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ABSTRACT

Single sampling plans used for lot acceptance are modified for
use in monitoring production procésses which exhibit Markov dependence
in quality attributes. An augmented Markov chain model is employed
for the determination of plan characteristics. Plans for dependent
processes are compared with those for independent processes through

numerical computations.
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1. Introduction

The heightened awareness of the need for quality control of
industrial output has increasingly drawn the attention of quality
control scientists to efficient ways of monitoring production
processes. Continuous sampling plans in their various incarnations
(see Dodge (1943), Derman et al. (1957), Derman et al. (1969) and
Sampathkumar (1984)) and qﬁality control charts have been the major
statistical tools employed for this purpose. Often in a production
process, the quality of items is serially dependent (see for instance,
Broadbent (1958)). With this in mind we propose here a simple
sampling inspection procedure, which has the simplicity of acceptance
sampling plans with single samples, with the additional time saving
features of sequential sampling plans. The inspection procedure can
also be used for acceptance sampling after production, if items are
serially identifiable.

We assume that the quality of an item is an attribute which can
be classified as good or bad with a Markovian dependence structure.
The parameters used in specifying it are the long term fraction
defective and the serial correlation coefficient. The proposed plan
is as follows. After allowing for some time for the process to attain
stability inspect a maximum of n (> 2) items sequentially from a
production run. If at any time the total number of defective items
exceeds ¢ (> 0), the production is stopped for re-adjustment.
Otherwise the process is continued until the run is complete. 1In the
acceptance sampling vocabulary, a single production run is a lot,
stopping the process is the rejection of the lot and continuing the

process is acceptance. We shall use this terminology for convenience



in the rest of the paper when properties of this procedure are
investigated.

In Section 2 we define an augmented Markov chain for the
underlying process. It is used in section 3 to determine plan
characteristics such as the probability of acceptance (i.e. continuing
production), average outgoing quality and average sample size. 1In
section 4, plan characteristics are illustrated using graphs based on
numerical calculations. Finally, we discuss some issues pertaining to
the design of sampling plans for Markov dependent production processes

in the last section.

2. An Augmented Markov Chain

Let {X,, n=0,1,2,...} be a two state Markov chain with states 0
and 1. We assume thaf the quality attributes of the nth inspected
item can be represented by X,, with states 0 and 1 representing good
(acceptable) and bad (unacceptable) respectively. Let the transition

probability Pi j be defined as

pij =P[Xn+1=j| Xn= i] n=20,1,2,....

It is well known that the process is completely specified by the

transition probability matrix

P = = (1)

along with the initial state Xg.

Let



(n)

= P(X_ =] | X, = 1i). n=1,2,... (2)

0

In a two state Markov chain defined as in (1), when |1 - a - b |< 1

the limiting probabilities

n. = lim .. , (j = 0,1
] * le J )

now

exist independent of the initial state and are given by

b . a )
a+b ’ a+b

(mgsm) = ( (3)

Also if we denote by p the serial correlation of the process for which
‘the initial state Xg has the distribution (3), we have
p =1- (a+b) . (4)

Corresponding to the fraction defective in a production process
with sequential items independent of each other (which we shall call
henceforth "an independent production process"), in a Markov dependent
process we may identify mj, the probability that an item is defective
in the long run. Thus a Markov dependent production process can be
identified by two parameters, the fraction defective p (= m]) and the

serial correlation p, with the following admissible ranges:

1 1
1l = min{—, ——¢ < <1
G 150 <p
which can be stated élso as

max{0, %%E} < p < min{l, —} . (5)

1-p

Using p and p the transition probability matrix P can be represented



as

1 - p(l-p) p(l-p)

(1-p)(1l-p) p+p(l-p)

Since sampling is to begin after the process has attained
stability we may assume the initial state distribution to be [(l—p),p].
The sampling plan calls for inspecting a maximum of n (2 2) items
sequentially and stopping the production when the accumulated number
of defectives exceeds ¢ (2 0). For the probability of acceptance (of
the operating characteristic curve) therefore, we need the probability
of finding c or less defectives in a sample of n Markov dependent
observations. The distribution of the number of successes in a
sequence of dependent trials given by Gabriel (1949) is not very
convenient to determine this probability (also see, Nain and Sen
(1980)). Instead, we proceed as follows.

