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ABSTRACT

Markov trials are a sequence of dependent trials with two
outcomes, success and failure, which are the states of a Markov chain.
A new Markov chain is defined by augmenting the state space to include
information on the number of successes. The distribution
characteristics of the numbér of successes in n trials and the first
passage time for a specified number of successes are obtained using

this augmented Markov chain.
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1. Introduction

Distribution characteristics of a sequence of Bernoulli trials
(independent trials with constant probabilities for success and
failure) are some of the basic topics covered in any introductory
course in probability. 1Instead of a sequence of independent trials if
we consider a sequence of Markov dependent trials (when probabilities
of success and failure are governed by a Markov chain structure),
their distribution characteristics are not easily determined. Using
combinatorial arguments Gabriel (1959) has given the distribution and
moments of the number of successes.- Here we provide an alternative
and simpler method which gives the distribution characteristics of the
number of successes as well as the first passage time for a specified
number of successes. This method has the added attraction of being
much more suitable for numerical calculations.

The key feature of this approach is an augmented Markov chain
defined by incorporating the information on the number of successes.
Thé definition is given in section 2. Distribution of the number of
successes is derived in section 3 and distribution characteristics of
the first passage time to a specified number of successes are

presented in section 4. Some remarks on the use of these results are

made in the final section.

2. An Augmented Markov Chain

Let {Yn, n=O,l,2...} be a two state Markov chain with states 0
(failure) and 1 (success) and transition probabilities

pi- = P(Ypep = ] Yy = 1) n=0,1,2,...




We assume that the transition probability matrix is given by

poo  Poil [l-a  a
- | (1)
PI0 P11 b 1-b |
B (0<a, b < ).
Let
(n) _ . . o
pyi = P(Y =] ‘YO = i) n=12,...
When | 1-a-b | < 1, the limiting probabilities
2. = lim p'™ (5 =0,1)
i L. 1]
exist independent of the initial state, and are given by
(g1, = (o2, =2 = (1-p, p) (2)
To'M1) = 'a5b ° a+b P, P/, say.
Define an augmented Markov chain (X,,Y,) where
Xn = number of successes in n trials
Y, = state at the nth trial.
The state space for this Markov chain can be given as
{oo, 11, 10, 21, 20, 31, 30, . . . . .}
with the corresponding transition probabilities
Pij g = BXy =k Y = U[Xy =i, ¥y =)
and the matrix [Pij,kl]
00 11 10 2] 20 31 _
00| 1l-a a
11 b 1-b
10 1-a a
P = 2] b 1-b (3)
20 , 1-a a
31
L .




The matrix P possesses. the necessary information and the structure to
determine the distribution characteristics related to the number of

successes mentioned earlier.

‘3. Distribution of the Number of Successes

The first two rows of the matrix P® (nth power of P) give the

distribution of the number of defectives in n trials (after the

(n)

13,k2 be the (ij,k2) element of p"
?

initial trial). Let P;

Assuming that the process is in equilibrum we may write

P(XO 0, Yo = 0) = 1-p

P(Xg 1, Yo = 1) p-

Then
P(X_=k) = (l- P>Lpoo k1l Pégikoj

. NGO
ppll Jk1 7 Pr1ko

k=0,1,2,...... n. (4)

(n)

. . P . £
i3, k2 is by matrix multiplication after

A simple way of obtaining p,

truncating the state space of the countably infinite state Markov

(n)

ij, ke as well as

chain appropriately. If explicit expressions for P

(4) are needed, they can be determined as follows.

Partition P as




00 11 10 21 20 31

00 l-a a 0 0 N
11 - O 0 b 1-b
10 l-a a 0 0
21 0 0 b 1-b
30 - l1-a a
31 ' 0 0
A B ]
A B
A B
- . (5)
L i
where
rl—a a_| r 0 0 |
A= | | » B =| l .
| 0 0| | b 1-b| (6)
L | L |
Clearly
(n) (n) (n) (n)
D D D D
0 1 2 3
(n) (n) (n)
D D D
0 1 2
n ’ .
P = (n) (n) (7)
D D . . .
0 1
(n)
D
0




where
(n) _ ,n
0 = A
D€n+1) - plmg Dgn)A, i=1,2,... (8)
i l 1 1

By recursive substitutions, from (8) we get

n-1

Din?= p (J)B R i=1,2,... (9)
j=i-1 :
with
(0)
DO = I
EJ) =0 for j 5 i-1
D§J) = BJ for j = i.
In deriving explicit expressions for the elements of D§n),
we first note the following results given as a lemma.
Lemma 1. For A and B defined in (6) and for n > 0, we have
(1-)™ 5. (1-a)" la
n On
A = _ (10)
0 6On
) 6On | 0
B = (11)
5. (-0 (1-p)®
On _

