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ABSTRACT

Robust regression estimators guard against distortion of
parameter estimates because of outliers or certain violations of
error assumptions. Robust M-estimators which are direct extensions
of M-estimation fér location models are not resistant to a small
number of extreme data values in a regression analysis. In this
paper a general form for a regression influence function is derived
and related to other theoretical and sample-based regression
influence functions which have been studied. Expressions for the
influence function suggest alternative M-estimators based on
deleted residuals rather than raw residuals. Several alternative

estimators are proposed and compared on two data sets.
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1. INTRODUCTION

Robust regression estimators are intended to provide protection
from a variety of model assumption violations and data anomalies,
in¢cluding heavy-tailed or contaminated error distributions and
extreme or "high-leverage'" predictor-variable values. A growing
concern (and stimulus for much current research) is the realization
that an estimator which is robust to violations of the usual error
assumptions might not be resistant to changes in a small number of
predictor-variable values and vice-versa. In particular, there is
a need for procedures which will enable one to detect a small number
of unusual or discrepant observations (yi,xi) and isolate the effects
of these observations on an estimator. One important measure in
such an assessment is the influence function. This paper investigates
the role of regression influence functions and sample-based approxi-
mations to influence functions. As a result of this investigation
several new robust regression estimators are suggested and their
potential for effective use in the presence of unusual observations
is studied.

Influence functions were introduced by Hampel (1968, 1971, 1974)
as quantitative measures of the sensitivity of estimators to violations
of model assumptions. They have proven especially useful for studying
local robustness properties of estimators; e.g., for studying the
effects of extreme data values on location estimators for univariate
symmetric populations. Because of the sensitivity of least squares

estimators to extreme observations, influence functions are potentially



of great value in studying the effects of extreme observations on
least squares and robust regression estimators.

Regression influence functions have been defined by Hinkley (1977),
Krasker and Welsch (1982), Dorsett and Gunst (1982) and others. Hinkley
used an examination of the influence function to suggest a weighted,
jackknifed (least squares) estimator in which the difference between
the least squares estimate and the ith weighted pseudo-value equals
an estimated influence function of B at (yi,xi). Krasker and Welsch
derive a weighted least squares estimator which is asymptotically
efficient among weighted least squares estimators which bound the
gross—error sensitivity of the influence function and whose weights
depend on y only as a function of [y—x'B]. Dorsett and Gunst use
the influence function to suggest a weighting of predictor variable
values to achieve bounded leverage, followed by M-estimation on the
residuals to protect against extreme response values.

As one might expect, the influence functions derived by the above
authors can be shown to be equivélent under the same model assumptions;
however, there are many sample-based influence functions which have
appeared in the literature. Mallows (1975), Belsley, Kuh and Welsch
(1980) and Cook and Weisburg (1980, 1982) discuss many of the sample-
based versions which have been proposed. Due to computational complexi-
ties which arise from simultaneously measuring the effect of several

extreme observations, most of the sample-based influence functions



which are readily computable only measure the effect of adding or
deleting a single observation. A few proposals for treating several
extreme observations appear in Andrews and Pregibon (1978), Dempster
and Gasko-Green (1981) and Draper and John (1981). Because theore-
tical derivations and computational procedures for handling single
extreme observations are so much better refined than for multiple
observations, we will concentrate attention on robust estimation
for this case; nevertheless, comments on generalizations of the
following results will be made when appropriate.

The outline of this paper is as follows. Section 2 defines
a general influence function for multiple linear regression models.
Several influence functions which have been discussed in the
literature are shown to be special cases of this general influence
function. In Section 3 a few of the more popular sample-based
influence functions are discussed. From the results of Sections 2
and 3, suggestions for alternative robust regression estimators
emerge. These estimators are discussed and are used to analyze
two data sets in Section 4. Concluding remarks are made in

Section 5.

2. REGRESSION INFLUENCE FUNCTIONS
A regression functional TB(F,w) can be defined implicitly
from the estimating equation
f~"fX"P(Y—XTB(F,IP))dFX(Y) =0 (2.1)
where Y(t)' = Ob(tl),...,w(tn)) for some specified function P(*).

The distribution function FX(Y) is understood to be the conditional



distribution of Y given X and can be obtained from the joint dis-
tribution of (y,x') or from the usual regression model assumptions:
Y=XRg+¢e , (2.2)
where Y is an n-dimensional vector of response variables, X is an
(nxm) full-column-rank matrix of nonstochastic predictor variables,
B is an m—-dimensional vector of unknown regression coefficients,
and € is an unobservable n-dimensional vector of error variables
with gy v NID(O,GZ). If w(ti) = ti, corresponding to least squares
estimation, and dFX(Y) is the assumed multivariate normal density
function from model (2.2), then TB(F,wLS) = B.

