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ABSTRACT

The problem of location and scale parameter estimation
from randomly censored data is analyzed through use of a
regression model for the Kaplan-Meier quantile process. Conti-
nuous time regression techniques are employed to construct esti-
mators that are both asymptotically normal and efficient. Esti-
mators with a particularly simple form are obtained for the
Koziol-Green model for random censorship. 1In the event of no
censoring the regression model, and resulting estimators,'reduce

to those proposed by Parzen (1979 a, b).

1. INTRODUCTION

In this paper the problem of location and scale parameter
estimation from randomly censored data is formulated as a
regression analysis problem for the Kaplan-Meier quantile process.

Under certain regularity conditions, estimators are derived that



are both asymptotically normal and efficient. In addition, this
approach to the problem is seen, through examples and discussion,
to provide a framework for estimation that can be used to moti-
vate and generalize estimation procedures suggested by other
authors for both censored and uncensored samples.

Let Tl""’Tn denote the true survival times of n
individuals which are assumed to be i.i.d. random variables

having common distribution function (d.f.)
= t-y
F(t) = Fy(D) (1.1)

where u and ¢ are, respectively, unknown location and scale
parameters and FO is a known distributional form. Further, let
Yl""’Yn denote n i.i.d. censoring random variables with common
d.f. H that are independent of the Ti's. In the random censoring
model one observes not the Ti's but, instead, the pairs of random

variables (Zi,éi) where Zi =~m1n(Ti,Yi), di = X{Tifyi} and x

denotes the indicator function. The d.f. of the Zi's, F*, is

then given by the relation

1 - F*(2) = [1-F (ED]11-H(2)] . (1.2)
An important problem associated with this model is the estimation
of the parameters u and ¢ from the observed data.

Let Fn(t) denote the Kaplan-Meier estimator of the d.f. F(t)
(Kaplan and Meier (1958)) with associated empirical quantile
function defined by

Qn(u) = inf{t: Fn(t) > u} . (1.3)
Functionals oan, and Qn_aswell as the Bayesian generalization of Fn
have been used in the nonparametric estimation of various types of
parameters, such as the mean survival time, by Breslow and
Crowley (1974), Sander (1975a, 1975b, 1975c), Susarla and Van
Ryzin (1980) and Reid (1981). 1In contrast, we develop estimators
that are functionals of Qn but are applicable to general u and
o under the assumption that the precise form of F, is known. The

0
model that is assumed is, therefore, the censored sample analog



of the classical location and scale parameter model. The
proposed estimators are seen to have a closed, computationally
simple, form which should provide savings over other techniques,
such as maximum likelihood, which are frequently used in this
situation (c.f. Kalbfleisch and Prentice (1980)). TFor the esti-
mation of parameters other than those of the location/scale
variety the reader is referred to Eubank and LaRiccia (1981) for
a minimum distance approach.

In Section 2 we present our principal result with the proof
provided in Section 3. Our approach is based on a continuous
time regression model for the quantile process, Qn(-), which
allows us to view the problem of estimating u and o from a
regression analysis perspective. In the important case of the
Koziol-Green model for random censorship this approach results
in estimators of yu and ¢ having a simple closed form. Closed
form estimators are also provided for the general model (1.2)
that are seen to be asymptotically normal and efficient. The
relationships between these estimators and estimators proposed
in Eubank and LaRiccia (1982), iaRiccia (1982), Parzen (1979a,b)
and Weiss (1964) and Weiss and Wolfowitz (1970) are also explored.

2. ESTIMATOR DERIVATION AND RESULTS

In this section estimators of u and ¢ are presented that
are functionals of the empirical quantile function Qn' The
techniques used in the construction of these estimators are
suggested by the approach of Parzen (1979a) who; in the uncensored
case, showed that location and scale parameter estimation could be
viewed as a continuous time regression problem for the quantile
process. We begin by showing that a similar result holds for
randomly censored data. First, however, some notational pre-
liminaries are required.