X n n-1
] m(_l—a) Om O (l-a) a

* m-1 n ¥ m-1 n-1 m
6Om(1~b) b(l-a) 6Om60n(l—b) ba(l-a) +6On(l—b)

(12)




where

fop = 1 if n =0

=0 ifn>0
%on =1 = 9on
Explicit expressioné for the elements of D§n) are
given in the following theorem.
Theorem 1. For n > i, let
di“)<11) din)(lz)
SR (n) (13)
, d; "(21) d; "(22)
i i
and define
bgn = 1 1f g <h
=0 if g z h
6Oin - GOiGOn(l—ﬁni)
We have
(n) . e i-1,,n-i n-i-j i-3 3.3
di (11) = £ Gi+'—l n(._l)( . )(l~a) (1-b) a b
j=min(l.1) J=sn ] J
(n) i+l *k i, ,n-i-1 n-i-j i+l-j j. j-1
;™12 = b, . T A=) (1-0) T atbd
i j=1 i+j-1,n"j-1 j-1
M1y = 67 (- ieny Tl 4
i Oin
17l i-1, n-i n-i-j i-1-j_j, j+1
£ o6, ., (O -a)" -y  atbd
j=1 i+j-1,n" j i




*J I3 —o— _c_v :—. . .
o (b Tithy(1oa)r it (1opy T3,
i+j-1,n"j j-1

a2y =5, (1-0)" +
1 in 1
(14)

.
[ ot Mo

Proof. Results in (14) are proved by induction on i for each element
(n)
of Di .

For i = 0, from (l4) we get

[ n Yk n-1 |
D(n) ) (l-a) 6On(l—a) a

0 0 GOn

A" [from (10)].

Thus (14) holds for i=0. Assume. that it holds for some i > 0. Now
the proof is completed by showing that it holds for i+l after
simplifications of the recursive relation (9) for i = i+l, which can

be written as

(J)B An—l—J

= I D.
L i

Details of these simplification are given in the appendix.
Using the above expression in (4) the distribution of the number

of successes in (n+l) trials (including the initial trial) follows.

k

1Y = (1o k-
P(Xn—k) = (l-p). I.

( 3=t
j=min(l,k) “j-

D (1) I (1-p) adp

dook n-k v Yok n-k
B3 o1,nC 5 7 @80y Bypg0 Gy
W k-1 o n-k
o 8 (Imb) T (Ey, ¥ gl )




(k51>(1-a>“‘k'j(1-b>k'l‘jaj

+p Z
j=1
Jede n-k
+ (madby o (G0
k =0,1,2,...,n+l

3 e
b (b5

7

k+j-1,n" j

4. First Passage Time for More than ¢ Successes

(15)

To determine distribution characteristics of first passage time

for more than ¢ successes convert state (c+1,1) into an absorbing

state.

Now the transition probability matrix R partitioned as in

section 3 can be given as

00
11

10
21

20
31

cl
c0

(c+1,1)

10 21
0 0
b 1-b
l1-a a
0 0

20 31
0 0
b 1-b
l~a a
0 0

cO (e+l,1) _
b 1-b
1-a a
0 1




Fl 2 K-1| K _
1 A B
2 A B
3 "A B
= . . (16)
K-1 A B
K 0 C
where A and B are given in (6), and
[(1-a a 7
Cc = - (17
0 1
_l

and K = c+l. The dimension of the matrix in (l16) is N = 2K.