The functional equation (2.1) allows a great deal of flexibi-
lity for examining different estimators (through the choice of
¥(¢)) and error distributions (through the choice of Fy(¢)) in the
study of robust regression estimators. For example, an alternative
to model (2.2) which is of special interest in the sequel assumes
that n observations correspond to model (2.2) but an additiomal k
observations are point masses at (Z,U). In this case,

To(F 0 g) = ®1x,) Uz +X"x8) (2.3)
where XL = (X':U'). Equation (2.3), which is readily reducible to
a single point mass at (¥,u'), shows that parametric &alues.(hence,
estimators) can be affected by both extreme response and extreme
predictor vartable values through the individual elements of Z and U.
Although not studied in detail in this article, the conditional
assumption on X can be relaxed and the dependence of the regression

estimator on the distribution of x' can be studied by replacing
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dFX(Y)‘with dF(Y,X) in equation (2.1), similar to the approach of
Krasker and Welsch (1982).
An influence function for the estimator TB(F,w) is defined as

— . ¢

where F* represents a contaminated distribution of the form

FYY) = (1-a)F(Y) + oG(Y) 0 < a< L. (2.5)
In the expression for the contaminated distribution (2.5),
F(Y) = FX(Y) and G(Y) is an alternative conditional distribution
for the response variables. The study of outliers is facilitated
by allowing this latter conditional distribution of Y to be based
on an alternative, perhaps completely distinct, choice of X, say

XO. Thus G(Y) = GX (YO) is defined to be a distribution function

0
corresponding to the model

Y0 = XOB + € (2.6)

0 b

where YO is an no—dimensional regponse vector and the distribution

of some or all of the elements of €y might differ from the assumed
NID(O,OZ). Allowing noaén causes no theoretical difficulties in any
of the subsequent results since equal sample sizes can always be

obtained by augmenting the distribution of Y or Y, by degenarate

0
distributions at (yi,xi) = (0,0").

If the limit in equation (2.4) exists and is unique from
positive and negative directions the influence function for TB(F,w)
can be obtained by differentiation of

(l—u)f"°fX'W(Y—XTB(F,w))dFX(Y)

o [ KT (2 )Gy () = 0. 2.7)



The influence function so obtained is

Il

o (F,G,¥) (x'ﬁWX)flf-e-fx6W(Yo-x0TB(F,¢))chgyo) ,  (2.8)

where

Dy = diagl[{(y;~x]T,(F,¥)) ¥, O}

and @(ti)==d¢(ti)/dti.

2.1 Special Cases

Let G (YO) denote a point-mass distribution at Y Then

XO 0°
Io(F,6,9) = (X'Dy%) XV (Y X o (F, 1)) (2.9)
is the influence function studied by Dorsett and Gunst (1982). By
letting X0==u','Y0f=z, and appropriately choosing the function Y(*),
the bounded-influence estimator of Krasker and Welsch (1982) can
be shown to have an influence function similar to (2.9). Least
squares estimation corresponds to w(ti) =t,. The least squares
influence function corresponding to a point-mass contaminant at
YO is i
IB(F,G,wLS) = (X'X) Xé(YO_XOB) : (2.10)
further, if YO==zl and X0==1u' for some n-dimensional row vector
u', where 1 is an n-dimensional vector of omes, then
I,(F.Caipg) = n(X'x) tu(z-u'p) , (2.11)
which is the influence function used by Hinkley (1977). Note
that if E[soj = 0 in equation (2.6) then IB(F,G,¢L8)==0,_regardless
of whether X =X0, since the integral in equation .(2.8) is zero.
Consider now an approach suggested by some of the sample-based

influence functions discussed in Mallows (1975), Belsley, Kuh and

Welsch (1980), and Cook and Weisberg (1982). Let X6==(X':U'),



Yé = (Y':Z'), and suppose that the first n elements of Y, follow
the assumed N(XB,GZI) distribution of model (2.2) while the last
n,-n elements are degenerate at (Z,U). The influence function (2.8)

then explicitly measures the effect of adding the n,-n observations

0
(2,U) to the original model:
= 1T it (7 —
Io(F,6, 1) = (X'DyX)  UM(Z-UT, (7, 1)) (2.12)
and if w(ti) =t;,
— 1 '1‘1

By letting X' = (Xé:U'), Y' = (Yé:Z'), and reversing the assumptions
on F(*) and G(*), the effect of deleting n,~n observations from an

estimator can be determined:
s -1 L
IB(F,G,w) = —(X'DWX) U'W(Z—UTB(F,w)) (2.14)
and
. -1
= - ' '_' — )
IB(F,G,\])LS) X'X) "U'(z UTB(F,IPLS)). (2.15)
It is important to note that TB(F,wLS) # B for this model since FX(Y)
contains a N(XOB,GZI) component and a point-mass at (Z,U); conse-
quently, TB(F,wLS) is given by equation (2.3) with Xi = (X6:U') and
X=XW
Influence functions are valuable for investigating the effects
of individual data values (y,x') on estimators as well as for
studying the sensitivity of estimators to model assumptions. Each
of the above influence functions appears to be an unbounded function
of the elements of X  and the least squares influence functions are

0

unbounded in the elements of Y Most of the robust regression

0°

estimators currently in use are specifically designed to bound
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residuals and do provide protection against extreme response variable
values (see, for example, Denby and Larson (1977)). Few provide spe-
cific protection against extreme predictor variable values.

