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ABSTRACT

A generalization of.a nonparametric estimator proposed by Shiller
(1984) is considered. The estimator is shown to be directly related to
penalized least-squares estimation and spline smoothing. Some simplifi-

cations concerning the computation of Shiller's estimator and corresponding

posterior covariances are indicated.
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1. INTRODUCTION

. In a recent article in this journal Shiller (1984) considered the
problem of estimation from a pagtially nonlinear regression model. He
derived a nonparametric estimation procedure using Bayesian methodology and
smoothness priors. In this note we derive a generalization of Shiller's
estimator. The results we obtain reveal additional properties for Shiller's
estimation technique and establish the connection between his estimator and
spline smoothing. We also indicate some simplifications regarding the
computation of his estimator and the associated conditional variances and
covariances which arise from his Bayesian model.

Let yy and (tj,xj), 1 = 1,...,n, denote observations on a scalar
response variable, Y, and p + 1 independent variables, t, Xj,..., Xp,
respectively. Assume that a € t] < ...  t,; £ b, for finite constants
a and b, and that the observations follow the partially nonlinear model

y=f+ Xy + ¢, (1.1)
where y' = (yy,...,¥p), X' = [X1,...,%,] i8 a known p x n matrix,
Yy is an unknown vector of coefficients, f = (£f(ty),...,f(ty))' is a
vector of values for some unknown function, f, and ¢' = (¢7,...,¢e,) is a
vector of zero mean, normal, random variables which are uncorrelated and
have common variance 02, The objective is to obtain an estimate of the
unknown regression function

p(t,x) = £(t) + x'y, t e [a,b]. (1.2)

An estimator for u in (1.2) has been derived by Shiller (1984) under the
assumptioﬁ that £ is smooth in the sense that its slope does not change too
rapidly. When 1) there are no repeated observations, ii) we are not esti-
mating p at points where there are no observations and iii) certain restric-
tions (detailed in the Theorem below) are imposed on X, his estimator of f

and y can be written as



(I1R'H " 1R) X -1 y

|+

X! X'X X'y ’ (1.3)
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where R and H are matrices involving differences among the tj that are
defined in his paper, and A is a scalar parameter that must be specified by
. the user (or determined from the data). Shiller shows that his estimator
is a cubic spline and it is clear from (1.3) that it is also a penalized
least-squares estimator. However, it is by no means obvious from (1.3) how
(or even if) his estimator is related to smoothing splines.

In the next section we discuss a general class of estimators for n
derived from a penalized least-~squares criterion. This criterion allows
for the assumption of varying degrees of smoothness corresponding to prior
beliefs about the nature of f. The resulting estimators of f are generali-
zations of smoothing spline estimators. Shiiler's estimator (1.3) is shown
to correspond to the cubic case.

In Section 3 we discuss Shiller's Bayesian model in more detail and
derive éimplified expressions for the posterior covariance kgrnel of the
regression function. An alternative Bayesian model which ties the estimator
to polynomial regression is mentioned and the penalized least-~squares and
Bayesian perspectives are contrasted.

Shiller (1984) also considers estimators of f and y derived using
what are termed discrete smoothness priors. We note in passing that
penalized least-squares and minimax properties of these estimators follow

from work by Rice (1982) and Engle, et al. (1983).



2. PENALIZED LEAST SQUARES

Assume that f in (1.2) is a nonrandom function that admits m-1
absolutely continuous derivatives and has a square integrable mth

derivative on [a,b], i.e., assume that f ¢ Wg[a.b]. where

: £ 0240 < @} .

Wg [a,b] = {f : f(j) abs. cont., j = 0,...,m=1, [

In this case one approach to the estimation of p would be to minimize the

penalized least-squares criterion

n
! 2 b _(m
1§1 (yy — %, 7= £ + 1 [ f

diy2 de, A >0, (2.1)

with respect to y and f ¢ Wg {a,b].