Let T;; be the number of transitions required to visit state

i]

- {e+1,1). Because of the absorbing state (c+1,1), the elements

Rg?)km of the nth power of R(=R") can be interpreted as follows.
For £ = 0,1,2, ,c, m= 0,1
ROV P[X =%, Y =m |[X. =i, Y.=j, T,.>n] (18)
ij,tm n "’ "n 0 77 "0 77 Tij
and for & = c+1, m=l
(n) _ _ _ . .
Riy (er1,1y = P(R=etl, ¥ =1 | Xg=1, ¥4=3, T, ¢ n] (19)

Hence for a process which starts with states having an equilibrium

distribution f(l—p),P],

10




(n) (n) (20)

P(Tsn) = (l'P)ROO’(C+1,1) * P Rll,(c+l,l)

where we have used T to represent the unconditional first passage
time,
To derive explicit expressions for elements of RD we proceed as

follows. We_have

[ (n) (n) (n) (n) (n)
D, D, D, <o+« Dply E,
(n) (n) (n) (n)
Rn - DO Dl v e e DK—3 E2 (21)
(n) (n) (n)
Dy c .o« Dply E,
(n) (n)
Dy Ero1
_ 0 ™

where D§n) are given in equations (8) and (9) and Theorem 1, and

Ein) can be obtained from recurrence relations

g(nrD) _ o g (22)
i K-1-1i i

i=1,2...,K-1
with
= B, Eil) =0, i=1,2,...,K-2.

Recursive substitutions in (22) give

-1
y n . s .
() ¢ pli) pen -3, i=1,2,...,K-1 (23)
i . . K-1-1
j=K-1-1 : : ~
where EEJ) = { for j £ K-1-1
EEJ) = 1 for j = K-1i

11




Explicit expressions for the elements of Egn), are presented in a
lemma and a theorem below.
Lemma 2: For B defined in (6), C defined in (17), and for nz0, we

have

(1-a)" 1—(1—a)“J

0 1 (24)

ﬁom(l—a)n ﬁom[l-(l—a)n]

* -1 * m=1 '
5, (1) (160" T (1-0)™ + 5 (1-0)™ T [1-(1-2)"]b

(25)
where 0 functions are defined in Lemma 1.
These results follow directly by matrix multiplication.
Theorem 2. For n 3z K-i, i=1,2,...,K-1, let
() i 1) ei™ (12)
By T (n) (n) (26)
e, '(21) e, "(22)
i i
and define 6 functions as in Theorem 1. We have
(n K71 e n-K+i, K-1-1 n-K+i-j K-i-j 3§ j
S D e e YO P T (1-b) alb
i j=1 K-1-i+j,n j j=-1
R-i n-K+i-j . 1 IV
My = o (o ATyl KT (g Kt gt
i . K-1-i+j,n g j-1
=1 g=0
- et
(n) & _yn-K+i oo K-1-i
ey (21) = ﬁKnl—i,n(l a) b(l-b)

12




K-1-1
e s 1 e e s s
+ T & o n $+1)(K % l)(l—a)n K+1i J(l_b)K 1-1i JanJ+l
. K-1-i+j,n j
j=1
(n) Rk K-1-1
e, (22) = 6K—l—i,n(l b)
K-1-1i | n-K+i-j . .
*¥ -1 K-1-
$ T e . (D OB -B T

(1-p)X 17173 33 eiﬁ’<21>

These results follow directly from (23) on simplifications, after

using appropriate terms from Theorem 1, Lemma 2, and noting that

‘o . .. s n-K+i-j
*% g-K+1i _\BK+1+i-j o T j-1l+g R
6K—2—i+j,g( -1 Y(1-a) 6K—l—i+j,n gzo ( . Y(1-a)

n-1
L
g=K-1-1i

Let Tij,kk be the number of visits of the process to
state (k) before it eventually gets absorbed in state (c+1,1), having
originally started from state (ij). Mean and variance of

Tij,kk are obtained in terms.éf the fundamental matfix M of

the transition probability matrix R. [For a definition of the
fundamental matrix and expressions for mean and variance see Kemeny

and Snell (1960), Ch. 3 or Bhat (1984), Ch. 4]. First we modify the

partition in (16) as

13




m A 5 _
A B
A B
R = . (27)
A b 1-b
l1-a a
0 1
L i
Q@ Ry |

(28)

|
“lo 1]

From the theory of finite Markov chains (see references cited

above), we have (using || » || to denote a matrix)
-1
L E(Tij’kk)|[ =M= (1I-Q) (29)
| V(Tij,kk" = M(2M-1) - M, , (30)

where Mp is a matrix with only the diagonal elements of M and My is a
matrix whose elements are the squared elements of M. Clearly row sums
of (29) and (30) give mean and varianée of Tij which is the first
passage time conditional on the initial state (ij). These results are
given below as Theorem 3. Proof of the theorem follows from the
well-known method of inversioﬁ of a triangular matrix (I-Q) (see
Faddeev and Faddeeva (1963)).