Assume that F. admits a continuous density £, = F! and

0 0 0
define the quantile function Qo by



Qo(u) = inf{t: FO(t) > u}

The density-quantile function corresponding to FO is then given
by fon(u) = fO(QO(u)), 0 <u<1l. If Fy is strictly increasing

the quantile functions for F and F0 are related by

Q(u) = 1 + 0Qy(uw) (2.1)
whereas their demsity-quantile functions satisfy
1
fQ(u) = GfOQO(u) . (2.2)

For a proof of (2.1) as well as a discussion of quantile and
density~quantile functions and their properties the reader is
referred to Parzen (1979a). A

Let Bl, 82 be two constants satisfying 0 < 81 < 82 < 1. The
work of Sander (1975a) may be used to show that,on the interval
[61,82],/5 fQ(u){Qn(u)—Q(u)} converges in distribution to a zero
mean Gaussian process {X(u), u ¢ [81,82]} with covariance kermel

K(s,t) = (1-t)G(s), s < t , (2.3)

where

G(s) = (1-8)[S = du . (2.4)
0 (1-u) " [1-HQ(wW]

and HQ(u) = H(Q(u)). Using (2.1) and (2.2) this is seen to have
the implication that, asymptotically, location and scale parameter
estimation can be formulated as a continuous time regression prob-
lem for the quantile process via the model

£,Qp(WQ (@) = uf,Q,(uw) + of,Q,(wW)Q,(u) + o X(u), uelBy,8,],

(2.5)

where g, = o/vYn. Using the work of Csdrgd and Révész (1978) a
similar model was developed by Parzen (1979a), for the uncensored
case, wherein X is a Brownian bridge process.

Model (2.5) will be used in conjunction with the theory of
time seriés analysis by reproducing kernel Hilbert space (RKHS)
methods to devise estimators for y and o. The first step in this
procedure is to determine the form of H(K), the RKHS generated by
the covariance kermel (2.3). It is well known that H(K) is unique

and is congruent to the X process (the reader is referred to



Aronszajn (1950) and Parzen (1961la, 1961b) for a more detailed
presentation of respectively, the theory of reproducing kernels
and their role in inference for stochastic processes). The
congruence between these spaces will allow us to obtain explicit
estimator formulae through use of the H(K) norm and inner
product.

Using results given in Sacks and Ylvisaker (1966), H(K) is
found to consist of Lz—differentiable functions with the inner

product of two functions m, geH(K) given by

(B,)m(B,)
_ 8, g e 2 ELib /MRy
. = 2 1- 1-H du + ———mm .
<g,m>y él [l—u ] [l—u ] (L *[1-HQ() 1u + <55
(2.6)

The norm for H(K) will be denoted by II-‘IK. Two alternative
forms of (2.6) will also be useful in subsequent work. If H

admits a continuous density, h, the inner product can be rewritten

B
<gym>, = [ Zg"(win' (w) [1-HQ(u) Jdu

By
8
+o élz [542][2e) <l_u>__—_fog§§3g du
+ g(Bl)m(Bl) [K(Bl’sl) - I8, :]
8(82)m(82)
+ '*‘ff:g;‘—" [l—HQ(Bz)] 2.7)

and, if g is assumed to be twice continuously differentiable on

[81,82], another expression for (2.6) is furnished by

8
<g,m>, = -/ 2{g”(u)+G"(u)[g(u)+g'(u)(l-u)](l—HQ(u))}[l—HQ(U)]m(u)du
B .
1
g(B,)G'(8,)-G(B,)g" (B,)
+ gy [1-50(8)) In(8)) (2.8)
1

2(B,) + (1-8,)8'(8,)
* = [1-HQ(8,) m(8,)




