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Robust ABLUE's for Location and Scale Parameter

Estimation

by

R. L. Eubank and H. J. Lindsey
Southern Methodist University

Abstract: A robust procedure for location and/or scale parameter
estimation is presented which utilizes the asymptotically best
linear unbiased estimators (ABLUE's) based on k(<N) of the N sample
quantiles. Using regression design techniques a method is developed
for selecting sample quantiles which furnishes the corresponding
parameter estimates with good robustness properties relative to a
given finite set of known probability laws. The problems of robust
quantile selection for the estimation of a particular population
quantile or in the presence of left and/or right hand censoring are

also considered.

1. Introduction.

A location and scale parameter model assumes that a random
sample, Xl""’XN’ has been obtained from a distribution of the form
F(§§E) where u and ¢ are respectively location and scale parameters.
An important problem associated with this model is the development of
parameter estimates which behave robustly (e.g., insure high asymptotic
relative efficiencies) over several or, perhaps, many choices for the
form of F. 1In this paper we provide an approach for obtaining such

estimators which utilizes the asymptotically best linear unbiased



estimators (ABLUE's) of u and ¢ based on k<N sample quantiles.
The ABLUE's are easily computed estimators whose properties

have beeﬁ extensively studied (c.f. Ogawa (1951), Sarhan and

Greenberg (1962), Eubank (1981) and the references therein). Let

Q denote the sample quantile function defined by
~ -_l 3 R
Q(U)=X(J.),-J—ﬁ—<u_<_%,J=1,...,N, (1.1)

where X(j) is the jth sample order statistic; then given a spacing,
U = {ul,...,uk} (a set of k real numbers satisfying 0<ul<u2<...<uk<l),
the ABLUE's are linear combinations of the corresponding sample quantiles
6(u1),...,6(uk). Explicit formulae for the coefficients for the é(ui)
may be found in Ogawa (1951) or Eubank (1979). As these coefficients
are dependent on the form chosen for F, we adopt the notation ;(U,F),
;(U,F) for the ABLUE's of u and o in order to indicate dependence on
both the distribution and the spacing.

To measure the performance of an ABLUE one usually examines its
asymptotic efficiency relative to the Cramér-Rao lower variance bound.

' and define the quantile

Therefore, assume that F admits a density £ = F
function corresponding to F by

Q(u) = inf{x: F(x) > ul} .
The density-quantile function is then given by fQ(u) = £(Q(u)),
0 <u<1 (c.f. Parzen (1979) for a discussion of quantile and density-
quantile functions and their properties). Using this notation the
expressions derived by Ogawa (1951) for the asymptotic relative

efficiencies (ARE's) for the ABLUE's may be written as follows:

i) The ARE for simultaneous estimation of 1 and o is
2
[1(m | (1.2)

=1 and fQ(0)=f0(1)=£fQ(0)Q(0)=fQ(1)Q(1)=0 we have

K11

ARE(;(U,F), ;(U,F)) =

where for u0=0,uk+l



K+ [£Q(u,) - £Q(u; )17

Ky, (U,F) = y — (1.3)
. i i-1
i=1
2
kHL[£Q(u,)Q(u,) - £Q(u,_)Q(u, )]
K, (U,F) = o il il 1.4
i=1 Ui i-1
k] - -
[£Q(u)-£Qu, ) 1[£Q(u,)Q(u)-£Q(u,_)Q(u; ;)]
K,,(U,F) =} (1.5)
12 . u, - u,
i=1 i i-1
with
1. (F) I_(F)
I(F) = HH Ho (1.6)
Ipc(F) Ioc(F)
denoting the usual Fisher information matrix for location and
scale parameter estimation for the distribution F.
ii) The ARE for the estimation of u when ¢ is known is
ARE(u(U,F)) = K11(U’F)/qu(F) . (1.7)
iii) The ARE for the estimation of o when u is known is
ARE(o(U,F)) = KZZ(U’F)/IGO(F) . (1.8)