Theorem 3. The mean and variance of the first passage times

Tij,kk and Tij are given as follows

14




0o 11 10 21 20 1
00 [ 1/a 1 b/a 1 bla 1
11 1 b/a 1 b/a 1
10 l/a 1 b/a 1
||E(Tij’k£)l|=21 1 b/a 1
(c-1,0)
cl
c0 |_
Let oo = (l-a)/a2 and B = (2-a-b)b/a2. Then
— 00 11 10 21
00 o 0 B 0
11 0 8 0
_ 10 ) a 0
VTS el = 93 0
(c-1,0)
cl
cO
Furthermore
— _
00 (c(a+b)+1)/a
11 c(a+b)/a
HE(Ti.)H= 10 ((c=1)(a+b)+1)/a ,
] 21 (c-1)(a+b)/a
(c-1,0) ((a+b)+1)/a
cl (a+b)/a
c0 ~1/a a

and

15

(c=1,0) cl ¢0

b/a 1
b/a 1 b/a
b/a. 1 b/a
b/a 1 b/a
l/a 1 b/a
1 bl/a
1/a
(c-1,0) ¢l cO—
B 0 8
R 0 8
B8 0 8
8 0 B
a 0 B
0 B
a
.

b/a |

(3D)

(32)

(33)




00 a+cB

11 cB
10 a+(c-1)8
[[vetipdl] = 21| (e-1)8 . (34)

(c-1,0) a+8
cl 8
c0| «w

5. Applications

The results obtained in sections 3 and 4 are useful in developing
techniques for the quality control of production processes in which '
the quality characterisfics (whether defective or not) of successive
items are Markov dependent. The distribution of the number of
successes can be used to obtain control charts, and the first passage
probabilities can be used to develop sequential inspection plans.
These applications will be reported in a separate paper.

Nevertheless, we believe that the results reported in this paper are
important on their own merit in providing properties of Markov trials

in much the same way as the properties of Bernoulli trials.
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Appendix

To show that Theorem 1 holds for i+l when we assume that it holds

for i, consider

n-1 . .
p{™ = 5 plI)g a1
i+l S | :
j=i
| R e (A dninly gy dmitheyivich hbel
n-1 pop ith=1,3h-1"" h-1 2 | 2
=5 .
j=1 Gij(l—b)l +
X i .
e i, j=i-l,,. . j=i-h, . i-h_h h
i E 8o, Cpol ) (1-5)"a |
0 0
* n-1-j * n-2-j
b(l-a) GO,n—l—jba(l_a) +60,n—l—j(l—b)
1| 11
- 11| 1w |
where
nolitl i j-i-1 n-1-i-h i+l-h_h_h
1 =j§i E et o) oy () (1-b) a™”
n-1 . n-lo:
II = ¢ Gi.(l-b)lb(l—a) Iy
j=i
nol 4 o i, j-i-1 n-1-i-h i-h_h, h+l
jii hil 6i+h—l,j(h)( pop 2 (1-a) (1-b)™ "a'b ,

17




1 i+l
r (
=]

i
i h h-1

O,n-l—jba(l_a)

and

n-1

vo

V=% 4,.0 (1-)™ % I mmyiap + ¢ 6.6

j=i ij 0,n-1-j
n-1
+
j=i h=1

Lo g-i-1
L (U

%
(6O’n_l_jab(l~a)
In order to show that e

we simplify I, II, III,

Consider

¥*v J —
%ien-1,i""n

Note that

n-1 Yeve

j-i-1y _
6i+h—1,j( h-1 ) =

On substituting the result in (a) in the expression for I, we get

LT )
I =% 4, ( )(
h=1 i+h,n | h h
Consider
i n-1
IT = (1-b)"b( £ &,.(l-a
s 1]
=1
i n-1 e ;
LT 6.
h=1 j=i *h71:J