Before proceeding further it should be noted that the inmer
product in H(K) provides a natural measure of information. Thus,
now, and in subsequent discussions, we impose the regularity

condition that fOQ and the product of f

0 0%
f0Q0°QO,are elements of H(K) and define the information matrix

and QO, denoted

2
REFONE <f Qns £,Q,°Qn>
1(81’82) - 0°0''K 070 00 *0 K (2.9)

2
“£0Q0>£0% x| 1£0R0" %! Ix
To justify this title for 1(81,82) consider the case of location
parameter estimation. WNoting that the densities for the

uncensored and censored observations are, respectively,

') = [FHEOTER) = [1-B(0 126 EY)

and
£ (x)

[1-F(x) ]h(x)

X-u
(1 - Fy Y Ihex)
(c.f. Reid (1981)) the change of variable x = Q(u) in (2.7) gives
for instance, that when B8_ =0, 82 =1

fw
0

[£ 1 (22Hy 2
£

X-U
£,

2 St
1125001 1% [1-8(e) T£ ) (Hy dx

off (XX 12
0.2 [1-F 25 Th(x) dx

x-U
-l—FO( )

2 2
20 e £ (%) u o f (%) c
=g {é [f(x) ] £o(x)dx + é [i?fTET] 3 (x)dx} .

By examination of the form of the likelihood for the observations,

L, given, for example, in Kalbfleisch and Prentice (1980) and
conditioning on the values of Gi it can be verified that

oi llfOQollé = E[(alogL/Bu)z] and, as a result, is the usual
Fisher information measure for location estimation. Similarly
02 IlfOQOllé measures information in the Fisher sense for the
case we consider of 0 < Bl < B, < 1. Identical statements are

2
readily seen to hold for the other elements of 1(81,82) as well.



The random variables congruent to f and £ are the

0% 0% %
functionals <fOQ0,fOQO'Qn>Kand <foQ0~Q0,fOQO-Qn>K. From model
(2.5) and the theory of continuous time regression it now follows
that an asymptotically normal and efficient estimator of (u,o)t

is

u* _ <f Q ’ £ Q 'Q >
[ ] - 1(81’82) 00 0°0 *n'K (2.10)
o* Q% Fo% %k

which has variance-covariance matrix 021_1(81,82). Under the
Koziol-Green model for random cenmsoring (2.10) may be used

directly to provide estimators of u and o as we now illustrate.

Example 1. Koziol and Green (1976) consider testing the
hypothesis
Ho: F(t) = Fo(t;go)

where EO is a vector of specified parameter values that completely

determine FO. They assume that H and F are related by

1-H(t) = [1-F(£)1%
where o is termed the censoring parameter since it can be shown
that v = (l+oz)“l is the expected proportion of uncensored observa-
tions. They show through an example that their model is useful

for testing H Unfortunately, the asymptotic distribution of

their statistgc depends on o which may be unknown. CsBrgd” and
Horvdth (1981) have proposed an alternative statistic that
alleviates this difficulty by incorporating a strongly consistent
estimator of v, namely v, = n ._ Gj. See also Hollander and
Proschan (1979) for other work in this area.

We now examine the form of u* and o%* under the Koziol-Green

model for (1.2), i.e. we assume that

1~H(t) = [1—FO(E:EJ]Q . (2.12)
o
Using form (2.6) of the inner product, it is readily verified
that (2.13)
B 8 g(u) 1 m(u) ' 24a (u+l)g(81)m(81)
<g,m>K = f 2 [l—u ] [l’—u ] (1-u) du + ot 1 5



