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Abstract. The matrix which transforms the data vector to the vector of
fitted values for smoothing splines is termed the hat matrix. This
matrix is shown to have many of the same properties, and is seen to
play the same role in the variances and covariances of the residuals,
as its regression analysis counterpart. This fact is utilized to
propose several possible diagnostic measures for use with smoothing
splines. The extension of these results to include multivariate

Laplacian smoothing splines is also indicated.
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1. Introduction. 1In regression analysis the matrix which trans-

forms the data vector,.i,to.the‘Vectér of fitted values,.i; is often
called the hat matrii. The eleﬁénts of this matriﬁ appear in the vari-
ances and covariances of the residuéls éﬁd; consequently; play a
fundamental role in regression residual diagnostics. The objective of
this paper is to show that an analogoﬁé matrix which arises in spline
smoothing possesses many of the same properties and is, potentially, as
important to the development of diéénostic measures as its regression
analysis counterpart,

Consider the situation wheré é vector of responses y = (y(t;),...
;..,y(tn)); follows a model of the form

z=i+£ (1
for H_=-(n(tl),:..;n(tn))' a véctor of values corresponding to some
unknown response function, n; and é_¥ (e(tl),..;s(tn))' a vector of
zero mean uncorrelated erroré héving common variance ¢2. The "time
points” tl"';tn will be assﬁmed throughout to satisfy a < tl R
see <t < b for a and b finite constants.

In some instances it is possible to assume that n satisfies

n=X§ (2)
where X is a known nxp matrix of rank p and 8§ is a vector of unknown
parameters. When (2) holds (1) is a standard linear model and the form
of least squares parameter estimates and predicted values for this case
are well known. For example, the vector of fitted values é_= (;(tl),
...,;(tn));,'and residual vector, e = (e(tl),...,e(tn))', are given

by



y=Hy (3)

and

e = (I-H)y : (4)
where H = X(X'X)-lX'. The matrix H in (3) and (4) is a projection
operator (i.e., H2 = H) that is frequently called the hat matrix.

Using properties of projections it is shown in Hoaglin and Welsch(1978)

that the elements of H = {hij} satisfy

0 <h,, <1, : (5)

-1 f{hij <1 fori#j, (6)
with

hy; =1 iff hij =0 for all i # j. (7

The "if" portion of (7) is true provided the model includes a constant term

L. = 1.
1] o .
We see from (3) that hij tells us the influence y(tj) has on the

in which case we have Z?=1 h
prediction of y(ti). Becausé of this thé elements of H are frequently
examined to aid in the detection of sensitive points among the values
of the predictor variables. In partiéular; one usually examines the
diagonal elements hii’ i=1,...,n, for nearness to the bounds 0 and 1.
The hii's are known as leverage values since they indicate how much

influence, or leverage, y(ti) has in its own prediction. The elements

of H alsn appear in the variances and covariances of the residuals since,

from (4),
Var(e) = 02(I-H). - (8)

As a result of (8), most residual diagnostics involve the leverage values

in some fashion.

0f course, in general, n may not admit a parametric form such as

(2). Therefore, it may be necessary to employ some nonparametric



procedure to estimate the function n. If the response function is
believed to be smooth, then one choice is to estimate n by the function

minimizing the penalized least squares criterion

1 2 (™ 2
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over all functionsvf having m-1 absolﬁtely continuous derivatives and
a square integrable mth derivétivé on [a;b]; For any given A in (0,%)
and n > m the solution to this problem, %* say, is well known (see e.g.
Schoenberg(1964)) to be a polfnomial spline of order 2m with knots at
tl;...;tn that is usually called a smoothing spline. The parameter A
governs the amount of smoothing with the eitreme values A = 0 and «
corresponding to a version of spline interpolation and regression on
polynomials of order m, réspecfively: An effective method for the
estimation of A from data can be foﬁnd in Craven and Wahba(1978). For
a discussion of smoothing Spliﬁeé whiéh focuses on their properties as
nonparametric regression estimators see Wahba's discussion to Stone(1977).

