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ABSTRACT
Upper and lower control limits for control charts for Markov dependent
production processes are obtained using the distribution of the number of
successes in Markov trials derived by the authors. The standard k-sigma
limits as well as control limits based on the exact distribution are
obtained. Algorithms for the determination of sample size are given with

illustrations.
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1. Introduction

A control chart is an important tool in monitoring production
processes in order to control product quality. Any book on quality control
gives procedures to set up and use attribute control charts when items are
classified as defective (or nonconforming) or non-defective (or
conforming). See Duncan (1974), Grant -and Leavenworth (1980), Wadsworth et
al. (1986), to cite only a few of such books. 1In all such treatments as
well as those we may find in all research papers on the subject, the
production process considered is an independent process in which the
quality of one item is not dependent on the quality of the preceding one.
However, often in a production process, the quality of items is serially
dependent (see for instance, Broadbent (1958)). With this in mind we
propose here procedures to determine the upper and lower control limits of
a control chart for a production process which is Markov dependent.

In a recent paper (Bhat and Lal, 1987a) the authors have derived
distribution characteristics of the number of successes in a sequence of
Markov trials. This is done by defining an augmented Markov chain whose
‘state space includes the information on the number of successes. We
describe this procedure in section 2. 1In section 3, the control limits are
obtained and in section &4, its operating characteristic curve is discussed.
Fiﬁally the sample size problem is addressed in the last section. We may
note here that in a companion paper (Bhat and Lal, 1987b), the authors have
proposed a sequential inspection plan for monitoring Markov dependent
production processes, which is a modification of the standard acceptance

sampling procedure,



2. An Augmented Markov Chain

Let {Yn, n=0,1,2,...} be a two state Markov chain with states 0 and 1.
We assume that the quality attributes of the nth inspected item can be
represented by Y,, with states 0O and 1 representing good (acceptable) and
bad (unacceptable) respectively. Let the transition probability Pij be
defined as

pl] = P[Yn+]_=j| Yo = i] n=20,1,2,....

It is well known that the process is completely specified by the transition

probability matrix

Poo  Po1 1-a 2

P = = (1)
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along with the initial state Yg.
Let
p{™ L ey =gy, = i) n=1,2 (2)
by i, 0 . 32,

In a two state Markov chain defined as in (1), when |1 - a-b |< 1 the

limiting probabilities
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m, = 1i . . s (j =0,1)
j m le ]

N

exist independent of the initial state and are given by

b a
(“O’“l) = (a+b > a+b ) - (3)



Also if we denote by Pj the serial correlation (of lag j) of the process
for which the initial state Yo has the distribution (3), we get
Py = pj, where p = 1 - (a+b) . (4)

Corresponding to the fraction defective in a production process with
sequential items independent of each other, in a Markov dependent process
we may identify mj, the probability that an item is defective in the long
run. Thus a Markov dependent production process can be identified by two
parameters, the fraction defective p (= m)) and the seriql correlation p,

with the following admissible ranges:

1 1
1 - miny{=, —} < <1
i
which can be stated also as
P . 1
max{0, l—p} < p < min{1, l—p} . (5)

Using p and p the transition probability matrix P can be represented as

1 - p(l-p) p(1l-p)

(1-p)(1-p) p+p(1l-p)

In order to avoid making decisions based on transient characteristics
of the process, a sample of size n items is inspected after the process has
attained stability. Accordingly we assume the initial state distribution
to be [(l-p),pl. We may consider charts under two sampling schemes. 1In
the first scheme, a series of samples of fixed size n are inspected with

enough spacing between samples. Appropriate spacing j between samples can



be determined so that lag j serial correlation pj becomes negligible. This
sampling scheme is similar to the Shewhart scheme usually adopted for the
independent production process. In the second scheme, cumulative numbers
of defectives is noted for every k additional items, starting with an
initial sample of size n. In practice inspection can be stopped with a
predesignated number of incremental sémples. This is similar to the sample
scheme adopted for CUSUM charts. In either scheme, to detefmine the
control limits, we need the distribution of the number of successes in a
specified number of Markov dependent trials. Since the distribution of the
number of successes in dependent trials given by Gabriel (1959) using
combinatorial arguments is not very convenient, in our calculations we use
the results derived by the authors recently (Bhat and Lal, 1987a). These
results are based on the following augmented Markov model.

Define a Markov chain (X, Y,) where

Xp = number of defectives in n inspected items

Y

n state at the nth inspection.

The state space of the Markov chain can be given as
{oo, 11, 10, 21, 20, 31, 30, . . . . .}

with the transition probabilities

Pij,kt = P(Xp =k, Yo =2 | Xg = i, Yo = ) (7)

and the matrix [pjj kgl



00 11 10 21 20 31
00 1-a a
11 b 1-b
10 1-a a
21 b 1-b
P= 20 -a  a (8)

31

The distribution of the number of defectives in a sample of size n is
given by the elements of P, the nth power of matrix P. Because of the
triangular structure of P, PD can be explicitly determined (Bhat and Lal,
1987a). It may be noted that for small values of n the distribution of the
number of defectives can be easily obtained by simple matrix

multiplication.