Then, from (2.8), we have

8 2
_ 2
<£4Q45£0Q° Qg = é Wﬁ(u)Qn(u)du +iilw3,siqn(si) (2.14)
1
B 2
2
€000 Q> £0" Qg = [ T WE(WQ (wdu + T Wk 5 Q (8) (2.15)
Bl i=1 i
where oQo(u) . )
L O ~{(£,09)" (w) a[~—I—E—{] }(1-u) "£0,(w) (2.16)
" (5,0, ot (1-8) ¥
S T G O ¢ o 1 Ml
' o
- (£,0) ' (B} (1-8)7£,Q4(B)) 5 (2.17)
* - 1 T - o
Wu,BZ = [ EZEE"EOQO(BZ) + (£5Qy) ' (B,)1(1-8,)"£,Q,(8,),(2.18)
and W* W* 8. and W* g are defined similarly by replacing £ Q
’ ) 2

by the product fOQ QO in (2.16) - (2.18). Thus, if a is known,
(2.10) may be used directly to estimate u and o. If a is unknown
a strongly consistent estimator of o is

a = v;l(l—vn)
that may be used in the weights without influencing the
asymptotic properties of the estimators.

The estimators u* and ¢* could also be used in conjunction
with the test statistics of Koziol and Green and Csﬁrgé'and
Horvath to test hypotheses of the form HO: F(x) = F &R ) where
the parameter values are, in this case, unknown. We have not
investigated the properties of such a test but note that if
one utilizes a smoothed (eg., piecewise linear) version of Qn our
regression formulation suggests that other useful measures of

. . 2
goodness—of-fit might be based on ||fOQ0( ){Qn(')—u*—o*QO( )}|{K

In general, the inner product <-,->K will involve the
unknown parameters due to the term 1-HQ(u) = 1= H(u+00 (u))
appearing in (2.4), (2.6) and (2.8). As a result, (u*, G*) will



frequently not be computable. We, therefore, proceed to derive
estimators that are always computable, when H is known, by appro-
priately estimating the unknown quantities in (2.10). The case of
H unknown is discussed in Remark 1 below.

The difficulties encountered with (u*,c*)t can be circumvented
by replacing Q, where it appears, by Qn in our previous formula-

tion. Therefore, let

B ' ' 2(8.)m(8.)
<8,m2=j' 2 [l(u)] [E(_U'.Z] (l-u)z[l-HQ (u)]du-}- A 1 1 (2.19)
KB IR n R(B,,8.)

1 L8

where K(Bl,Bl) = (1—51)G(81) and

B
[t - du . (2.20)
0 (1-uw [l—HQn(U)]

G(8,) = (1-8))

An estimator of I(Bl,Bz) is then provided by

2
R REFNRE <E.QnsEnQntQn>s
1(s,,8,) - 0%0' 'R F070°7070 ~0 K (2.21)

- 2

To obtain estimators of the other quantities in (2.10), assume

that both fOQO and fOQO-QO are twice continuously differentiable

and replace expressions of the form (2.22)
Alusg) = c"<u)[g<u>+g'<u><1—u>1<1—Ho(u>>2=c<1-u>[l_§) b
0°0

and G'(Bl) L L

3w = gy (RG] - I:EI'{E?E;} - 1-HaGs) 1h2.23)
which appear in (2.8), by

' rha_(uw)
vo) = A(1- g(u) n

A_(u;g) 6(l‘u) [l—u ] [foQo<“) ] (2.24)

and
1 1
B (B,) = ry - [1-HQ (B,))] (2.25)
n 1 1-8 n 1 ?
1 G(Bl)

~

where & is any estimator converging in probability to ¢ (denoted
o] +P o). Of course if ¢ is known, and only u is being estimate,
one would use its value in (2.24) and dispense with the auxiliary

estimator 8. Now define the location weights



W (w) = ~{(£,00)" (w) [1-HQ_ () ]-A_(u3£,00) £ Q (w) (2.26)