The smoothing spline is é linéér estimator and; hence; the vector
of fitted values £A = (;A(tl)""’akctn))' can be written as

¥, = BOy. | (10)

By analogy with the regression case we will call H(A) the hat matrix

and its diagonal elements, hii()), i=1,...,n, leverage values. The

elements of H(A) have the same interpretation as those for H in (3).
However, the question arises as to which, if any, of properties (5) - (8)
hold for H(A). It should be noted that such conciusions are no longer

obvious since H(A) is not a projection operator. However, as shown in



Section 2, properties (5) - (7) still hold as well as several others
which closely link H(A) to the hat matrix from polynomial regression.
Then, in Section 3 we éhoW’that; if properly intérpreted, the residuals
from a smoothing spline fit satisfy an analog of (8). This allows us
to propose some possible smoothiné spline residual diagnostics which
parallel those utilized in regression analysis. Finally, in Section

4; we sketch the extension of results in Sections 2 and 3 to the multi-
variate setting.

2. 'Properties of H(A). In this section several of the basic

properties of the hat métfix in (10) are dérived. To accomplish this
we will require anexblicitform for H(X) which can be found, for
example; in Wahba (1978). Therefore, let f be the nxm matfix with
ijth elementrti, i=1,...,n, j =0,...,m-1, and define
= (o) ML (11)

The'matfix H* is recognized aé thé hat matri# for polynomial regression
and; consequently; I-H* ié idémpotéﬁt énd can be written as

I-H* = UU’ (12)
where U is an n X (n-m) matrix which satisfies

UT =0 e (13)
and

U0 = I myx(nem). | (14)

Now define the 'covariance kernel"

B |
0 gy, s <t (15)

R
Ae,0) = [ (S_ui 1)!
m- H



and let Qn be the n*n matrix with ijth entry Q(ti’tj)' Then, if T

denotes the (n-m)X(n-m) matrix of eigenvectors and d .,d are

' 1 n-m
the corresponding eigenvalues for the positive definite matrix
U'QnU, the hat matrix H(A) can be expressed as

I-H(A) = uro(\)r'v’ (16)
where D(A) is the diagonal matrix

D(A) = diag((l + dl/nx)‘l,...,(l +d /nx)'l).

n-m -

With these preliminaries we now establish the following theorem.

Theorem 1. The hat matrix H(}) ='{hij(l)} satisfies

0 j_hii(k) <1, - (17
-1 j_hij(k) <1 for i #j, (18)
=V { . = f i 3 Q
hii(x) 1 iff hij(x) 0 for all i # i, (19)
n
and I hij(k) = 1. It is closely related to H* = {hij} in the sense
j=1 - - -
that L
- h% > P
h ;(O) + by, as A , 1€ h¥, # 1. (20)

Furthermore, hij(A) - h?j as A >~and, for X sufficiently large with

hij # 0, both hij(k) and hij have the same sign. If instead A - 0 then

i *
hii(l) - 0 and, provlded hii # 1, hii(k) + 1.

Proof. Set B = Ul and observe that I-H* = BB'. Thus if h¥, =1

i

then b,. =0, j =1,...,n-m. Since
+J n-m

) bij (1 + %/m07 (21)
j=1

l-hii(k)

and
n-m

d -1
hij(x) = ;21 b bjr(l + ;/nx) , (22)



we see that (17) - (18) hold trivially in this case. If h;i # 1 then

1]

- tonically increasing function with limit 2

b,., # 0 for some j and it is clear from (21) that 1—hii(A) is a mono-
97M p%. = 1-h%,. Thus,

j=1 "ij ii
1-(l-hii(l)) is monotonically decreasing with limit h?i which proves

(20). As hii satisfies (5) this establishes (17) as well.

To verify (18) apply the Cauchy-Schwarz inequality in (22) to

. _ %
obtain |hij(x)[ < max (1-h,, (1)) < 1. The fact that hij(l) > b,

1<f<n
as A >~ » follows immediately from (22) and, by letting A - 0 in (21) -
(22), the last statement of the theorem is established. Further, since
hii(k) = 1 can occur only when X = 0 or bir =0, r=1,...,n-m, the
direct implication in (19) is seen to hold. The converse is obtained

by noting that, due to (13), [I-H(A)]l = 0, where 1 denotes an nxl

T oh,.\) = 1.

vector of all unit elements, so that ZJ=1 i3

Finally, note that 1imx+whijkk) = limy+0hij(1/Y) and that hij(l/Y)
is continuous and nonvanishing at y = 0 provided h?j # 0. Consequently,
well known reéults regarding the persistance of sign for continuous func-
tions have the implication that hij(k)'and hij must ha&e the same sign for
A sufficiently large.D

As a result of Theorem 1 we can utilize the elements of the hat matrix
as a diagnostic tool exactly as in the regression setting. When the value
of hii(K) is near one we see, as a result of (17) - (19) and (21) - (22),
that the smoothing spline essentially inferpolates y(ti) and, hence, is
pulled toward this data point regardless of its value. Thus points of high

leverage should be located and considered as candidates for deletion

if the ccrresponding response value is discrepant. This raises the



question of what is large for a smoothing spline leverage value.

