4Z + Xj41X = x5 i

From the second equation in (2.20) and equation (2.6) we get

»
—
1

= xoB (I - z - RX)~! (2.21)
and

x; = x0B (I -z - RX)"IRI"L, j 21 (2.22)

From the first equation in (2.20) and the normalizing condition x e = 1, we

see that xg is the solution of the following reduced system

xg (A+B (I - Z - RX)"1C) = xq
(2.23)
xpe + x0B (I - 2 - RX)"1(1-R)"le = 1
where we have assumed that the unit column vectors e have appropriate
dimensions.

Substituting from (1.6) and (2.7) for A,B,C,X,Z and R and simplifying

we get the following results

11



1 (b(1l-g)+ah)n (a(l-d)+bec)y |
(I -z - Rrx)~1 -l (1-g)q cn (2.24)

0 hn (1-d)q

where

n = ((1-d)(1l-g)-he)~ L.

d 1-d |
A+B(I~2-RX)1lc-= (2.25)
L_h 1-h
) (1-d)(1-g)-hc
(I-R) =1+ (T=d)(1-a-g)—c(h+b) R (2.26)
_ _ -1 _ -1 _ (1-d)(1-g)-hc _ _ -1
B(I - Z - RX) (I -R) = (1) (i-a-g)—c(hb) B(I - Z - RX)

ol -1 _ -1 _ (1-d+b)(1-g+a)+(h-b)(a-c) 1-d

B(T - 2= RO (I = R) e = “—~(_qy(T ace)—c(bsb) [:I_h:J (2.27)

The results (2.18) and (2.19) now follows after substituting these results
in (2.22) and (2.23) and simplifying. o
We close this section by giving a simple result on a first passage

problem. Consider two complementary sets of states

{(0,0),(0,-1),(1,+1),(1,0),(1,~1),...,(i,+1),(i,0),(i,-1)}

w
[N
]

S = {(i+1,+1),(i+1,0),(i+1,-1),..... } .

12



it is well known that the elements of the matrix B*(I—D*)‘IC* give the
first return probability (in the sense described above) into states yj;. 1If
* % , ,
x] and Xy are the limiting probabilites corresponding to sets of states y;

and yp, using reduced systems (see Lal and Bhat (1987, 1988)) we get the

relation

X

*_ % * =1
Xy = §1B (1-p ) . (2.31)

Using the raté matrix R and equation (2.6), (2.31) can also be written as

0 0
e oo o ...
X, = X . . (2.32)

F_o 0 X |
0 0 0
c* =1 . . . (2.33)
0 0 0
- —
we get the result in the theorem. o

When S; = {(0,0),(0,-1)} , for B¥(1-D*)~1c* we have B(I-Z-RX)~lc,

which simplifies to

14



(2.34)

When we combine these probabilities with the elements of

we find, as we should, that the recurrence probabilities to these states
are 1. Further, using arguments similar to those used above we can show
that B(I-z-RX)~1Ri-1 gives the expected number of visits to states {(j,+1),
(j,0),(j,-1)} before first passage to {(0,0),(0,-1)} while avoiding if in

the meantime, after having started initially from it. We have

1-d (1-d)a (1-d)B |

B(1-2-RX)~1Rri-1 = gj-1 (2.35)
1-h (1-h)a (1-h)8

where ¢ and 8 are given in (2.9). Thus, the mean recurrence time of the

set {(0,0),(0,-1)} is obtained as

: (1-d)(1+a+B) " |
181 (1-h)(1+a+B)

 (1-d+b)(l-g+a) + (h-b)(a=c) [ 1-d"| .
- [H]J (2.36)

(1-d)(1l-a-g) - c(h+b)

15



3. CRW Restricted on Both Sides

Let the walk be restricted to the states {0,1,2,... N}. Then, the

transition probability matrix takes the form

_(0,0)(0,-1)(1,+1)(1,0)(1,~-1) . . . (N-1,+1)(N-1,0)(N~1,-1)(N,+1)(N,0)
(0,0) d 0 1-d 0 o |. .. 0 0 0 0 0
(0,-1) h 0 1-h 0 0 ... 0 0 0 0 0
(1,+1)) 0 - l-a=b| 0 b 0o ]. .. 0 0 0 0 0
(1,0) 0 l-c-d| 0 4 0 ]. .. 0 0 0 0 0
(1,-1) 0 l-.-<h| 0 h 0 |... 0 0 0 0 0
P=
(N-1,+1)[ 0 0 0 0 0o |... 0 b 0 a 0
{N-1,0)] O 0O 0 0 0o |... 0 d 0 c 0
(N-1,-1)] 0 o 0 0 0o ... 0 h 0 g 0
(N,+1)] 0 0 0 0 0 ... 0 0 1-b 0 b
(N,0) 0 0 0 0 0 |. .. 0 0 1-d 0 d