Since these ARE's are dependent upon the spacing for the quantiles, U,
it is common practice to further optimize by selecting U to maximize
one of (1.2), (1.7) or (1.8) or, equivalently, their numerators

2 . .
Kll(U,F)KZZ(U,F)—KlZ(U,F) , Kll(U,F) and K22(U,F). This is the so called

optimal spacing problem and has been considered by numerous authors
(for references see Hassanein (1977) and Eubank (1981)). We wish to
consider, instead, the problem of selecting U's that are robust in the

sense that they provide high ARE's over several possible choices for F.



The robust spacing selection technique presented in this paper
is motivated by an approach to location parameter estimation developed
by Chan and Rhodin (1980). They consider the problem of robustly
estimating u when F is assumed to belong to a finite set of probability
laws, L. For L € L let U(L) denote the corresponding optimal (maximum
ARE) k-element spacing; then, Chan and Rhodin suggest choosing a spacing,
U(L*), which satisfies

min ARE(u(U(L*), G)) = max min ARE(u(U(L),Q)). (1.9)
Gel Lel Gel

Thus, one selects the element of {U(L);Lel} that is robust in the sense of providing

the largest guaranteed ARE (GARE) of at least mi? ARE(Q(U(L*),G))regardless

of which law in L generated the sample. 1In adgition, this provides a

candidate for F, namely L*, and, hence, u may be estimated by u(U(L*),L%*).
In this paper regression design techniques are utilized to develop

an asymptotic (as k»x) version of the Chan and Rhodin procedure which,

in contrast to their approach, has the advantages that it i) allows

for the estimation of either or both of u and o and ii) does not require

the tedious computation and tabulation of optimal spacings. Due to

this latter quality, the procedure we propose is amenable to use with

either large or small values of k. This fact is of particular importance

since it will usually be necessary to use larger values of k to insure

satisfactory GARE's than would be required merely for ARE consideration.

We present our method for spacing selection in Section 2 accompanied

with a discussion of its extension to the problems of quantile estima-

tion and parameter estimation from singly or doubly censored samples.

A numerical example is provided in Section 3.



2. Robust spacing selection

Parzen (1979) has shown that, for large N, location and scale
parameter estimation can be considered as a regression analysis problem
via the model

£Q(u)Qu) = uEQ() + ofQ(w)Q(u) + oy B(w), ue[0,1] , (2.1)

where op = o/VN and B(-) is a zero mean normal process with covariance
kernel Cov(B(ul), B(uz)) = min (ul,uz) - uqu,. Eubank (1981) noted
that the generalized least squares estimators of y and o obtained by
sampling from this model at a design U = {ul,...,uk} whose elements
satisfy O<u1<u2<...<uk<l were, in fact, the ABLUE's. As a result, it
was shown that problems of spacing selection could be phrased as
regression design problems for model (2.1). The relationship between
these two problems will be exploited, subsequently, to select spacings
which have good robustness properties.

Our attention will be restricted to designs (spacings) that are
obtained from continuous densities on [0,1]. Let h be such a density

s . X . . . . -1
with associated distribution and quantile functions H and H ~. Then,

h generates a sequence of designs, {Uk}, with
_ -1, 1 -1,k
U =40 TG sl TGt s

i.e., {Uk} is the design sequence whose kth element is composed of
the (k+l)-tiles of H. For designs which are obtained in this manner
it is possible to characterize the asymptotic (as k»=) behaviour of
the ARE's of the corresponding ABLUE's for the various estimation
situations. It follows directly from the work of Sacks and
Ylvisaker (1966, 1968) and Eubank (1981) that, under appropriate

conditions on h:



i) When both u and ¢ are unknown,

-2
lt® | ~|xu, ,F)| = Lo (h,F) + ok D (2.3)
k 2 71
12k
where K(Uk,F) is the matrix having ijth element Kij(Uk’F)’ i,j=1,2,
and
1 t -1
c,(h,P) = | V(u) T D@ 4y (2.4)
0 h(u)
with Y(u) defined by
P = ([£Q(w) 1", [fQ(wQWIM® . (2.5)
ii) When only u is unknown,
I (F) - K (U ,F) = —— C_(h,F) + o™ %) (2.6)
Uu 11 k? 2 207 '
12k
where
L {fqmy1m?
Cz(h,F) = f e du . 2.7
0 h(u)
iii) When only ¢ is unknown
o 1 . -2
IGO(F) K22(Uk,F) = —5 C5(h,F) + o(k ") (2.8)
12k
where
L rquwom1my?
C4(h, F) = | > du . (2.9)
0 h(u)
These characterizations can be shown to hold, for instance, when the
1
elements of ¢ are continuous and f'{h(u)}—zdu < o, Alternative conditions
0

can be found in Sacks and Ylvisaker (1968, Theorem 3.1) whereas somewhat

weaker restrictions may be deduced from the work of Pence and Smith (1981).

Equations (2.3), (2.6) and (2.8) have the consequence that, for



sufficiently large k, what distinguishes between the efficiency of spacings
selected from various densities is their respective values for the asymptotic

constants C C2 and CB' In particular, one can construct an asymptotic

l’
solution to the optimal spacing problem by minimizing Ci(h,F) over h for

a given F. The solution was found by Eubank (1981) to be

fo(w T E v 13

/Al , when both u and ¢ are unknown,
hF(u) = {[fQ(u)]"}Z/B/)\2 , when only u is unknown , (2.10)

{[fQ(u)Q(u)]"}2/3/)\3 , when only ¢ is unknown,

where Al’ A, and A, are appropriate normalizing constants.

2 3

The elements of the spacing sequence generated by hF exhibit the
same asymptotic behaviour as a sequence of optimal spacings in the sense
that the ARE's for both sequences converge to the same limit (either II(F)I,
qu(F) or IOO(F)) at the same rate (namely O(kfz)). In fact the spacings
obtained using (2.10) have been found to provide an excellent approximate
solution to the optimal spacing problem even for k as small as 5 or 7.
The reader is referred to Eubank (1979, 1981) for a discussion of the
spacings generated by hF and their properties.

The objective of this paper is te utilize the characterizations
(2.3), (2.6) and (2.8) to provide a robust (as opposed to optimal)
spacing selection scheme. To do so, we again utilize the constants
Ci(h,F). However, instead of optimizing over h for a fixed F, we will
optimize with respect to both h and F as follows. Let L denote a finite
set of probability laws and assume that for all combinations of L,Gel
the constant Ci(hL’G) for the estimation problem of interest is well
defined. An approximate (for large k) solution to the problem of robust

spacing selection is then given by: Choose L*el so that

max C,(h._,,G) = min max C,(h, ,G) . (2.11)
gel * L* Lel gel * hL



Depending upon which parameters are to be estimated, one then uses
either (;(Uﬁ y L*),;(Ui,L*))t, ;(Uﬁ,L*), or ;(Ui,L*) for estimation
purposes where Uﬁ is the nth element of the design sequence generated

by hL*' We observe that in the case of location parameter estimation

(i = 2) equation (2.11) can be viewed as providing an asymptotic version
of (1.9).

An illustration of the use of (2.11) is provided in the next section.
First, however, we discuss some of the computational details and merits
of this approach as well as certain of its extensions to other robust
estimation problems.