One benchmark for comparison is their averége value Z?=1 hii(k)/n.

In practice, one may also wish to examine a stem-and-leaf plotlof the
hii(k), i= l,;;.;n, to asceftain if some values have strayed from the
pack. In the regression setting, Hﬁbér(l983) considers points of high
leverage as those which exceed a boﬁnd he suggests placing somewhere
between .2 and ;5. This is probabl& too low for smoothing splines,

since hii(k) majorizes h%i, but may still be of some use for comparison

purposes.

a]

3. Some Possible Diagnostic Measures. The development of resi-

dual diagnostics for regression models such as (1) - (2) is, and has
been, an area of considerable reséaréh interest. In contrast, diag-
nostic methods for smoothing splines have, "as yet, to receive appre-
ciable attention. The need for such procedures is equally important
as in the regression setting since; as might be anticipated from the
penalized least squares criterion (9), a smoothing spline fit can be
drastically influenced by outlyiné data values. In this section we
suggest some possible diagnostic measures patterned after those employed
in regression modeling. Therefore, in corder to motivate subsequent
developments, let us first discuss some common measures utilized for
residual analysis when (2) holds..

If n satisfies (2) then, from (8), Var (e(ti)) = oz(l—hii). Con-
sequently, a standard measure of how well y(ti) conforms to the fitted

model is its studentized residual

0, = e(ti)/&a-hii)l/2 (23)



where o2 = Z?=l e(ti)z/(n-p). These values are usually compared to those
of a Student's t with n-p degreéS'of fréeddm. Studentized residuals
are not entirely sa;isfactory aé é diagnostic tool, however, and other
measures which are often more efféctive are based on deleted residuals.
The ith deleted residual; e[i](ti); is obtained as the error from
predicting y(ti) without using its valﬁe to fit the model and is known
to satisfy

e = etepy/am). (24)

A commonly used diagnostic measure obtainedusinge[l](ti) is the stu-

dentized deleted residual

1] _ ~[1] 1/2
T | e(ti)/o (1 hii? | (25)
where G[iJ is our previous estimator of ¢ computed using the 'data set

Y(tl),---,Y(ti_l),y(ti;l),...,y(tn). Under the assumption of normally

. . ' i
distributed errors TE ]

is kﬁown to bave a t-distribution with n-p-1
degrees of freedom. Fdr a diséﬁssioﬁ of how these and other related
ﬁeasures are ﬁtilized in réére;sion ﬁodéling the readér is referred
to Gunst and Mason(l980; Chép: 7):~

To justify using diagnostics similar to (23) and (25) for smoothing
splines, an analog of (8) must first be shown to hold. This requires
that we place an alternative interpretation on aA than that which stems
from (9). Thus, consider the model

m-1 i
t) = L, a.t
y(t) 5=0 %

+oSz(t) + e(t) , t ¢ [a,b], (26)
where csis a positive scale parameter, Z is a zero mean process with

covariance kernel (15) and ¢ is a white noise process that is uncorre-

lated with {Z(t);t ¢ [a,b]}. It was shown by Kimeldorf and Wahba(1970)



that the best linear unbiased predictor of y(t) based on data sampled

from this model is a smoothing spline with ni =02/ozs. The use of n,

to estimate n can, therefore, be viewed alternatively as approximating

J

n by a polynomial and modeling the remainder, n(t)—Z?;l ajt , as a

0
stochastic process. As noted by Weéker and Ansley(1983), this approach
is commonly utilized in time seriés analysis where the nature of the
true response function is not well understood or adequately described
by a low order polynomial! Théy discuss why it should also be effec-
tive for nonparametric regression analysis.