Wu’el = {fOOO(Bl)B (8 ) (fOQO) <Bl)[l—HQn(Blz]}fOQ (B 12 -
—----—-—:L \]

wu,Bz = { 1z, fOQo(82)+(fOQO) (82)}[1—HQn(62)]f0Q0(82) (2.28)

and the scale weights

W_(u) = —1(£,Q,°0p)" () [1-HQ_(w) ]-A_(u3£,0,°Q,) },Qy () (2.29)
Wy g = {£000(8)Q(B)B, (B)=(£400+Q) " () [1-HQ (81D 13,0 (5))
1
. (2.30)
- L : Q)" -
Wc,82 = {l_BzfoQo(Bz)QO(32)+(fOQO QO) (82)}[1 HQn(BZ)]fOQO(BZ)’
(2.31)
Estimators for the functional <fOQO, fOQO-On>K and
<fOQO-QO, fOQO-Qn>K can ;hen be expressedzas
. _ 2
<E0Qps £00°Q>% =/ W, (WQ (wdu +IVp %) 23D
and 1 8 + 9
“_ 2
<£405°Q>£0Q %>R = é Wo (W (wdu + 7 Wy o Q (8, (2.33)
1
which suggests estimating u and o by
; ~_ 1<£Q.,£.Q.-Q >"
[“]= I 1(81,82) 070’7070 n K ) . (2.34)
? “f0%" % F0% Wk

Our principal result, given in Theorem 1, is that asymptotically

n ‘ ] . N
(u,c)t has the same distribution as (u¥*,o%)

Theorem 1. Assume that
(i) F is a strictly increasing continuously differentiable
function, with F(0) = 0, H is a continuously
differentiable function which satisfies HQ(BZ) <1, and
(ii) Dboth fOOO and fOQO-Q0
tiable functions that are elements of the RKHS generated

are twice continuously differen-

by the Brownian bridge covariance kermel min(s,t)-st.

Under the regularity conditions (i) and (ii)



>

=

s 2 -1

vil

Q>

ol B

2

where > denotes covergence in law and N(O,0 I-l

is a
(8158,))
normal distribution with mean 0 and variance-covariance matrix

2_-1

Remark 1. Throughout this section we have tacitly treated the
censoring distribution, H,as if it were known. This will
frequently ﬁot be the case in practice. Such difficulties can

be alleviated by substituting strongly consistent estimators for

H and h in (2.26) - (2.31). It will be apparent from the proof

in the next section that Theorem 1 still holds for estimators
obtained in this manner. One simple approach to the estimation

of Hand h can'be developed as follows. Estimators for expressions
involving HQ can be based on l—F;qn(u)(F§ denoting the empirical
d.f. for zl,...,zn) which estimates (l-u) (1-HQ(u)) = 1-F*Q(u).

Then through the use of differences, as in Sacks (1975) and Weiss
and Wolfowitz (1970), one can construct an estimator for (HQ)'(u)=
chQ(u)/£,Q,

(2.24)). It would be of interest to see if one can extend this

(u) (Note that this allows us to dispense with & in

type of approach to include the estimation of £ and f0Q0°QO

0%
thereby obtaining censored sample analogs of the totally nonpara-
metric estimators given in Weiss and Wolfowitz (1970). These
latter types of estimators will be considered in more detail in
future work.

Remark 2. We note that the conditions on fOQO and foQO'Qo in
Theorem 1 are implicit in the estimators developed by Parzen (1979a)
for the uncensored case and are satisfied for most distributions.
The assumption that HQ(BZ) < 1 appears to be standard in the work
on estimation from randomly censored data (c.f. Sander (1975a)

and Reid (1981)).

Remark 3. The difficulties with extending our results to 81=O,

82=l stem from the fact that the distribution theory for Qn is



currently available only over [0,82]. For Theorem 1 to apply when

g
1
# 0 which is seldom satisfied. By requiring 81 > 0 this assumption

= 0, we would need to assume, as in Sander (1975a), that fOQO(O)

is averted and estimators that have wider applicability are obtained.
In particular this formulation is well suited to dealing with esti-
mation from truncated samples. Such an approach was also taken by

Weiss (1964) and Weiss and Wolfowitz (1970).

To conclude this section we consider several examples that
further illustrate the usefulness of model (2.5) and establish
the connection between the estimators (2.34) and others already

available. We begin by considering the form of u and ¢ in the

case of no censorship.