Using the submatrices defined in (1.6) and

16



L [ a 0 |
0 0 1-b
F = and G = c 0
0 0 1-d
g 0
we may represent P as
0 1 2 3 N-2 N-1 N
— ___
0 A B 0 0 0 0 0
1 C Z Y 0 0 0 0
2 0 X z Y 0 0 0
P = (3.1)
N-2 0 0 0 0 Z Y 0
N-1 0 0 0 0 X Z G
N 0 "0 0 0 0 F E

The limiting distributi

determined using a backward

on x = (x9,X],%X2,-.. X)) of the CRW can be

recursion (see, Lal and Bhat, 1987, 1988) as in

the following theorem. Note that

xo = (x00; X0,-1)

xi = (Xi,+1» Xi,0»

xN = (xN,+1> XN,0)

Xi,-1)

i=1,2,...,81

17



Theorem 3.1

_ l—d> i-1 _
Xi 41 ( n /8 oo i=1,2 ..., §
1- i-1
X1,0 = (~E—>a8 X00 i=1, 2, , N-1
1-d\ . i
xl’_1 = <;E~>B X450 i=0,1, 2, , N-1
X - (2 BN—lx
N,0  \h 00
where
ah+b(l-g) g = bc+a(l~d)

= {T-d)(1-g)-hc ’ - (1-d)(1-g)-hc

as defined in (2.9).

Proof: Clearly we have

I

j@

i
—

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

To use the backward recursion, we start with the last 4 equations in (3.5).

XN,0 = bxXy +1 * dxXy ¢

18



XN,+1 = @XN+]1,+]1 * CXN-]1,0 t BXN-1,-1

XN-].,"]. = (l_b)xN,+l + (l—d)xN,O

XN-1,0 = bXy-1 41 *+ dXy-1 0 + hxy-1 -]

From these equations, the last 4 variables can be expressed in terms of

XN~1,+]1 @s

X = — B

N,0 ~ 1I-d ® *N-1,+1

XN,+1 = B XN-1,+1
(3.7)
XN-1,-1 = B XN-1,+1

XN-1,0 = @ XN—1,+1

where a and B are defined in (3.4). Next use three equations preceding the

last 4 in (3.5).

XN-1,+1 = aXN-2 +]1 t CXN-2 0 * BXN-2,-1

XN-2,-1 = (lma=b)xy_] +1 + (l-c-d)xy_] o + (l-g-h)xy_] )

XN-2,0 = bXy-2,41 * dxN-3 0 * hxy-3 -]

19



Now expressing all the variables in terms xy.p 4] and using (3.7), from

these equations we get

XN-1,-1 = 82 xN-2,41

(3.8)
XN-1,0 = oB XN-2 4]
XN-1,+1 = B XN-2,+1
XN-2,-1 = B XN-2 41
XN-2,0 T @ XN-2,+1]
On repeatedly using the above recursive procedure we get
X = _p_ BN—l
N,0 \l-d x1,+1
xi,0 = a8i~l x) 4y i=1,2, ..., N-1
(3.9)
xi,+1 = 8171 x4y i=1,2, ..., N
xi,-1 = 81 x3 41 i=0,1,2, ..., N-1

20



X = (l:g> X
1,+1 h 00

The theorem now follows when we use (3.9) in the normalizing condition
(3.6). o

In random walk problems first passage problems are also of interest.
For instance, in the context of a gambler's ruin problem, the probability
of ruin, the probability of win and the expected duration of the game are
all related to the first passage of the walk to a particular state. In the
case of CRW with stay similar problems can also be investigated. A
computational procedure to obtain these characteristics is to determine
what has come to be known as the fundamental matrix of the appropriate
transition probability matrix. See Kemeny and Snell (1960) for the
definition of the matrix and the interpretation of results. The basic

fundamental matrix for the finite state CRW can be given as

1 2 3 N-2 N-1 N _ -1
1-2 -Y 0 0 0 0
-X I-z Y . 0 0 0
M= 0 -X -2z ... O 0 0 (3.10)
0 0 0 -X I-z -Y
0 0 0 0 -X 1I-Z
| |

Let M;j be the (i,j)th element of M. We have

21



Lemma 3.1

min(i-1,3j-1)[ i-1 [ 5-1
M., = ) n x R n vy (3.11)
1] 2=0 g=1+1 V4 N g4y NS
wheré Ry satisfies the relation
Rg = (I -2 - YRy_1X)"1 L =2,3,..., N
Ry = (I -2)!, Ry =0 (3.12)
and
Yy = YRy and Xy = RgX , L =1, 2, ..., N. (3.13)
i-1 ) j-1
In (3.11) n X is taken in pre-order as q increases, while ny
N-q N-s
q=4+1 s=4+1

is taken in post-order as s increases.