Dorsett and Gunst (1982) argue that robust regression estimators
which only weight residuals do not adequately protect against estima-
tor distortion when extreme predictor-variable values occur in a data
set (see also Mallows 1975, Denby and Larson 1977). They show that
least squares, M-estimators, and Krasker and Welsch's bounded-
influence estimator can be distorted when predictor-variable
values are sufficiently e%treme. Dorsett and Gunst propose the
weighting of predictor-variable values in order to achieve a bound
on the leverage values and then using M-estimation on the residuals
to protect against extreme response values (see Huber 1981, p. 193,
for a similar suggestion). Consideration of equations (2.13) and
(2.15) for single extreme observations (z,u') leads to an alternative
proposal.,

2.2 1Individual Extreme Observations

If a single observation at (z,u') is added to n observations
which are true to the model (2.2), equation (2.3) defines the
corresponding model parameter for least squares estimation. A
direct measure of the change in the estimator (parameter) is

(X! =(X':0))

It

To(F U )-8 = (XJX) u(z-u'B)

(X1%,) e (2.16)

(z) °
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where €, =€ /(1-h ), &, =u'Tg(F, ), and b = u’ ®x)

In equation (2.16) €(2) is in the form of a "deleted residual"
(e.g., Gunst and Mason 1980, Chapter 7). The importance of
equation (2.16) is that it reveals that a single errant observation
(z,u') can have a dramatic effect on least squares estimators when
it is included in a data set. Another important measure of this
effect is the influence function.

With obvious modifications in notation, equation (2.13)
expresses the average effect on least squares estimators when an
observation (z,u') is added to the model (2.2) a very small
percentage of time:

IB(F,G,w

L) = (X0 hu(z-u'B)

[

xpxp e (2.17)
where €(z) = éz/(l‘hu? and az==z—u'B==z—u'TB(F,wLS). Interestingly,
if one considers the effect of deleting an observation (z,u') a very
small percentage of time from a model in which n observations are
consistent with model (2.2) and the (n+l)st observation is a point
mass at (z,u'), equation (2.15) defines the effect on the least

squares estimator:

Il

To(F,GyYp o) = -(X'0) " ula-u'T, (F, Y )

-0 hu@-h ) (zu'B) . (2.18)
Thus, equation (2.17) demonstrates that the infrequent inclusion of
an extreme observation, particularly one with extreme predictor
variable values (i.e., hu ~ 1), can have a dramatic effect on

the least squares estimator; on the other hand, exclusion of such
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an observation a small percentage of time could only have a small
effect on the distorted estimator TBCF,WLS). One should realize
that equations (2.17) and (2.18) are average effects on an estimator
while equation (2.19) measures the actual effect when such an
observation is included (eﬁcluded).

An important interpretive feature of equations (2.16) and
(2.17) is that each can be decomposed into two components, (X;X+)—lu
and e(z). The first component is a bounded function of the
individual elements of u. Dorsett and Gunst (1982) demonstrate
that boundedness of the influence function is not a sufficient
condition for protecting robust estimators from distortion by
extreme observations; however, boundedness is clearly necessary
for robustness. The deleted residual 8(2) is an unbounded function
of the individual elements of (z,u'). For fiﬁed z and B, IB(F,G,WLS)
is an increasing function of the leverage value hu; consequently,
E(z) can be expected to be e&tremely large when hu is close to one.
These properties suggest that M-estimators based on deleted
residuals might afford better protection from both extreme response
and extreme predictor-variable values than least squares estimators
and M-estimators based on raw residuals. Further support for this
proposal is obtained from sample-based influence functions.

3. SAMPLE-BASED INFLUENCE FUNCTIONS

Two of the more frequently advocated types of sample-based

influence functions are térmed the "empirical influence function"

and the "sample influence function" (Mallows 1975, Cook and
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Weisberg 1982). Let TB(Fn,w) = B denote the solution to

v

X'(Y-XB.) = 0 ; (3.1)

14
i.e., TB(Fn,w) is a finite-sample estimator of TB(F,w). An empirical
influence function replaces the functional (parameter, large-sample
estimator) TB(F,w) by TB(Fn,w) in a theoretical expression for an
influence function. For example, if TB(Fn,wLS) = é denotes the
least squares estimator obtained from equation (3.1) by letting

w(ti) = to the empirical influence function corresponding to
equation (2.11) is

EIFB(Fn ;z,u') = n(x'X)'lu(z—uié). (3.2)

Vi g
Similarly, the empirical influence corresponding to equation (2.9)
is

ETFg(F »¥3Y5,X,) = (x'X)'lxby(YO—xoéw), (3.3)

N

where Bw is the solution to equation (3.1). Each of these empirical
influence functions are valuable for studying the effects of arbi-
trary observations (z,u') or (YO,XO) on an estimator. Each of these
functions can also be evaluated at specific data values (yi,xi) but
other sample-based influence functions are more appropriate for this
purpose.