Example 2. Consider the case of no censoring, i.e., assume H=0

or, more generally, that H places mass one at some point to the

A

right of the support of F (or at +=x). In this event <m,g>K=<m,g>K

so that I(Bl,BZ) = I(Bl,Bz) and the weights (2.26) - (2.31) reduce
to
W () = =(£4Q0)" () £4Qq (w) (2.35)
W = [t -
0By = Ttgl (8= (£ (315620 (8p) (2.36)
I
wo_(u) = -(EOQO'QO)"(U)fOQO(u) (2038)
S - Q)"
Mo,8, = Farfalo (80 ()= (02 Q) (31600 (8 (2.39)
and
B 0!
Uo,8, = 11g, folo (B2 3+ £ 00 (3 £ (8 (2:40)

These are precisely the weights for the estimators proposed by
Parzen (1979a, 1979b) and consequently (;,;)t agrees with his
estimators in the case of no censoring. Of course, this is no
surprise since the covariance kermel (2.3) becomes the Brownian
bridge covariance kernel when H = 0 and, hence, model (2.5)

reduces to Parzen's model when no censoring is present (in fact,



this work was suggested by the survival data problem in Section
12 of Parzen (1979a)). The results of this section can also be
viewed as a censored sample extension of work by Weiss (1964)
due to the similarity between his estimators and those provided
by (2.34) when H = 0.

Example 3. Eubank and LaRiccia (1981) consider a minimum distance
approach to parameter estimation from censored data., For the
estimation of p when o is known and without loss of generality
taken to be one, their estimator is obtained by minimizing, with

respect to u, the distance
) 2 2 2
J‘ [Qn(u)_u—Qo(u)] d)(u)du + I 4)8. [Qn(Bi)—u—QO(Bi)] ’ (2.41)

Bl i=1 "1

where ¢, ¢_ and ¢B are user selected weights. They give optimal

By 2
weights for the estimation of a single parameter that, in this

case, are

$() = ~{(£,0))" () [1-HO(w) ] - A(u3£,04)}£,Qq (W) (2.42)
6, = {(£,Q,)(B)B(B,) = (£,Q.)'(B,)[1-HQ(B,) 1} Q,(B,)
Sl 00 1 1 00 1 1 00 1(2.43)
and
— l f -
¢32 = {TZEZ £,Q0(8y) + (£4Q4) ' (B,)}[1-HO(B,)1£,0,(8,) (2.44)

where, recall, Q(u) = u + Qo(u) and ¢ = 1 in A(u;fOQo).

As (2.42) - (2.44) depend upon the unknown parameter, u, an
iterative procedure is required to obtain the estimator that
minimizes (2.41). However, if one replaces Q by Qn in (2.42) -
(2.44) and formally differentiates (2.41) the resulting estimator
is precisely ;. Thus one consequence of this paper is that, for
location parameter estimation, the asymptotic properties of the
minimum distance procedure involving (2.41) still hold when the
optimal weights are estimated.

It is of interest to note that for more general parameteriza-
tions than those of the location-scale variety a model such as

(2.5) will still hold that involves the parameters in a nonlinear



fashion. Thus minimum distance procedures such as those in
Eubank and LaRiccia (1981) may be viewed, intuitively, as pro-
viding parameter estimates via nonlinear regression.

Finally we note that for the estimation of either u or ¢
when H = 0 the minimum distance procedures of Eubank and
LaRiccia (1981) and LaRiccia (1982) when using optimal weights,
and the estimators given by Parzen (1979a, b) will all three

coincide.

Example 4. Frequently for computational as well as other reasons
one may wish to use only a subsample consisting of k sample
quantiles for the estimation of 1 and o. A popular estimator of
this type for the uncensored case has been the asymptotically
best linear unbiased estimator (ABLUE) developed by Ogawa (1951).
We now show how an analogous estimator can be obtained for
censored samples.