Proof: The result follows from the recursive algorithm following Theorem

2.2 of Lal and Bhat (1988). ®

Theorem 3.2

(11) (12) (13)
- (21) (22) (23)
Mij = uij uij uij (3.14)
(31) (32) (33)
L i ij ij

22



where

(11) _
ij

(12) _
ij

(13) _
ij

(21)
ij

(22)
ij

w2

ij

(31) _

1]

(32) _

1]

b+(ah-bg)K

6 b+(ah-bg)KN_j 5
155 * 1-d-vK 515 *V
J N-j

c(K, .-1) |
S .+hS§. l+# +
J +] N-i

]

l—d—vKN_

.+ (1-d)

N'j—J [:cs§. + Vs, G +
; ij ij

c(K, .~-1)
i 1t e |
*] VEN-i

23

c(KN_i—l)

1-d-vK

N-1i

]



§ b+(ah—bg)KN 3 7 [ 1-d-v
lfd~vK 1J T-d-vK_ . d-vKN i
(33) 1 6 1-d~v
n. . = (1-d) S,. + S, . v +
ij ij ij |1-d vKN—i
N VRN 5 , o7 [ l-d-v
ljd—vKN_j ij ij l—d-\JKN_i

with

Y = bc + a(l-d)
(3.15)
v = he + g(l—d) ’
Ky defined by the recursion
Y(R, ,-1)
- -1 7 -
Ky = 1+ oK, L =1, 2,
(3.16)
Kg = o ,
and
SO 1J 6** 6**
ij g i,0427 7,042
1J
1 e S -1
Sij T g 81 ,042%5, 042179 VRy 4 )
1J
2 ek F¥ -1
Sij = g 05 ae203, nap(Imd-VK o 1) Ky g1
1J
3 e F% -1
Siy = g 85 04205, 0ap (174 VK y ) (178K )
IJ
K% *% -
s*. - Wb (1-d-vK ) 1(b+(ah—bg)K )

ij g 6i,!+2 j,a+2 N-2-1 N-2-1

24



The theorem now follows by‘substituting from (3.20) - (3.23) in (3.11) and
simplifying. o
The fundamental matrix derived in Theorem 3.2 leads directly to the
following first passage characteristics: (i) first passage probabilities to
states {(0,0), (0,-1)} and {(N,+1),(N,0)} while avoiding each other, (ii)
mean and variance of first passage times of such transitions, and (iii) the
first passage probabilities into states identified in (i), but not
necessarily avoiding each other. To determine the first two
characteristi;s we convert states 0 and N of (3.1) into absorbing states,

and re-arrange and re-partition the matrix P as

0 N 1 2 3 N-1
0 1 0 0 0 0 0
N 0 1 0 0 0 0
1 C 0 YA Y 0 . 0
2 0 0 X Z Y . 0
P=_ . . . . . . . (3.24)
N-2 0 0 0 0 0 Y
N-1 0 G 0 0 0 Z
L |

The corresponding fundamental matrix is

27



M = (1-R)"1

as derived in Theorem 3.2, with N replaced by N-1. 1Its row sums give the
expected time the process takes to enter 0 or N, having started at the
corresponding state. The fundamental matrix can also be used to compute
variances of first passage times (see Kemeny and Snell, 1960). The first
passage probabilities to states 0 and N from any one of the intitial states
are obtained as the elements of the matrix product ML.

Finally, ko determine first passage characteristics of the process to
state 0 (or N), allowing the process to visit state N (or 0) in the mean

time, we have to extend the matrix H of (3.24) as follows.

0 0
0 0
H
0 0
a 0
H(l) = ' c 0
g 0
0 0o . 0 1-b 0 b
L_0 0 . 0 1-d 0 d

28



or

d 0 1-d 0 0 ... 0
h 0 I-h 0 0 ... 0
0 l-a-b
0 l-c~d
H(2) =| 0 1-g-h
0 0 H
0 0
0 0
L _

The fundamental matrix M(l) = (I--H(l))’l is used while considering the
first passage to state 0 and M(2) = (1-u(2))-1 is used while considering
the first passage to state N. In these cases the results of Theorem 3.2

can be extended using methods of Theorem 2.2 of Lal and Bhat (1988), and

S%) and MS%) of M
1] 1]

(1) (2)

the elements M and M

can be.expressed in terms of
elements Mij of equations (3.14) - (3.17). We shall not give them here due
to their cumbersome nature.

The first passage results given by Mjj of (3.14) - (3.17) may look
involved and complicated. Nevertheless, as anyone well-versed in

scientific computations can realize they can be conveniently used to get

useful numerical results.
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