Computation of the constants (2.4), (2.7) and (2.9) will usually
require numeric integration. For this purpose the use of a Gaussian
quadrature rule is recommended. One then constructs a table consisting
of the values of Ci(hL’G) for all combinations of L and G in L from
which a law satisfying (2.11) can be readily found. This table has
the same role in our procedure as that of Tables 3,4,5 and 6 (i.e.,
tabulations of the ARE's for optimal spacings for all L,G combinations
corresponding to k=2,3,4 and 5 respectively) in the Chan and Rhodin
method. However, due to the asymptotic nature of our solution a decision
reached using (2.11) obtains for all k. The computational savings derived
from this technique are, therefore, twofold in that i) a single table
suffices for all values of k and ii) the computation of the constants

Cl’CZ and C, requires only numeric integration as compared to the

3
solution of nonlinear equation systems required by procedures based
on optimal spacings (c.f. Sarhan and Greenberg (1962) for examples of

such equations). Consequently, criterion (2.11) is amenable to use with

larger values of k. The importance of this fact should not be over-



looked as, in order to insure high GARE's, it will be necessary to use
ABLUE's based on more quantiles than would be needed merely to obtain
high ARE's.

Once an L* satisfying (2.11) has been found the next step is to
compute the corresponding k-point design, Uﬁ. Although the design
density hL* will frequently not have a closed form this can still be
easily accomplished through numeric tabulation of HL* followed by
interpolation to find the design points H;i(iéﬁﬁ, i=1l,...,k. The
corresponding estimator coefficients are then computed in the usual
manner using the formulae found in either Ogawa (1951) or Eubank (1979).
It should be noted that whereas the spacings selected using (2.11)
are robust this does not imply that the use of coefficients
corresponding to L* is .an optimal strategy for robustness considera-
tions (similar comments also apply to the Chan and Rhodin method).

In practice one may wish to use the spacings for L* in conjunction
with coefficients for other members of L or, perhaps, employ some type
of averaging procedure. The development of a robust coefficient
selection scheme to accompany (2.11) (as well as (1.9)) is currently
an open research problem.

The robust spacing selection techniques presented here can be
adapted to provide solutions to other robust estimation problems.

For instance, it is sometimes difficult to interpret the parameter
comparisons that are implied by (2.11). Such difficulties can be

averted by comparing the various location and scale parameter models

for the laws in L on the basis of one or more specific quantiles. Let

T denote a specified percentile point and for Lel let Q denote the corre-

sponding quantile function. The Tth quantile for the model L(§§B) is



then 1 + o QL(T) for which an estimator is ;(U,L) + ;(U,L)QL(T).

The asymptotic variance of this estimator is found to be proportional
to the trace(tr) of K_l(U,L)VT(L)VT(L)t where VT(L) = (1, QL(T))t.

In a manner similar to previous developments we have , wunder

certain additional conditions on h (c.f. Theorem 4.5 of Sacks and

Ylvisaker (1968)), that

-1 1 t 1 -2
tr([I “(L)-K <Uk’Ln‘Q(L)VT(L) ) = 12k2 C4(h,L) +o(n %) (2.12)
with
1 v wyv @ (L @wyvw
c,(h,1) = [ = du . (2.13)

0 h(u)2

An optimal density for this problem is proportional to
w1y (v W T @3
and, hence, (2.13) can now be used in (2.11) to determine robust
spacings for the purpose of quantile estimation.
It is also possible to modify (2.11) to provide robust spacings
for problems of estimation from left and/or right censored samples
such as those considered by Cheng (1980). This can be accomplished

through use of the optimal densities for spacing selection from censored

samples given in Eubank (1981).

3. Numerical example.

As an illustration of the use of the spacing selection technique
provided in Section 2 consider the data consisting of lifetimes for
417 40-watt internally frosted incandescent lamps presented in
Davis (1952). This data has also been analyzed by Chan and Rhodin (1980)

under the assumption that the parent distribution was either a member

10



11

of (or well approximated by) the Tukey lambda family of distributions
or was a normal, double exponential or Cauchy distribution. Through
goodness of fit considerations they chose L to consist of the normal
distribution and those members of the Tukey lambda family having shape
parameters -.1, 0, .1 and .14. To facilitate comparison with their
results L will be chosen similarly here. Letting L()) denote the
Tukey lanbda distribution with shape parameter A, we take L[={L(-.1),L(0),
L(.1), L(.14)} where, for simplicity, the normal has been omitted since
it is approximated by L(.1l4).