Criterion (2.1) combines a measure of fidelity to the data
1 ]

(Z:-l(yi - X, 7~ f(ti))z) with a measure of the smoothness of f. The

(m)

presence of the term, A f: f (t)zdt, penalizes a function which is not

smooth in the sense of having a large mth derivative. Since f:f(m)(t)zdt
vanishes if and only if f is a polynomial of order m, criterion (2.1) can
be viewed as penalizing potential estimators of u which depart too much
from an mth order polynomial model in t.

Reasons for allowing general values of m in (2.1), rather that just
m = 2, can be tied to prior beliefs about the nature of f. If, for example,
one believes f to be approximately linear then m = 2 will suffice. 1In
contrast, the belief that f is nearly quadratic would prompt the use of m = 3.
The added flexibility of general m should be of value in areas such as
response surface analysis where some knowledge of the response function is

often available. We should also mention that once m has been chosen a



choice of A reflects our faith in the value selected for m. Larger values
of A force stricter adherence to polynomial behavior than smaller values.

In settings where values of m and A cannot be selected a priori, data driven
methods, such as generalized cross-validation (Craven and Wahba 1979, Wahba
1984a) can be used to effect a choice for one or both parameters.

Wahba (1984a, b, 1985) has coined the name (univariate) partial splines

for the estimators which arise from (2.1). For comparison with Shiller's
approach we require an explicit form for these estimators which is detailed
in the following theorem. The proof is both short and instructive and

therefore included for completeness.

2m-1

Theorem. Let NS (t ceey tn) denote the set of natural splines of

1’
2m-1
degree 2m-1 with knots at t1, ooy tn, i.e., NS (tl’ ey tn) is the
set of all piecewise polynomials with breakpoints at tl’ eeay tn which are of
degree 2m-1 in (tl’ tn)’ degree m~1 outside this interval, and possess 2m-2
2m

continuous derivatives. Given a basis, Bl’ ey Bn’ for NS -l(tl, ceny tn)

define n x n matrices B and G and the n x m matrix T by

BBl g

6= { /23w B ray,
~and
T = {ti—l}i-l,n .

j=1,m



Then, if n 2 m there is a unique minimizer for (2.1) if and only if [X, T]
has full column rank. The resulting estimator of wu, w(t,x) = fi(t) + x'7y,

is in stm’l(tl.....tn) as a function of t and is given by

£)(t) = (By(t),...,B (t)) (B'B + A6)~1B'(y - Xy,) (2.2a)

A

and

7, = [x'(1-HO))X]-1x' (1-H(V))y (2.2b)

" where

H(\) = B(B'B + AG¢)~1m'.

Proof. Since n 2 m, the unique minimizer of (2.1) for any fixed, but
arbitrary, y is

(By(t),...,Bp(£))(B'B + AG)~1B'(y - Xy) ,
(see e.g., Kimeldorf and Wahba 1971, Wahba 1978 or Lyche and Schumaker
1973). Inserting this expression into (2.1) and minimizing with respect to
Y leads to the system of equations

[X'(I-H(A))X]y = X'(I-H(A))y .
It can be shown (see, e.g., Wahba 1978) that I-H(A) is a poéitive semi-
definite matrix of rank n-~m which s#tisfies [I-H(A)]T = 0. The assumptions
of the theorem are therefore both necessary and sufficient for Y, to

be uniquely defined. o

It follows from the preceding proof'that f) is the smoothing spline fit

to y .- Xy When p=0 the univariate smoothing spline estimator of f results.

A
Consequently, the estimator (2.2) provides an extension of the smoothing

spline concept.



To establish the connection between estimator (2.2) and Shiller’'s
estimator let us restrict attention, for the moment, to the case of m = 2,
Under the so called canonical basis for the natural cubic splines (see,
e.g., UtrerasA1979) Bj(ti) = 843 so that B = I. It follows from
Demmler and Reinsch (1975), for example, that G = R'H-IR in (1.3) for
. this basis. Subétitution into (2.2) then reveals that his estimator
corresponds to our estimator under the canonical basis and is therefore a
partial cubic spline estimator of u. Shiller did not explicitly assume
that [X,T] has full rank. The need for this condition is a consequence
of Theorem 1.