TENIY

n-2-j

ose . — _
;+h—l J.(l—a)J * h(l—b)l+l hahbh 1

*90,n-1-5(170)

n-1 i+l
by oy (1b)
_]=i J y J

*o%

i—hah h
i+h-1

b

Yo j(l-a)j'i'h(l—b)

n-2-j B

0,011

(n)

xpression for D,
i+l

and IV as follows.

f;l))(hil)(l—a)n—l_l—h(l—b)l+l_hahbh
F* n;l (j—i—l) _ & n-1-i
i+h-1,n-1 j=i+h h-1 i+h,n h

n-1-i-h

(l—b)i+l~hah h

il)(l—a) b

)n—l—j) +

-i-1 n-1-i-h

i-h_h h+l
h-1 ab

(1) (1-a) (1-b)

18

are consistent with (14),

(b)




¥* i n-1-1
6O,i+l,n(l—b) b(l-a)
i
Yoo -]=1 1 [ { —
-~ ' (n 1 1)(1)(1_a)n 1-1 h(l—b)l hahbh+l ) (c)
poy ith,n h h
Consider
i+l n-1
s * j-i-1., i . n-2-i-h
I =% (£ 6., . .6~ o .37 )1-a)
hel joi i*B=1,3° 0,n-1-3" h-1 Tth-l
(l_b)1+l—hah+lbh
i+l n-1
oo j=i-1,,, _\j-i-h,, i ., i+2-h_h_h-1
*ECOE 8 ihe1,5%, 0103 o1 27 ASHEPAC LY ab
h=1 j=i
i+l
_ Yo n-2-1i i _ n-2-i-h B i+l-h h+l_ h
—hil i+h+1,n( h )(h—l)(l a) (1-b) a b
i+l
% n-2-1i i n-1-i-h i+2-h h, h-1
+h£1 bon nChor ) Gpop) (1m2) (1-b) a'b
Yedke n-2-i,,1 n-2-i-i-1 i+l-i-1 i+1+1_i+1
= ﬁi+i+2,n( i+ )(i)(l—a) (1-b) a b
i+l
Yedke n-2-1i i i n-1-i-h i+2-h h h-1
+h£2 6i+h,n h-1 )((h—z) + (h—l))(l_a) (1-b) an
Yok n-2-1i,,1 n-1-i-1 i+2-1 1 1-1
+ 6i+l,n( 0 )(O)(l—a) (1-b). ab
_i;z ﬁ** (n—Z—i)(i+1)(l_a)n—l—i—h(l_b)i+2—h hbh—l (d)
oy ith,nt bl Tthel : 2 :
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Consider

i n-l n- 2—3 i+l l
= (1=b)7ab T 4, o n-1-3(173) T L8500, n1-
J=1 j=i
i n-1
ek j=i-1,,. _\j=i-h,,iy,,_ . \i*l-h_h h
*LOE 8 h1,3%0,0-1-Cher 17 ) () (1=b) ab
h=1 j=1i
i n-1
see j=i=1,,,i,,, _yn=2=i-h . i-h h+l h+l
+L e, i O nel- J( hop )€ (-a) (1-b)" "a b
h=1 j=1i
e n-2-1i i i+l
= 6i+l,n(l_a) (1-b) ab + 6i+l’n(l—b)
i oR i ie]-
— '* (n 2- 1)( y(l-a )n 1-i h(l—b)l+l hahbh
i+h,n
h=1
i .
akad n-2-i,,1 n-2-i- h i-h h+l h+l
+ L ai+h+l,n( h )(h)(l— a) (1-b) a b
h=1
i+l %% n-2-1 i n-2-1i i+l-1 1.1
= 6i+l, (1-b) i+l,n( 1-1 (L + (l))(l—a) (1-b) a'b
i, i 1o
+ T ﬁf (n 2- 1)(( ) + ( ))(l a)n 1-1 h(l—b)l+l hahbh
i+h,n
h=2
e n- 2 i n-2-i-i i-i 1+l i+l
+ 6i+i+l,n( ) (G )(l a) (1-bv) a
i+l
=041,
ivl L. Lo+ 1 C
+ ¥ ﬁ.’ (n 2 l)(l+l)(l—a)n 1-i h(l—b)l+l hahbh ) (e)
h=1 i+h,n" h-1 h

From (b), (c). (d) and (e), one can see that (l4) holds for i+l.
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