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SUMMARY

An elementary proof is given for the form of regression coefficient
estimates and fitted values whén a particular observation has been deleted
from the data. The proof requires minimal use of matfix algebra and, con-
sequently, provides an approach to the derivation of various "leave-one-
out" diagnostic measures which bypasses the matrix manipulations utilized
in most texts that address the subject. Applications to the derivation

of jackknife estimator and variance formulae for linear models are also

discussed.

1. INTRODUCTION

Most courses in regression analysis employ a variety of model
diagnostics based on residuals and fits obtained from the entire
sample as well as from reduced data sets where one of the observations
has been deleted. The rationale behind such "leave-one-out" measures
is that, to assess an observations impact, both fitted models which
include and exclude an observation should be examined. It is a re-
markable fact that'the computation of these types of diagnostic
measures can be accomplished using only the information available

from the fit to the complete data set so that no refitting of the



model to data subsets is required. Previous proofs of this fact have

utilized the Sherman-Morrison-Woodbury Theorem (see Rao (1973, pé; 33))
and somewhat tedious matrix algebra. In this note an alternative proof is
provided that keeps matrix manipulations to a minimum. Use of this approach
may provide time savings in regression courses and would be particularly
appropriate in instances where detailed matrix algebra is to be avoided.
Moreover, many inference courses include the jackknife as a topic,for
which a natural application is the linear model. The results in this
paper provide a simple method of deriving jackknife estimator and variance
formulae for this setting that does not require the background development
necessary for more matrix oriented proofs.
Consider the model

y=XB+¢
where y = (yl,...,yn)' is the vector of observations, B = (Bl,...,Bp)'
is a vector of unknown parameters, X is an nxp matrix of rank p having
ith row‘§£ and € is a vector of zero mean uncorrelated errors with common
variance 02. Define the matrix of catchers by

C = {e;,) = x'n Iy
and the hat matrix by

H= {hij} = XC
(see Hoaglin and Welsch (1978) and Velleman and Welsch (1981) for dis-

cussions of these matrices). Then, the least squares coefficient estimates

and fitted values are given by

o a N r
E (Bl,...,sp) = CX

and

?

y = (yl,oo.,yn)' Hy.



Now let B(l) = (B(l),;.., (1))' denote the coefficient estimates obtained

using only the observations YyseeesYi 19744122, and definé

S(E) | an(d)
Yj Ejﬁ

Using the Sherman-Morrison-Woodbury formula, viz.

i’j = 1’...,n.

-1 ra—1
(A““EX')-l a7l (A "wE'A ™) , (1.1)
ljz'A—lu

which holds for A a nonsipgular pxp matrix and u, v, pxl vectors, it is

possible to show that

39 = Byeyy Gy gy (1.2)
and, hence, that
yi - ;ii) = (Yi'yi)/(l-hii). (1.3)

Proofs of (1.2)-(1.3) are outlined, for example, in Hoaglin and Welsch (1978)
and Belsley, Kuh and Welsch (1980). A detailed proof of (1.3) can be found
in Gunst and Mason (1980, pg. 258).

Formulas (1.2)-(1l.3) are the important identities for the derivation
of diagnostics such as studentized residuals and DFITS (see Velleman and
Welsch (1981) for this terminology) and (1l.2) is the key to obtaining jack-
knife coefficient and variance estimates for linear regression (see Miller
(1974) and Efron (1982, pg. 18)). 1In the next section we present a simple

direct method of deriving these relations which does not require (1.1).

2, THE RESULT

The objective of this section is to prove the following theorem.

Theorem. Let B(l)(z,) solve
—Heorem. = i/ 29=2Y=

.9 vay 2 vay 2
min { ) (yj - Eﬁﬁ) +(z; - 2807} .



Then,

R A I VI CE ) (2.1)
and .
é(i)(;ii)) O 2.2

Before proving this result let us pause to interpret what it says.

First note that (2.1) is precisely (1.3). Equation (2.2) has the impli-

cation that to obtain Eﬁl) we need only multiply the vector (yl,...,yi_l,
~(1i . . .
vy ),yi+l,...,yn)' by the matrix C. In view of (2.1), (1.2) is an

immediate consequence.
The proof of this theorem is an adaptation of work by Craven and
Wahba (1979) for smoothing splines and proceeds as follows. Set

=y, ’. Then, (2.2) is a result of the inequalities

—-.i_. i
T n
1a(1),2 _ (1) ) (1).2

j=1 jo1
j#i i9i

n » n
< 2 (Yj - E&E)z (since Efl) minimizes z (yj _ §5§)2)

3= -

I j#i

n
= 'El(yj - z(_'_s_)z + (Z;"e~ - 51_8.)2 .

j#i

To verify (2.1) note that Eig(l)(zi) is linear in zi and, by expanding
about y;s can be written as
1o (1) _2 _
2877(2g) = vy T hyp (B -y

Taking z; = yil) and using (2.2) gives the desired result.



To conclude we note that, for example, the formula for a
studentized residual can be derived as in Belsley, Kuh and Welsch (1980,
pg. 64) once (1.2)-(1l.3) have been established.. To derive the jackknife

estimator of Bj’ Bj, observe that (c.f. Miller (1974) or Efron (1982))

PR N A )
Bj n iZl{nBj (n 1)6j }

B

. F n X C'i 1-h
J i=1 J ii

with expressions for their variances and covariances following similarly.
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