3. Control Limits

Let p be the specified standard for the fraction of defectives in a
Markov dependent production process with a serial correlation (of lag one)
equal to p. Using the transition probability structure given in equations
(1) and (6) we shall write

p(l-p) = a and (1-p)(1-p) = b. (9
It should be noted that the admissible ranges for p and p are defined in

equation (5).



For a fraction defective chart p will be the central line and the
upper and lower control limits can be determined, based on the distribution
of the number of defectives in a sample size n, as follows. Let X, be the
number of defectives in a sample of size n, including the initial

observation. Then
P(Xn = h)

h

= (1-p) )
j=min(1,h)

s n-h-1 wh sk n-h-1
: b6k+j—l,n—l< j )* (1-a)8y, 6h+j—2,n—1( j-1 )

h-1
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h-1

+p ‘Z

j=1

sk n-h-1 = n-h-1
: b6h+j—l,n—l< 3 )* (l_a)6h+j—2,n—l( j-1 )

h=0,1, 2, ..., n. , (10)

(h;]) (l—a)n—h_j_l( l-b)h—j—lajbj

where

ooh =1 if h = 0, and =0 otherwise

87 =1 if h, and =0 if g z h
gh - i g < h, and =0 if g 2
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When the initial state distribution is given by (3), the mean and

variance of X, can be obtained as

E(X,) = np (11)
‘D 1-p"
Var(X ) = np(l-p) + 2p(l—p)(l_p L > ) (12)

From the distribution of X, both k¢ (k times the standard deviation) and
100(1-a)% limits (with 100(e/2)% of the distribution at either tail) can be

numerically obtained by using the following procedure.

kg Limits

(p - ks/Var(Xp)/n, p + k/Var(X,)/n)

where Var(X,) is the variance of defectives in a sample of size n for given

p and p.

100(1-0)% Limits

(IL/n, IU/n)

h=IL
where > P(X =h) z a/2
h=0
and
h=IU
> P(X_ =h) z1-0/2

h



Table 1

Upper control limits for Markovian Production Processes
(Lower control limits are O in all cases).

P P n 30 limits 99% limits
p-chart np-chart p-chart np-chart
.01 | 0.5 100 .06136 7 .09000 9
125 .05601 7 .08000 10
150 .05204 8 .06667 10
175 .04895 9 .06286 11
200 .04647 10 .06000 12
0.0 | 100 .03986 4 .04000 4
125 .03672 5 .04000 5
150 .03439 6 .03333 5
175 .03258 6 .03429% 6
200 .03114 7 .03000 6
-0.01| 100 .03958 4 .04000 4
125 .03645 5 .04000 5
150 .03416 6 .03333 5
175 .03238 6 .03429% 6
200 .03093 7 .03000 6
.02 | 0.5 100 .09227 10 .12000 12
125 .08473 11 .10400 13
150 .07915 12 .09333 14
175 .07480 14 .08571 15
200 .07129 15 .08000 16
0.0 | 100 .06202 7 .06000 6
125 .05758 8 .05600 7
150 .05431 9 .05333 8
175 .05178 10 .05143 9
200 .04972 10 .05000 10
-0.02| 100 .06119 7 .06000 6
125 .05685 8 .05600 7
150 .05364 9 .05333 8
175 .05114 9 .05143 9
200 .04916 10 .05000 10

* These limits do not follow the pattern because np-chart
limits are determined first.

The procedures for the determination of control limits for the

Shewhart chart and the CUSUM chart are similar.

nature of the process, the variation in the control limits

Because of the correlated

. . , 1 ..
is nonlinear in n (or ;) and therefore, the control limits for the




CUSUM chart can be obtained the same way as Table 1 in which cumulative
number of defectives (or successive fraction defectives) for sample sizes
increasing incrementally by a specified number are displayed. Nevertheless
as a good approximation, a V—m#sk can also be constructed based on the

following observation.

%
1 ——— _| pU-p) . 2p(1-p)p _ 2p(1-p)p(i-p")
a Var(xn) - n + n(l—p) n2(1_p)2 (13)

For large n the last term in this expression can be considered

negligible. After simplification, we then get

— %
% fvar(x ) = [L“—;%El (14)

which is similar to the expression one gets in the independent process

case except for the terms incorporating correlation.