Consider now the residual véctor & = (ek(tl)""’ek(tn))‘ which
is given by

e = (T-HO)y.
If i is viewed as a sample from (26) then, using (16) and the fact that
F'U'(Qn+nkI)UF = diag (dl+n%,;..;dn_m+nk), we obtain

Var(e,) = 0%(I-E(})) (27)
which parallels (8); This suggests measuring the size of a residual
by use of the'"éfuaénéizéa rééiaaai"

Ty ex(ti)/ax(l—hii(k))l/z (28)

~

A

where oy is an estimator of o. Some possible choices for 0y can be
found in Wahba(1981b) and Wecker and Ansley(1983). 1In particular,
Wahba (1981b) proposes the use of

o2 = 1% e ()2 /tr(I-H()) (29)

A j=1l"A""3" :
where tr denotes the matrix trace. Consequently, the value of T
b

might be compared to tabulated values for a Student's t distributiom

with approximately tr(I-H())) degrees of freedom. As

n n
tr(I-H(})) = Zj=1(l"hjj(>‘>) < Zj=l(l—h5*j_) = tr(I-H*) = n-p
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this seems a more conservative choice than the rank of I-H(A) (which
is n-p) since one feels, intuitively, that fewer error degrees of free-
dom should be available from a smoothing spline fit than for polynomial
regression.

Craven and Wahba(1978) showed that deleted residuals for smoothing
splines satisfy

ey = e (epran 00 (30)
and, hence, a diagnostic measure which may be more sensitive than (28)

is the "studentized deleted residual"

(1] _  [i] ~ i1, 1/2
Ty = ey (5 o, (1 () (31)
where cx[l] is the estimator of ¢ obtained without using y(ti) to fit
the spline. If H[i](A) denotes the hat matrix comstructed from
[1]
tl""’ti-l’ti+1""’tn then the value of Ti,A

values from a t-distribution with tr(I-H[l](A)) " degrees of freedom".

might be compared to

The computation of studentized deleted residuals is aided by the fact

that 9
[] n h.i(A)
@O F ] b )+ gy - (32)
j=1 3 ii
j#1
and
. n . . L
a1 ] ey +h,00 ef e n?era-attlaon (33)
j=1
j#i

which can be established from (30) and Lemma 3.1 of Craven and

Wahba(1979). Equations (32) - (33) have the implication that T[li may

i,

be computed without actually deleting the ith observation and refitting
the smoothing spline which parallels results which hold in the regression

setting (c.f. Hoaglin and Welsch (1978)).
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The routine examination of leverage values, studentized residuals
and studentized deleted residuals appears to be an effective method of
guarding against data points that are overly influential in smoothing
spline fits. Furthermore, by using the framework set out in this
section various other diagnostic measures; which may provide additional
information for this purpose; can be developed. For example,. one
possible definition of a "Cook's distance measure" is Di =
hii(A)Ti’k/[(l—hii(A))trH(X)] (c.f. Gunst and Mason(1980)).

4. Multivariate Smoothing Splines. In this section we sketch the

extension of results in Sections2 and 3 to the case of more than omne
independent variable. Our attention will be restricted to multivariate

Laplacian smoothing splines.

Suppose now that we have data (yl’Ei)"°"(yn’£n) where Ej = (xlj,...
...,xdj)' is a dx1 vector of values for d independent variables xl,---

ceesX g Then, if the data follows a model of the form (1) with n now

representing a smooth function on @, some closed bounded subset of ﬁq,

and Ej e, j=1,...,n, a reasonable smoothing criterion is to estimate
n by the minimizer of 2
n d m
L - 2 _Af()
n 'Zl (yj f(Ej)) + Ai ' z i =1 de 9K, «..0X, dxy...dx,.
J ERREEE i, i

Provided m > d4/2, n > (m+g—l) and under certain restrictions on the Ej's
the solution to this problem, when formulated in the appropriate function
space, is known as a Laplacian or "Thin Plate" smoothing spline (see Wahba
(1979), Wahba and Wendelberger(1980) or Wendelberger(1981) for details). It

is known (c.f. equation (2.3) of Wahba(1979)) fhat the hat matrix in this setting
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admits a representation'similar to (16) where H* now corresponds

to regression analysis on polynomials in XpseeesXy of total order

at most m. Consequently, Theorem 1 is readily seen to hold in this
setting and, hence, the examination of leverage values should also
prove to be a useful diagnostic tool for Laplacian smoothing splines.
This may be particularly true for d > 3 since, in this case, outliers
in the independent variables are no longer easily detected. 1In additionm,
it follows from the theory inKimeldorf and Wahba(1970) that a Laplacian
smoothing spline can be regarded as a best linear unbiased predictor
for a model which parallels (26). As a result, the diagn;stic measures
discussed in Section 3 can be utilized for this type of multivariate

spline as well. We point out that such conclusions can also be drawn

for spline smoothing on the sphere as discussed in Wahba(1981la).
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