The sample influence function measures the change in coeffi-

cient estimates when (yi,xi) is eliminated from the data set:
. 1 - -
STFg (F,¥3y3,%)) = Tg(F,U) = To(F(5y5W) (3.4)

where TB(F(i),w) denotes the solution to equation (3.1) when (yi,xi)

is eliminated from the data set. Although for arbitrary Y(¢) the
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sample influence function has no closed-form algebraic representa-
tion, it can be numerically evaluated once the respective estimates
are obtained. For least squares estimation there is a closed-form
algebraic representation:

STF,(F , ¥ g3y;5%)) = (X'X)—lxir(i) , (3.5)
where r(i) = (yi—xig)/(l—hi) and hi = xi(X'X)_lxi. When
(z,ul) =(yi,xi), this sample influence function is comparable with
its theoretical equivalent, equation (2.16).

One advantage to the definition of the general influence func-
tion (2.8) is that many of the alternative sample-based influence
functions are special cases of empirical influence functions derived
from this theoretical influence function. The empirical influence
functions (3.2) and (3.3) are obviously special cases. The sample
influence function is an empirical influence function corresponding
to equation (2.17) with (z,u') = (yi,xi). Thus there is no need
to separately define sample influence functions or to use alterna-
tive terminology; e.g., equation (3.5) is an empirical influence
function, sample influence function, and is called DFBETAi by
Belsley, Kuh and Welsch (1980). 1In addition, many other saméle—
based influence functions can be expressed as empirical influence
functions which are special cases of the general influence function
(2.8); e.g., Tukeyis sensitivity curves (Huber, 1981).

Empirical influence functions are multivariate and often
difficult to use in practice. Univariate statistics based on

these influence functions have been proposed for use in evaluating
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the effects of individual observations on.least squares estimates.
Two of the more popular statistics are studentized (deleted) resi-

duals (e.g., Gunst and Mason 1980)

[10%;y/ (1=h)}?

t

1) - T
i 5
= ri/{o(i)(l-hi) } (3.6)
and Cook's Di(Cook 1977)

D, = (BB g X'X(B-8 ;) /0"

1

2 "2
hir(i)/mo (3.7)

[

It is interesting to observe that in each of equations (3.5), (3.6)
and (3.7) the deleted residual r(i) is a major component of the
empirical influence function. This fact reinforces the important
role of the deleted residual in measures of influence, which was
noted in Section 2. It again suggests that M-estimators which
bound the magnitude of deleted residuals might afford better pro-
tection from both extreme response and extreme predictor variable
values than least squares estimators or M-estimators which bound
the magnitude of raw residuals.
4., ESTIMATION WITH DELETED RESIDUALS

In this section we investigate the performance of several
M-estimators which bound the magnitudes of deleted residuals or
functions of the deleted residuals. All the M-estimators except
those based on studentized (deleted) residuals are defined as
solutions to the following system of equations, the last one

included to provide a robust estimate of the scale parameter G:
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n A
_izlxijw(ri/cw) =0 j=1,2,...,m (4.1)

and

n A
: 2 X(rilgw) = (n-m)a (4.2)

i=1

where . = y.-x! " x(t,) = tP(e,) - p(ti), b(t,) =dp(t,)/dt,, and

i1
a = E[x(e/0)] with € N(0,0z). Huber and Dutter's H-algorithm
(Dutter 1977, Huber 1981) is used to solve (4.1) and (4.2). Two
choices for {(*) are studied, Huber's
t Itl <c
wl(t) = (4.3)
c Itl > ¢

and Hampel's redescending Y (*)-function

t |t]

| A
0

1
_ c, sign(t) c, < |t| <
vy (e) = 1 1 R O
cl[c3 sign(t)—t]/(cs—cz) cy < |t] < ¢4
0 Cq < |t|

By choosing appropriate values for the turning constants in equations
(4.3) and (4.4) the solutions to equations (4.1) and (4.2) can be
made dependent on either the raw or the deleted residuals.

In choosing the values for c, and Cq with Hampel's w2(~),
care must be exercized since values of c,y and Cg which are too
close to one another can result in inflated asymptotic variances
for gw (see Huber 1981, p. 103). Observations with c2<<[ri/g¢|:ic3
can also affect scale estimates in the iteration process when
Hampel's wz(') is used. For these reasons, when Hampel's wz(') is

used in conjunction with either raw or deleted residuals we will
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estimate © uéing equations (4.1) and (4.2) with Huber's wl(f) and
then insert this estimate of o0.into equations (4.1) with Hampel's
wz(') to estimate B. Once a solution to equations (4.1) with
Hampel's wz(') is attained, a final estimate of .0.is obtained from
equation (4.2):

/\2 ~ N
Oy = Z X(rllcw) Gw/(n m)a,

~

where Ow is the estimate of 0 calculated with Huber's wl(').
Several M-estimators will be compared with the least squares