Let O < Bl < u, < u, < ... < uk_i 82 < 1 denote the per-

centile points of thi quantiles to be utilized in the estimator.
As in the uncensored case-U = {ul,...,uk} will be termed a
spacing. The problem of estimating u and o from the quantile
subset corresponding to U can be viewed as estimation using a
sample obtained from model (2.5) by sampling ét the elements
Upsennsly e Therefore, let KU denote the kxk matrix with ijth
element K(ui,uj) and define the kx2 matrix M, = {gj(ui)} where
8, = fOQO and gy = fOQO'QO. Then, using Y to denote t?e kx1
observation vector (foqo(ul)Qn(ul),...,fOQO(uk)Qn(uk)) , an

(asymptotically) best linear unbiased estimator is

*
| T M (2.45)
g

(that this estimator is well defined follows from Sacks and
Ylvisaker (1966)).
For the Koziol-Green model the elements of KU are
o
K(ui,uj) = (l-uj)[(l—ui) - (l—ui)]/(l-!-ct)



but will, in general, depend on the unknown parameters. However,
we can estimate K(u ,u ) as in (2.20) and it w1ll follow from
work in the next sectlon that the estimator KU obtained in this
manner converges in probability to KU. Straightforward

arguments then show that an estimator with the same asymptotic

distribution as (u*(U), c*(U))t is

[ “‘”’] ) TG Y. | (2.46)

a(U)
Both of (2.45) and (2.46) reduce to the ABLUE when H = O.
Considerable attention has been focused on the problem of
optimal quantile (spacing) selection for the ABLUE (see Eubank
(1981) for references). Similar problems can be considered here.
For instance under the Koziol-Green model (2.45) depends only on
the possibly unknown parameter o. One might therefore consider

. . t -1 .
the selection of U to maximize det(MUKU MU) over various values

for a.
3. PROOF OF THEOREM
Let
<f Q ’f Q,°0_>
Z = 00’00 m K (3.1)
“£5Q° Q> £ %k
and define
- <f Q.,£,Q0.°Q >>
é = OO OO n K . (3.2)
“£0% "> £5% "%k

To prove Theorem 1 we show, sequentially, that

A. I(B ,8 ) o 1(61,8 )

R OTEN! ] R C R ICNERY

and that

~- : -1
c. /al1 (8,802 - 17 (81,8,)2} " Q-

As A and C together imply that (3.3)

E%[‘;}[z]g= o) + T8,/ {2 - I(Bl,Bz)[i]} ,



where op(l) +§ 0 as no», the theorem then follows as a consequence
of B. .

The fundamental results that will be needed regarding the
closeness of Qn and Q are furnished by the following lemma.
Lemma 1. Let condition i) of Theorem 1 be satisfied and define

0(Q_,Q) = sup [Q (w) - Qw].

n 8. <u<f n
1——"2
Then,
1) Yae(Q,Q) = 0,1,
where Op(l) denotes bounded in probability as mr*e and
ii) 1if g is a continuous function on [Q(Bl), Q(BZ)],

p(g(Q)s g(@) >, O.

Proof: It is shown in Sander (1975a) that sup {X(u)[ is a
uE[Bl,BZ]
random variable. Since the supremum is a continuous function

standard arguments show i). Also note, from i), that

p(Q,Q) = = (Ao (Q_, @) >, 0.

To prove ii) first let An = {w: Qn(u) is well defined on
[8,,8,] and Q_(8;) > Q(8,), Q (B,) <Q(8,)}. By an argument similar
to that used in proving Lemma 3 of Sander (1975a) which employs
the consistency of Fn it follows that P(An) -+ 1. Consequently,
it suffices to prove ii) omn An' However, on An the result is
an immediate consequence of the fact that p(Qn,Q) +P 0 and the

uniform continuity of g on [Q(Bl), Q(Bz)].