The quantile function for L(}) is

Qx(u) = Xﬁl[ux + (l—u)A]

with associated density-quantile function

A-1 A-1.-1

(fQ)A(U) = [u + (1-uw)” 7]

2’ for location parameter esti-

Thus, the optimal density, hL(A) =h
mation is proportional to

A X—3}2/3.

() " 2= -0 H 20D L T2 -0 1% 01 (0-2) [u-w) ]

As hl(u) = hx(l-u), the spacings generated by hx will be symmetric, i.e.,
u; = l—uk+1—i' This has the consequence that, u(Uk, L()A)) is scale
invariant (c.f. also Chan and Rhodin (1980) pg. 228 for further comments
on this property).

The constants CZ(hA’ L(n)) = CZ(A,n) have the form

c,(,m) = élufqn)"(u)/hx(u)lzdu.

The values of Cz(k,n) have been tabulated for all A,n ¢ {-.1,0,.1,.14}

and are provided in Table 1. It follows, upon examination of Table 1,



TABLE 1

The values of CZ(A,n) for A,n e {-.1,0,.1,.14}

AN

-.10 0 .10 .14
-.10 3.378 45.908 243,438 369.574
0 26,0108 4,000 297.194 916.012
.10 5.596 6.311 10.895 16.225
.14 6.973 7.759 11.445 15.312




that the minimum value of m%X CZ(X,n) occurs at A* = ,14 and, hence,
h.14 generates spacings that are robust relative to L. It is of interest
to note that this choice of A agrees with the one made by Chan and
Rhodin for k=2 and is their second choice (i.e. has the second largest
minimum ARE) when k=3. It is unfortunate that tabies are not available
for larger values of k, such as k= 7,9 or perhaps even 20, where one
might expect the results from these two techniques to consistently
coincide.

Numeric tabulation of the density h.14 reveals that the robust 5

element spacing is U, = {.0105, .1628, .5, .8372, .9895} from which

5

the corresponding estimator is computed to be (using Ogawa's formula)

ﬂ(US,L(.la)) .0396[Q(.0105)+Q(.9895) ] + .2585[Q(.1628)+Q(.8372)]

+ .4037&(.5)

Il

.0396[609+1550] + .2585[883 + 1225] + .4037[1037]

1049.0513.

This is to be compared with the value 1044.3 obtained by Chan and
Rhodin (1980) also through the use of a 5-quantile ABLUE.

As larger values of k will usually be required to insure suffi-

14

tabulated spacings of any desired size can be easily computed. For

ciently high GARE's it is important to note that once h has been

instance, when k = 7 the robust spacing is U, = {.0034, .0574, .2353,

7
.5, .7647, .9426, .9966} with corresponding coefficients {.0148, .0995,
.2374, .2967, .2374, .0995, .0148}. The resulting estimator is then

found to be u(U7,L(.l4)) = 1045.97.



It is also of interest to ascertain how U5 and U7, perform in
terms of GARE. Consequently, the ARE's for these spacings have
been computed over the various laws in L and are provided in Table 2.
The minimum or guaranteed ARE when k = 5 is found to be .908 whereas
when k = 7 the GARE is .9466. Although the set L considered by Chan
and Rhodin includes the normal while ours does not, it is still

noteworthy that the GARE for U_. is quite similar to the GARE of

5
.9015 for the robust 5-quantile ABLUE based on optimal spacings

utilized by Chan and Rhodin.

14



TABLE 2

ARE's for U5 and U7 for the various laws in L[ .

n ARE (4 (Ug, (M) ARE(u(U,,L(M)))
-.1 .9080 . 9466

0 .9163 .9513

.1 .9156 .9506

14 L9111 .9474

15
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