A

estimator B. The first two utilize Huber and Hampel's Y(*)-functions
on raw residuals T and will be denoted él(ri) and éz(ri), respec-
tively. The turning constant for Huber's wl(°)—function is 1.345,
which yields 957 efficiency for location estimation at the normal

model. The turning constants for Hampel's w2(°)—function are ¢, =1.7,

1
c2==3.4,andc3==8.5, values which were found effective by Andrews
et al. (1972) for robust location estimates. Two additiomal
estimators, gl(r(i)) and gz(r(i)), bound the deleted residuals
r(i) rather than the raw residuals with the above Y(+) functions.
This can be accomplished by multiplying each of the turning constants
in equations (4.3) and (4.4) by (1—hi), yielding different turning
constants for each residual r,.

Since studentized (deleted) residuals (equation (3.6)) have
proven effective in isolating unusual response variable values,
two estimators are defined using only the estimating equations
(4.1) and Y(*)-weights based on the t(i)' These two estimators,

. . 1 1
denoted Bl(t(i)) and Bz(t(i)), again utilize Huber's and Hampel's

Y(*)-functions but with different turning constants. Individually
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the t(i) are Student-t variates with (n-m-1) degrees of freedom.

Consequently, we feel that it is desirable to increase Huber's

turning constant to 1.5 and will use ¢, =1.5, ¢, =

! 27505
n-m-1) with Hampel's:wz('), where td(v) is the 1000%

(n-m-1), and
3=t gy
(two-tailed) percentage point of a Student-t distribution with v

degrees of freedom. By multiplying the respective turning constants

N

by o

1
3

(1—hi) , equations (4.1) and (4.3) or (4.4) can be used to

(1)
solve for these estimates. The estimator él(ti) is similar to one
proposed by Hill (1977) and Welsch (1977).

Unlike the calculation of least squares deleted residuals,
the computation of deleted residuals for M-estimators can be a
formidable task. Least squares deleted residuals (and studentized
(deleted) residuals) can be calculated from the raw residuals and
leverage values from one fit to the full data set: e.g.,
r(i)=fri/(l—hi). M-estimator deleted residuals must be calculated
from n separate estimates éw(i) (in which (yi,xi) is deleted from
the data set) at each iteration of equations (4.1), each estimate
éW(i) requiring separate iterétions. In the appendix we outline
two approximations to éw(i) which can be obtained from only one set
of iterations using equations (4.1) and the full data set. The
approximation used in the following analyses is similar to that
for the least squares t(i) in equation (3.6).

The final estimator to be compared is the median-centered

bounded=leverage estimator which was found to be effective against
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extreme response and predictor-variable values in Dorsett and
Gunst (1982). This estimator centers the nonconstant predictor
variables by subtracting the medians, Mj, from the n observations

on each variable. Then weights w, are found so the leverage values
of the matrix
H, = WER (X'WK) R W

are bounded by n2==(2mrl)/n, where X=%[xij—M3]. ‘The ‘weights W, are
applied to the centered predictor-variable values to yield weighted
observations ;ij==Mj+wi(Xij—Mj) and the weighted observations are
used in place of the‘raw predictor-variable values in equations
(4.1) and (4.2). Bounding the leverage values of the weighted
observations insures that extreme predictor-—variable values cannot
severely distort the M-estimates whereas M-estimation protects
against extreme response values. This weighting scheme also bounds
the influence function with respect to individual response and
predictor variable values. We denote these estimators by él(.)
and 82(').
4.1 Mickey-Dunn—~Clark Data

This two-variable data set (Mickey,Dunn and Clark 1967) has been
used by several authors to illustrate outlier detection or robust
regression techniques (e.g., Andrews and Pregibon 1978, Dempster
and Gasko-Green 1981, Draper and John 1981, Dorsett and Gunst 1982).
In this data set observation 19 has an unusually large response
value (Gesell Adaptive Score) and observation 18 has an unusually

large predictor-variable value (Age in months), although the
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observation (y18’218) is consistent with the overall decreasing
linear trend in the data. In order to assess the effectiveness
of several robust regression estimators in compensating for ektreme
predictor variable values which are not consistent with the overall
trend in the data, Dorsett and Gﬁnst (1982) change one of the
observations (ylo;xlo) = (94;20) to (94;50). A second observation
(y6,x6) is also changed from (87,20) to (87,50) in order to investi-
gate the problem of "masking'" by extreme observations which appear
in the same region of the space of predictor variables. Tables 1
through 4 display results of an analysis of these data using the
various M-estimators described above.

In Table 1 both least squares an& M-estimators based on raw

residuals are distorted by changing Xe and/or 23] from 20 to 50.