Define an augmented bivariate Markov chain with the state vector
(of two elements): cumulative number of defectives, present state.

Thus when ¢ defectives are allowed, the states are {00, 11, 10, 21,
20,..., cl, c0, (c+1,1)}. The state (é+1,l) is absorbing and the
production will be stopped (rejected) if the process enters this state.
Note that the total number of states is 2¢c+2. The transition

probability matrix for this process is given by



00 11 10 21 20 31 . . . cl c0 c+l,1_
00 l-a a
11 b 1-b
10 1-a a
21 b 1-b
20 l-a a
R= . . A (7

cl b 1-b
c0 1-a a
c+l,1 1

This transition probability matrix plays a key role in the
determination of the operating characteristics of the sampling plan.
Probabilities of acceptance and rejection are obtained as elements of
the powers of R which can be either determined by simple matrix
multiplication or explicitly on account of the triangular sﬁructure of

the matrix.

3. Plan Characteristics

In this section we give procedures for the determination of
probabilities of acceptance and rejection, average outgoing quality
and the average sampie size.

Let R(k)ij be the (i,j) element of the kth power of R
given by (7). Using the properties of Markov chains, the probability
of rejection of the process with a sample size £ k+1 is obtained by
the last elements of the first two rows of RK. Note that for
acceptance (continuing production) all n items will have to be
inspected, whereas rejection can come any time earlier when the number
of defectives exceeds c.

Using the initial distribution [(l—p),p], the probability of



acceptance P, is obtained as

(n-1) (n-1)

P = (1-p) ) R +p ) R (8)
a 2,mFc+l,1 00, Am 2, m$c+1,1 11, 4m
and the probability of rejection with a sample size k+l or less is
given by
e () (k)

P (k) = (1 p)ROO,(c+1,1) + p Rll,(c+1,1) (9

Consequently the probability of rejection with a sample size k+l
(k) _ B _
Pr = Pr(k) Pr(k n . (10)

Since production is stopped (lot rejected) whenever the number of
defectives reaches c+l, average sample size (ASN) is of interest.

This can be obtained as

n-2
ASN =} (k+1)P
k=c

(k)

8 yne, + 2% (11)

We assume that defective items found during inspection are
discarded. Since production stops when the number of defectives
exceeds c¢ the average outgoing quality (AOQ) depends on the number of
items accepted and the number of defectives in the accepted lots. We

define

E(Number of defectives in accepted lots)
E(Number of items accepted)

AOQ = (12)

Note that the denominator includes only good items in the stopped

production runs. Using simple probability arguments we have



E [Number items accepted]

n_l (k)
= [N-ED]P_ +) (k-c) P (13)
a k=c r

where E(D) is the expected number of defectives found out of n in
accepted lots. We have
E(D) = np . (14)

E[Number of defectives in accepted lots]

= (N-n)pP, . (15)
We get |
(N—n)pPa
A0Q = — (16)
(N-np)P_ + Y (k-c)Pik)
k=c

Ignoring the items produced in the stopped runs, we get an approximate

result

e

aoq = -mp (17)

N-np

4. Numerical Results

In order to illustrate the properties of these sampling plans, we
present several graphs based on numerical calculations. These graphs
are grouped as follows. Note that when p = 0 we get the independent
production process.

A. Probability of acceptance vs. Serial correlation

n=80, ¢=3 for p = .01, .03, .05, .2.

(Figs. Al-A4)



Based on

A.

Operating characteristic curves

p = -0.05, 0, 0.5

n=10, c=1
n=20, c=2 (Figs. B1-B3)
n=40, c=4

n=40, c=3 (Figs. B4-B6)

p = -0.05, -0.02

n=80, c=3 (Fig. B7)

n=40, p=0.5 (Figs. B8-Bll)

ASN curves

p = -0.5, 0, 0.5

n=40, c=3 (Figs. B12-B13)

n=80, c=3

these graphs the following observations are in order.

For a given plan and a fraction defective p, the acceptance
probability is convex in p.