4. Operating Characterstic Curve

The operating characteristic curve gives the probabilities of the
process being under control for varying quality levels for a specified set
of upper and lower control limits. If cj and cy are the lower and upper
control limits designed for a quality level pg, correlation p, and sample
size n, the 0.C. curve is obtained by graphing the probability (for

different values of p)

Pa(p,p) = P(Xp s ¢3) - P(X, < ¢7). (15)

10
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5. Sample Size

The methods of determining sample size for control charts are
available in the literature. {(We shall not include cost function
techniques in our discussion). (i) Determine the sample size n such that
the probability of obtaining no defectives in the sample has a prespecified
value. (ii) Determine n such that the margin of error in estimating the
quality level has a pré—specified value with a given confidénce level.
Under assumptions of normality, the method is also described as the one
which there is a 50% chance of detecting a shift equal to the distance
between the central line to the contfol limit. These two procedures can be

employed in the dependent process case as follows.

(i) Let Yg be the prespecified probability of obtaining no defectives
in a sample of size n. Using Markovian transition probabilities given by
(6), we need n such that

Yo = (1-p)(1-p(l-p))n-1 (18)
Solving for n,

n =1+ [In(Yg/(1-p))/ In(1-p(1-p))]. (19)

Table 2 below presents sample sizes as determined by this approach in a few

cases.

12



Table 2

Sample size when probability Yy of zero defectives is known.

Yo

p p
.01 .05 .10
.01 0.5 918 597 459
0.0 459 299 230
-0.01 454 296 227
.02 0.5 458 298 229
0.0 228 149 114
-0.02 224 146 112
.05 0.5 181 118 90
0.0 90 59 45
-0.05 86 56 43
.10 0.5 89 58 bb
0.0 44 29 22
-0.10 40 26 20

L L

(ii) Let d be the margin of error in estimate (or shift in the
quality level). The sample size n can be determined based on two types of

limits discussed earlier by solving the following equations.

a. kd limits:
JVar(Xn)
k ———n = d ’ (20)

where X, is the number of defectives, whose distribution is given by (10).

13



b. 100(1-a)% limits:
(1U, - ILy)/n = d* (21)

where d* = max (0,p-d) + min (1,p+d)

When the sample size n is expected to be large, it can be approximated

as

_ p(1-p) (14p) (22)
dz(l-p)

in the case of (20), and

n = ZT_E Eiiif%fliﬂl . (23)
2 p)
As one may expect, from Table 3 it can be seen that these approximations
are good in the case of k¢ limits, but not so in the case of 100(l-w)%
limits.

The procedures devised to solve for n in equations (20) and (21) use
modified regula falsi method (see Conte and deBoor (1972)) to perform
single variable fixed point iterations. Equations (20) (or (21)) is solved
until it is satisfied within a certain prespecified error tolerance (g) or

n is the same for a certain prespecified number of iterations (ITER). Each

14



implementation of modified regula fglsi method requires determination of
bounds for an iterative solution value of n. It assumes that n is real and
the function in (20) (or (21)) is continuous in n, even though it is
evaluated only for integer values of n. One should note that the function
in (20) (or (21)) is monotonic in n which facilitates faster convergence.

The steps required to find n using equation (20) are given below

Step 1[Stop Parameter] e = .00001, ITER = 5.

K2p(1-p) (1+p)
d2(1—p)

Step 2[Initial Guess] n =

Step 3[Bounds for n]
3a. If | kAar(X,)/n -~ d | s € then Step 5.

3b. If k/Var (X,)/n < d then go to 3f.

3c. n;, =n, ng = 3n/2, n = ng.
3d. 1f |k/Var(Xn)/n -d |5 £ then Step 5.

3e. 1f k/%ar(xn)/n > d then go to 3c else go to Step 4.

3f. ng = n, n;, = 2n/3, n = ng,.
3g. If | k/Var(X,)/n - d | £ € then Step 5.

3h. if k/Var(Xn)/n < d then go to 3f.

Step 4[Solve for n] Solve k/6ar(Xn)/n = d for n using modified regula falsi
iterative method with stopping rule being that the equation is
satisfied within error tolerance e or n remains the same for ITER

number of iterations.

15



Step 5[Stop] Stop.

The above procedure to find n can be used for equation (21) by

obtaining the initial guess for n as n = z

2 . E(l-g)(1+g)’ and
1 -3 d“(1-p)
replacing k/Var(X,) by (IU, - IL,). Table 3 presents sample size as

determined by these approaches for a few cases.

Table 3

Sample size when margin of error d is specified.

(e = .00001)
ko limits 100(1-a)% limits
p P d
24 3d 95% 99%
Exact | Appr.| Exact | Appr.| Exact | Appr.| Exact Appr.
.05 0.5 .05 226 228 511 513 210 219 360 379
.08 87 90 199 201 123 86 208 148
0.0 .05 76 76 171 171 70 73 110 127
.08 30 30 67 67 38 29 69 50
-0.05 .05 68 69 154 155 68 67 110 115
.08 26 27 60 61 30 26 61 45
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