0
One can show that as ii->w the slope estimates approach zero and
the intercept estimates approachly(i) for these estimators. M-
estimators based on deleted residuals or studentized deleted
residuals are effective in protecting against a single ektreme
observation but they do not adequately compensate for masked points.
In spite of this last remark, the M-estimators based on deleted

residuals are more effective than those based on raw residuals

when isolated extreme values occur.
[Insert Table .1]
The M-estimator weights ¢(t) =Y(t)/t exhibited in Table 2

help explain the performance of these estimators. With the original
data, all the M-estimators heavily weight the observation which

)

. N
has an extreme response value, observation 19; in fact, Bz(t(;)

i
[Insert Table 2]
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assigns it a weight of zero. When 310 is changed to 50, all the
M-estimator weights for this observation are larger than in the
original data set, more so for the estimators based on raw residuals
than the other estimators. In addition, the weight on (ylo,klo)

for él(ri) is much less than that for the other two estimators

using Huber's wl(-) and Ez(ri) does not weight this ektreme point.
This explains thé distortion of él(ri) and gz(ri) in Table 1 for
210==50. Table 2(c) shows that none of the estimators weight ob-
servations 6 or 10 when x6=%xlo?=50 and that .the weights assigned to
observation 19 are larger than those for the original data set.

The reinforcement of %10 by X, causes the leverage value for
observation 10 to drop from 0.523 to 0.349 and the studentized
(deleted) residual to drop from 2.585 to 1..498, thus resulting in
the increased weights for these points and the consequent distortion
of all the M-estimators based on deleted and studentized (deleted)
residuals.

Coefficient estimates for the bounded-leverage estimators are
shown in Table 3. These estimators, whether based on raw, deleted,
or studentized (deleted) residuals, yield estimates which are
similar to one another and to the least squares and M-estimators
for the original data set. In addition, each estiméfor produces
identical estimates as X, and 310 are changed. In the second
column of Table 4 the weights assigned to the predictor variable
values are displayed. Observation318;vmich has the most ektreme

predictor-variable value in the original data set, is given a

[Insert Tables 3 and 4]
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small weight, as are x. and #10 when they become egtreme. The
bounded-leverage weights for the predictor variable values
produce ;i values of 17.308 for 26, %10, and_,xl8 in all three
data sets. Thus, the bounded-leverage estimator weights both
individual and masked predictor-variable values. The identical
weighted values eﬁplain the identical M-estimator results in each
row of Table 3 and in the last six columns of Table 4(a), (b);
and (c).

After weighting the predictor variables, the M-estimator
weights for observations 18 and 19 in Table 4 occur because each
response value is now extreme for its predictor-variable value
in the overall trend of the data. The M-estimator weights for
él(ri) and él(r(i)) are simialr to one another and slightly smaller
than those for él(t(i))' The weights for Hampel's wz(') are larger

than those for Huber's wl(').

Convergence problems occured with Bz(t(i)). After 200 itera-
tions the slope estimate was close to zero and convergence had not
been achieved. The weights ¢2(t(i))‘revealed that.observation 18
was given a weight of zero. Since observation 18 was assigned a
weight of zero, it was deleted from the data set and the estimates
were recomputed. The subsequent estimates are reported in Table 3
and are consistent with the other estimates reported; however,
observation 19 is assigned a weight of zero in this second analysis.

The bounded-leverage estimator Bz(t(i)) effectively eliminates

observations 18 and 19 from the data set.
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Only three of the.éstimators investigated in this section are
included in the analysis presented in the neit section. .Because
of the theoretical and-computational difficulties associated with
Hampel's wz(') which were mentioned earlier and since none of these
estimators appeared to be superior to those COmputéd from Huber's
wl(') in Tables 1 to 4, none of the estimators using Hampel's wz(')
will be discussed further. 1In addition, the estimators based on stu-
dentized (deletéd) residuals do not outperform those based on deléeted
residuals in Tables 1 to 4. The lack of proofs for conwergence of
estimators based on the t(i) and the difficult computations needed
to obtain M-estimators using the t(i) also lead one to prefer esti~
mators based on raw or deleted\reSiduals; ‘For those reasons we -
examine only'gl(r(i)),él(ri) and gl(r(i)) in the next section.
4.2 Lave and Seskin Data

Lave and Seskin (1970, 1977, 1979) compile a large data set
as part of their study of the effects of air pollution on human
health. Gibbons and McDonald (1980a, 1980b, 1982) discuss several
aspects of the analysis of this data set including the choice of
a suitable mortality index, selection of predictor variables, and
identification of influential observations. Tables 5 and 6 dis-
play analyses of the 1960 cross-sectional data on 117 Standard
Metropolitan Statistical Areas (SMSAs) using the eleven predictor
variables studied by Gibbons and McDonald (1982).

All three robust estimates in Table 5 for SMIN and PMEAN are

smaller than those for least squares and the robust estimates for
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SMEAN are larger than that for least squares. Especially large
differences among the robust estimates occur for PM2, a population
density variable and LN(POP), the logarithm of population size.
The summary statistics in Table 6 help eﬁplain the differences in
these estimates.