To evaluate his estimator of f at points other than those where
observations were taken, Shiller used dummy variables to represent these
additional points along the function. This has the drawback that an
equation system of dimension larger than necessary for estimation of f
and y alone must be solved and that no explicit expression is available
for f) as a function of t (see, however, his Section 4).

Equation (2.2a) provides an explicit expression for f) in terms of
natural spline basis functions. From this we conclude that to estimate

# we can first compute y, and then obtain the smoothing spline fit to

A
y - XZX as our estimator of f. The estimator u)(t,x) = £ (t) + E'Zl

can then be easily evaluated for any values of t and x once these
computations are concluded. The number of calculations'required is the

same as is needed for estimation of f and y alone. This gives an alternative

to the approach suggested by Shiller that can provide computational savings

and allows for the use of other bases which may be more computationally



convenient. It should be noted that when computing f) and y; one would
not actually compute the inverse matrices in (2.2) but would instead utilize
efficient methods for solving the normal equations from which (2.2) derives.

By expressing f) in terms of basis functions it is possible to provide
a mathematical explanation for results in Shiller's Sections 3 and 4. He
. showed that adding or deleting evaluation points for f to his estimation
procedure where there were no obgervations did not effect other estimated
values of f or Y)- We now see that this follows from the fact that the
coefficients of the basis functions under the canonical basis are f)(tj),...,
f)(ty). The fact that fy is the unique element of NS2m~l(t,, ...t;) which
interpolates f)(tj),...,f)(t,) provides an explanation for the interpolation
properties of the estimator discussed in his Section 4.

Returning to the case of general m, it is well known that a smoothing
spline reduces to a pélynomial regression estimator when the smoothing
parameter becomes infinite. Using this fact we see that, as A @ o, f3(t) + i'zx
reduces to the usual least-squares estimator of u(t,x) for the case when f is
assumed to be a polynomial of order m. This illustrates a relationship
between estimator (2.2) and polynomial regression and generalizes results by
Shiller for m = 2 (see his Section 6).

There are several generalizations of the partial spiine estimator
discussed in this section. Of particular importance are partial thin plate
splines which can be used to estimate f and y when f is nonlinear in more
than one Yariable. Details can be.found in Wahba (1984a, b, 1985). We note
that this approach may be more appropriate in many cases then the suggestion
by Shiller (1984, p. 609) that an additively separable model be used when f

is nonlinear in several variables.



A final point worth mention is that the partial spline estimator enjoys
certain minimax properties. Using work by Speckman (1982) or Li (1982) the
estimator can be shown to provide a type of worst case protection against

departures from a polynomial model in t.

3. POSTERIOR COVARIANCES AND RELATIONSHIPS BETWEEN MODELS

In this final section we study Shiller's Bayesian model in more detail.
In particular, an expression is obtained for the posterior covariance kernel
of his estimator for general m. Some comments on an alternative model and
the relationship between the Bayesian and penalized least-squares approach
are also given.

For general m, Shiller's model can be described as follows. Let
{Z(t) : t € [a,b]} be the (m-1)-fold integral of a Weiner process. More

specifically, Z is a zero mean, normal process with covariance kernel

(3.1)

74
rt

Q(s,t) = [(m—l)!-]‘-2 f: (sz—u)m—1 (t:-u)m-.1 du, s

Then, p is assumed to have the same prior distribution as the stochastic
process asZ(t + 1) + 5'1, where as and n are positive constants and 7y is
uncorrelated with Z and has a zero mean, normal distribution with variance-
covariance matrix czaI. The covariance between u(t, x) and u(s,x¥*) under

m—l),

this model is a:(Q(s.t) 4+ ox'x* + t'C(n)s), where t = (1, ..., t

8= (1, ..., sm-l)’ and C(n) is the m x m matrix with typical element



aiﬂQ(s,t)