(1) Larger the sample size, better the discriminating power
of the plan. (Figs. B1-B3)

(2) Smaller the value of p, better is the discriminating

power of the plan (Figs. B1-B7). Note that when p is



negative the range of admissible value of p is restricted
(see (5)).

(3) Conclusion (2) is preserved for different acceptance
numbers as well. (Figs. B8-Bl1l)

(4) For some ranges of values of p, negative p values result
in smaller average sample sizes. When p is positive, whether
the average sample size is smaller or larger than the
independent process case depends on the range of p values.
For smaller p values independent process gives larger sample
sizes whereas for larger p values, it gives smaller sample

sizes. (Fig. Bl3, Bl4)

5. Design Issues

Designing a sampling plan (i.e. to determine sample size n and
fﬁe acceptance number c) for given values of (AQL, producer's risk a)
and (LTPD, consumer's risk B) becomes difficult because of the
complicated form of the probability of acceptance. Even though we
have used sample matrix multiplication techniques in obtaining
numerical values, as shown in Bhat and Lal (1987) explicit expfessions
can also be obtained for the elements of the powers of the augmented
matrix R, leading to explicit expressions for the probability of
acceptance. Nevertheless, the expressions are non-linear in n and ¢
and therefore a search technique seems more appropriate.

The search for the best (n,c) pair can be carried out by first
fixing n and then choosing c which gives the best protection for the
producer and the consumer. The following tables provide indications

of issues that need to be taken into consideration in this decision.
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The following notations are used: p = serial correlation, n = sample
size; ¢ = acceptance number; pg = AQL; a = producer's risk; p; = LTPD;
B = consumer's risk. For ease of understanding the probabilities have
been rounded off to two decimals in most of the cases. When p is
negative the fraction defective p can assume only a restricted range

of values.

p = -.03
n = 40 n = 80
c PO Pl 8 PO o Pl 8
2 .10 .22 .10 .01
.03 .10 .15 .04 .03 42 .15 .0002
3 .10 42 .10 .03
.03 .02 .15 .13 .03 .20 .15 .001
4 .10 .64 .10 .09
.03 .004 .15 .26 .03 .08 .15 .004
p = -.02
n = 40 n = 80
c PO Pl B PO o P ]
2 .02 .04 .10 .22 .02 21 .10 .01
.03 11 .15 .05 .03 .43 .15 .0002
3 .02 .01 .10 42 .02 .07 .10 .03
.03 .03 .15 .13 .03 .21 .15 .001
4 .02 .001 .10 .63 .02 .02 .10 .09
.03 .01 .15 .20 .03 .08 .15 .004
p=0
n = 40 n = 80
c PO o Pl 8 PO o Pl B
2 .02 .05 .10 .22 .02 .22 .10 .01
.03 .12 .15 .05 .03 .43 .15 .0003
3 .02 .01 .10 42 .02 .08 .10 .04
.03 .03 .15 .13 .03 .22 .15 .001
4 .02 .001 .10 .63 .02 .02 .10 .09
.03 .01 .15 .26 .03 .09 .15 .005
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p = .5
n = 40 n = 80

c PO o P1 B PO o P1 B
2y .02 .12 .10 .38 .02 .25 .10 .10

.03 .18 .15 .19 .03 .38 .15 .02
31 .02 .07 .10 .51 .02 .16 .10 .16

.03 .11 .15 .29 .03 .27 .15 .04
41 .02 .04 .10 .63 .02 .10 .10 .24

.03 .07 .15 .40 .03 .18 .15 .07

.Suppose we are looking for a plan with the protection
pg = -02 pp = .15
a = .05 B = .05

For n = 40, ¢ = 2 is appropriate when p = 0. This plan is adequate

for negative p values closer to 0. But when p = .5, c=2 gives pg =
.02, @ = .12 and p} = .15, B = .19. Nevertheless, oflthe options

presented (n=40, c=2) still seems to be the best option.

A significant conclusion seems to be that when the serial

correlation of a Markov dependent production process is larger, single

sampling plans designed for an independent process do not provide the

same kind of protection for the producer or the consumer.
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