All the robust estimates weight several of the SMSAs very
heavily. Included in the observations which are heavily weighted
are Tampa, Scranton, Wilkes Barre, and Austin, all of which receive
a weight less than 0.5 by all the robust estimates. These four
SMSAs have the largest studentized (deleted) residuals, indicating
(since none have extremely large leverage values) that their -
response values are extreme relative to their predictor-variable
values.

The leverage values in Table 6 indicate that Jersey City is
an extreme point in the space of predictor variables. This is
primarily due to its extremely large value for PM2. The bounded-
leverage estimators weight Jersey City's predictor variables and
then the M-estimator weights the the resulting residual. Note
that the M-estimator using deleted residuals does not weight
Jersey City. Gibbons and McDonald (1982) discovered that Jersey
City has a great influence on the least squares coefficient
estimate for PM2 by calculating Belsley, Kuh, and Welsch's (1980)
DFBETAS. Thus the difference between the least squares and M-
estimator estimates for PM2 and the bounded-leverage estimates

for PM2 is primarily due to the weighting of Jersey City.
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Charleston and Tampa both influence the least squares estimate
for LN(POP) (Gibbons and McDonald 1982). All three robust estimators
in Table 5 weight the residuals for these two SMSAs:but the bounded-
leverage estimators also weight the predict;r—variable“values. The
bounded-leverage estimates also weight the value of LN(POP) for New
York, the SMSA which has the most extreme value for LN(POP). This
difference in weighting accounts for the difference in the estimates
for él(r(i)) and those for the bounded-leverage estimators.

Overall, the bounded-leverage estimates appear to be preferable
to the Mresimatorséi(r(i)) for this data set. The bounded-leverage
estimates are weighting influential observations regardless of
whether the influential observation is due to ektreme predictor
values or extreme response values. In particular, the weighting of
Jersey City and New York seems .warranted. Although the two
bounded-leverage estimators produce similar estimates for this
data set, the added protection afforded by M-estimation on deleted
residuals suggests that él(r(i)) is to be preferred to él(ri).

This recommendation is reinforced by the expressions for regression
influence functions which were derived in Sections 2 and 3.
5. CONCLUSION

Theoretical and sample-based influence functions indicate
the important role of deleted residuals in measuring the effect of
individual observations on regression estimators, notably least
squares estimators. Although bounding the magnitude of deleted

residuals improves the performance of regression M-estimators
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APPENDIX

Studentized (deleted) residuals for M-estimates have the form

fa) N ) 1/2
@) T OBy 0 ) Bty T

where Bw(i) is an M-estimate calculated from equations (4.1) from

the reduced data set in which (yi,xi) has been eliminated. Calcu-

A

lation of Bl(t(i)) and gz(t(i)) requires (a) an iterative solution
of equations (4.1) with n new values of t(i)‘at each iteration and
(b) iterative estimation of Bw( ) for i=1,2,...,n to obtain the
( ) Two approximations to the t( ) were investigated, each of
which only uses the current estimate B (t( )) or B (t( )) in place

of BW( ) in the above equation for t(

i)’
Let @k = diag(¢?,...,¢i), where ¢?==¢k(t(i))/t(i). Solutions

to equations (4.1) can be obtained through iteratively reweighted

least squares by use of the following iteration formula:

B (t( )) = (X'0 X)_lX'® Y , k=1,2.

k

The first approx1mat10n to the t( y uses B (t( )) in place of Bw(l)’

A

w(l) = { 2 r - (1- hw( )) 2,2 }/(n -m-1) ,

1
i i i =/ 1 _1|l§
where hw(i) is the ith diagonal element of HW @;X(X~®kX) X @k ,
=_'
r, vy Xin(t(i))’ and
r. =1, + (1-h
J J

-1 k _
W(i)) 1¢iriu§(X'®kX) lu

The adjustments in rj and Oi(i) are intended to accomodate for the

use of Bk(t( )) rather than the individual B ) (see Henderson

16

(1982)). 1In several test cases the estimates produced by this
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Table 1. Comparison of Coefficient Estimates, Mickey-Dunn-Clark Data

Original Data X0 = 50 Xg =Xy = 50
(a) Intercept
Least Squares 109.87 102.76 101.47
Huber's wl(')
Bl(ri) 109.74 102.84 100.26
Bl(r(i>) 109.80 107.03 99.86
Bl(t(i)) 109.58 106.32 100.37
Hampel's ¢2(°)
Bz(ri) 109.63 102.53 100.93
Bz(r(i)) 109.62 109.60 100.39
Bz(t(i)) 109.31 109.84 98.88
(b) Slope
Least Squares ~1.13 -0.58 -0.45
Huber's wl(-)
Bl(ri) -1.17 -0.62 -0.38
Bl (r(i)) _1-17 —0-98 "0.33
Bl(t(i)) -1.16 -0.90 -0.38
Hampel's wz(')
Bz(r.) -1.16 -0.58 -0.42
: i

Bz(t(i)) -1.19 -1.18 -0.22




Table 2. M-Estimator Weights for Selected Points, Mickey-Dunn—-Clark Data®

‘Huber's wl(') Hampel's w2(°)

Obsn. 0 () 0y (rgy) () 02T 0plregy)  45(E)

(a) Original Data

6

10

18

19 457 478 472 .555 .575 .000

(®) x,, = 50
6 .
10 .800 .436 476 .388 .000
18 .898
19 .619 .511 .535 .792 .597 .150
(c) X, = %, = 50

6
10
18 .629 .595 .655 | .850 .787 .299
19 .637 .639 .666 .812 .800 .752

aOnly weights less than 0.9 are displayed.