, 1, =0, ..., m-1. Letting o and n tend to infinity
asiatj v

s=t=xy
2, 2 v
gives LY with A = ¢ /as as the posterior mean of u.
An alternative to Shiller's model, which generaiizes work by Wahba

(1978, 1983), is to assume that p has the same prior distribution as the

-1 3
=0 Ojt

_ process E? + osz(t) + x'y. The polynomial coeffieients are
uncorrelated with Z and y and have a m-variate normal distribution with
mean Q and variance-covariance matrix 0261. When o, 6 2 o, ux with
A= 02/62 is found to be the posterior mean of u for this model as well.
However, the two formulations are not equivalent in general since, for
example, the covariance between u(t, x) and u(s,x¥) in this case is
cz(Q(s,t) + ax'x* + 8t's). This lattervmodel is also of value since it
makes the connection between the estimator uy and polynomial regression
transparent. Blight and Ott (1975) and Wahba (1978) give discussions of
the motivations for this type of polynomial regression model.

It is important to note that there is a distinct difference between

both Bayesian models discussed in this section and the assumption that

f e W?[a.b] which was employed in Section 2. It can be shown (Wahba 1983)
that the sample paths of f under the Bayesian formulation cannot lie in
W?[a,b]. Nonetheless, Wahba (1983) has shown, in the case of p = 0 (i.e.,

no linear term in the model), that "standard errors" derived using a
Bayesian approach can be quite useful for interval estimation of an unknown

regression function from W;[a,b]. Thus, we now provide an expression for

the covariance kernel of y under our two Bayesian models.
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Let T and X be as defined in Sections 1 and 2 and set A = 62/63 .
U= [TvX] .

u = (2xD', wk = (5", x*D),

gt ..(Q(t’tl)’ v ey Q(t,tn))', 9—3 - (Q(s’tl)’ eers Q(s, tn))c
and

Q, = {0t Db o0

Keeping 02 fixed for the moment, it can then be shown that under either of

the models discussed above
Cov(u(t,x), n(s,x*)1y,0%) = (2/0) {Q(s,t) + u! Muk
' to- _"1 -0
- u’ MU'Q Q Qth UNE: QtPQs} (3.2)

2, el . -1
+ 0" (u/MU'Q " + QIP)A(M)(Q "UMu¥ + PQ ) ,

where A(A) is the n x n matrix which transforms y to the vector of fitted

values (pk(tl’zl)’ seay pk(tn’zn))"

M= (U'Q;IU)-I

and

- -1 -
P = in - Qn UMU'in

The proof of (3.2) is similar to that of Theorem 2 in Wahba (1983). Using
the covariances for p described above, one first applies Lemma 1 of Wahba

(1983) and then uses matrix identities similar to her expressions (2.12) -
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(2.15) to establish the resﬁlt. We note that this effectively extends her
Theorem 2 to the case of univariate partial splines.
If we follow Shiller (1984) and use the noninformative prior he
suggesfed for h = 6-2 the only change in (3.2) is that 62 is replaced by
2

- 8", the inverse of the posterior mean of h. Using properties of natural

spline interpolants, it can be shown that

n
8% = (npm) ! (£ Gy~ (e x e P ™%y . (o)
i=]

Thus (n-p—m)a2 is just criterion (2.1) evaluated at % This "estimator"

of 02 should be compared to ;2 = z:=1(yi - ux(ti,ii))zltr(i - A())) which

is suggested by Wahba (1984a, 1985).

When m = 2, (3.2) 1is the covariance kernel for Shiller's estimator.
In contrast to his approach, the.variancés and covariances are given as
explicit functions of s, t, x and x*. This should be particularly useful
when interval estimates are to be constructed for functionals of u such as
integrals, derivatives or evaluation at points not in the original estimation

procedure.
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