To verify A let g1 = fOQo, 8y = fOQO-Q0 and observe that from
(2.6) and (2.19)

&
“Bi0857g T “Bi08y7g T é
1

1-u

g.(u) ! g.(U) !
= H . § (l-u)z[HQ(u)—HQn(u)]du

(3.4)

g.(B,)g.(B,) 1 1
+ & 17=371 [: _ _ J
1—81 G(Bl) G(Bl)




he integral in (3.4) is seen to be oD(l) using part ii) of the

lemma, the continuity of H and condition ii) of Theorem 1, since
]

By &8s (W' (8, ()
f { - } { i—u } du is essentially the inner product for the
By
RKHS generated by min(s,t)-st. It then remains to show that
1 _ 1
G(8))  G(8))

*? 0. This can be seen by using Lemma 1 of

Sander (1975a) to show that G(Bl) has the same asymptotic distri-

bution as

Q, (8
* _ _ n
cl(8) = Bl)é

l) 1
[1-F_(x)1°[1-H(x) ]

an(x) . (3.5)

The convergence of Gl(Bl) to G(Bl) then follows using arguments
similar to those in Breslow and Crowley (1974). Thus, l/G(Bl) is

bounded in probability and

1 1

c8) o

= op(1)|c(sl) - G(Bl)[ > 0.

1

This proves A.

To obtain B we use the weak convergence properties of
/EfoQo(u){Qn(u)—Q(u)} on [81,82] and the continuous mapping theorem
(c.f. Billingsley (1968)) to conclude that, asymptotically, Z has

a normal distribution with mean

<f£ Q,,£.Q.°Q> u
070°707°0 " K - I(Bl,Bz)[.J (3.6)
“£5% " E9Q% Vg o

as a result of (2.1). Now, from (2.8) and the reproducing property
for K, namely g(u) = <K(-,u), &gs fOQO is found to admit the

representation 8 2
£,Qp(w) = / 2¢(S)K(s,u)du + I ¢

K(Bk,u) (3.7)
Bl i=1

By

where

6(s) = =(£,0,)" () [1-HQ(w)] - Au3£,0,) (3.8)



0 = f6Q(8)B(8)) - (£e00)" (B [1-H0(8))] (3.9)

and
1 ' 4
b, = (o FoQo(8) + (g0 (8} [1-HO G (3.10)

It then follows from (3.7) and another application of the

reproducing property that

PRI By B2 2 By
ol = 7] SeemR@,vdudv + T ¢, [ “¢(WK(u,B,)du
1 By k=l "k By
2 2
HI T 0g 4 K(B8,) (3.11)

Equation (3.11) apart from the constant multiple 02, is precisely
the variance of <fOQ0,fOQ0'Qn>K obtained by application of the
continuous mapping theorem. Analogous results are seen to hold
for the remainder of the elements of 1(81,82) through identical
arguments. Apparently B can also be obtained using techniques
such as those in Example '3 of Reid (1981) although more

stringent conditions are required on the Weights.’

Finally to prove C note that, just as in (3.6),

N <£,Qn,£,Q,°Q> N u
m= | 0000 K - I(sl,sz)[] . (3.1
~ g
“ToQ" Q> Fo " Px
Thus A
Ll P R D . 1 -1
fn‘g[]-[ $=1 (8,8, /ald-d}-[17"(8,,8,)-T ~(8;,8,)1/nd
o} o%
where é_= é_ é.and d=2 - m. From A and B we conclude that
-1

_.l ~
{1 A(Bl;Bz)—I
/H[éﬁi] +P 0. This can now be verified directly through tedious

(81,82)]/;§;+P 0 so it remains only to show that

but straightford arguments that require the use of the continuity

of h and H, the fact that 8 +P

in the proof of A and repeated applications of parts i) and ii)

g, arguments similar to those used

of the lemma. This completes the proof of C and, hence, the

theorem.
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