Table 3. Comparison of Bounded-lLeverage Estimates, Mickey-Dunn-Clark Data

Original Data Xi0" 50 X =%y =20

(a) Intercept

Least Squares 109.87 102.76 101.47

Huber's wl(')

Bl(ri) 108.60 108.60 108.60
B.(r,..) 107.69 107.69 107.69
17 (1) :

Bl(t(i)) 108.74 108.74 108.74

Hampel's 11)2(-)

Bz(ri) 108.83 108.83 108.83
Bz(r(i)) 108.50 108.50 108.50
- a ,
Bz(t(i)) 108.23 108.23 108.23
(b) Slope
Least Squares -1.13 -0.58 -0.45

Huber's 11)1(')

Bl(ri) -1.19 ~-1.19 -1.19
Bl(r(i)) "‘1-10 _1.10 ‘—1.10
Bl(t(i)) -1.20 -1.20 -1.20

Hampel's 11)2(-)

~

By (x,) -1.20 -1.20 -1.20
Bz(r(i)) -1.17 -1.17 -1.17
Bz(t(i))a -1.17 -1.17 -1.17

aObservation 18 deleted from the data set.



Table 4. Bounded-Leverage Weights for Selected Points, Mickey-Dunn-Clark DatzP
Huber's wl(') Hampel's ¥, (*)
Obsn. wy  $.(x) b (rpgy) o 0y () 0,(rgy)  dy(E)®
(a) Original Data
6 .799
10 .799
18 .232 .555 .538 .576 .688 .672 -—
19 .512 .518 .530 .631 .625 .000
(b) X0 = 50
6 .799
10 .184
18 .232 .555 .538 ..576 .688 .672 _—
19 .512 .518 .530 .631 .625 .000
(e) Ko = Xy = 50
6 .184
10 .184
18 .232 .555 .538 .576 .688 .672 -
19 .512 .518 .530 .631 .625 .000

aObservation 18 deleted from the data set.

bOnly weights less than 0.9 are displayed.



Table 5. Comparison of Coefficient Estimates, Lave and Seskin Data.

Predictor Least o HuberYs‘wl(')
Variable Squares " - »
Bi(resy)  Bm)  Bi(r)
SMIN 456 244 . 274 .230
(.287) (.239) (.260) (.256)
SMEAN .079 .315 .283 .316
(.329) (.274) (.289) (.284)
SMAX .056 -.009 .006 .008
(.114) (.095) (.103) (.101)
PMIN .253 .188 .055 .051
(.618) (.515) (.538) (.530)
PMEAN .337 .059 .140 .098
(.424) (.353) (.385) (.379)
PMAX -.025 047 .008 .020
(.010) (.083) (.099) (.097)
PM2 .089 .087 .395 .361
(.054) (.045) (.137) (.135)
GE65 6.923 7.331 7.179 7.233
(.413) (.344) (.373) (.367)
PNOW .403 412 .355 .354
(.104) (.087) (.093) (.092)
POOR .039 .095 177 .190
(.151) (.125) (.136) (.134)
LN (POP) -12.217 -9.251 -17.072 -15.988

(8.72) (7.27) (8.53) (8.41)




Table 6. Summary Statitics for Selected Points, Lave and Seskin Data®

Robust Estimator Weights

SMSA ot __$l(r(i)) S g q§l(r(i))
Miami FL .618 .698 .661
Orlando FL 1.847 .530 .569 .543
Tampa FL .278 . 4.8l6 .238 .813 461 .431
Macon GA .422 .702

Savannah GA 2.003 .568 .600 .577
Terre Haute IN .102 1.854 .701 772 .762
New Orleans LA 1.984 574 .596 574
Jackson MS .100 .862 .892
Las Vegas NV .618 .607 .578
Jersey City NJ .894 .179 .383 .356
Albuquerque NM .252

New York NY <195 .560

Canton OH .261 -1.982 .715 .776

Scranton PA .145 3.622 .326 .324 314
Wilkes Barre PA 3.731 .324 .352 .343
Sioux Falls SD ~1.700 .597 .620 .591
Austin TX -2.243 . 486 .489 474
Waco TX .770 .757 .720
Charleston WV .557 -1.694 .763 574 .858 .765

Madison WI -1.504 .736 791 .766

Only leverage values greater than 0.1, !t )I values greater than 1.5,
and welghts 1ess than 0.9 are displayed. ¢l( ) and ¢1( ) denote,

respectively, weights for the M-estimator and the bounded-leverage

estimators.



