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ABSTRACT

Tests for comparing the strength of association between a

variable X1 and each of two potential predictor variables X2

and X3 are proposed and examined in a simulation study. The

variances of X2 and X3 and the correlation between X2 and X3 are
nuisance parameters. A simple modification of a test proposed by
Williams (1959) is found to have good properties for a wide range

of parameter values and both normal and nonnormal distributioms.

INTRODUCTION

In a number of statistical settings, particularly in regression,
it is desirable to know which of two random variables, say X2 and X3,
is more strongly correlated with a dependent random variable Xl'

Under the assumption that the observations are from a trivariate
normal distribution, a number of tests for the hypothesis HO: P19 = P13
have been proposed. These have been analyzed and compared in some
detail by Neill and Dunn (1975).

Further proposals have been made for a much more general setting
where the underlying distribution cannot be regarded as normal and
where the measure of strength of the relationship between the depen-

dent and independent variables may be different than the Pearson

product moment correlation coefficient. Hubert and Golledge (1981)



also discuss the situation where no specific population model is
obvious.

Our intent is to examine a number of such suggestions, compare
them with the procedures recommended in Neill and Dunn for the tri-
variate normal situation, observe their behavior under nonnormal

distributions, and draw conclusions about their relative merits.

HISTORY
Let Xl, X2, X3 have a continuous trivariate distribution with
covariance matrix IZ. Let g., = p.,0.0, be the (ij)th element of I,
ij ij ij .

with Pyq = 1(i = 1,2,3). For the trivariate normal, proposals for

testing H have been available since 1940, when Hotelling

o' P12 T P13
proposed as a test statistic the difference Tip = T3 (where rij is
the appropriate sample correlation coeffiqient) divided by an esti-
mate of the asymptotic standard derivation of Tip = T13- Neill and
Dunn (1975) use both analytic methods and simulations in comparing
eleven different test statistics including Hotelling's for this parti-
cular situation and recommend a statistic proposed by Williams (1959)
as the best choice for small to moderate sample sizes.

Williams' test statistic, which also relies on a standardized

version of r__, - r., and is only slightly different than Hotelling's
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proposal, is given by

(-1 + r.,)
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The one-tailed test compares T to the upper ath percentile of the
t-distribution on n-3 degrees of freedom.

As discussed in Boyer and Schucany (1978) a distribution free
approach to this problem relies on observations by Wolfe (1976)

that the correlation between Xl and Z = X2 - X3 is given by

012919 ~ P1391%;
7 2 1
010y + 05 = 2p,30,0,)

P12z © /2

and thus, if o, = 03, then Pig = 0 if and only if Pig = Py3- The

2
restriction that X2 and X3 have the same scale is also needed for
| .
Kendall's le > 0 to imply P > 013

A number of proposals for test statistics make use of this
requirement by replacing sample values of X2 and X3 with a set of
scores that will circumvent the scale problem. One possibility is
to replace each of the elements of the §2 and §3 vectors by their
integer ranks, R<X21) and R(X3i) respectively. A problem that
arises here is that Zi = R(XZi) - R(X3i) may well involve a sub-
stantial number of tied values. An additional possibility is
replacing X21 and X3i by their expected normal scores, N(XZi)
and N(X3i). This will reduce the magnitude of the tie problem

but will still eliminate the scale difficulties. Then, any of

the usual nonparametric measures of correlation could be used to



detect association between the X,. and Z* = N(X,.) - N(X,.). Note

1i i 2i 3i
that there does not appear to be a familar population quantity corre-
sponding to the relationship between X1 and Z*; nevertheless the
techniquz does allow one to make general inferences about the
relationships of X1 to X2 and X3.

A second class of procedures that could be used to test the
hypothesis of interest would involve transformation of the observa-
12 Xz,and X3
and then apply one of the normal theory methods (probably Williams'

tions for each of X so that they are somewhat normal
test) to the transformed data. It is felt that in nonnormal situations
this procedure will yield a test statistic that is more stable than
just using Williams' test on the raw data.

Several tests utilizing one of these methods or a simple
extension of one of them provided a starting place for a sub-
stantial simulation study for comparison. A number of additiomal
procedures, as described in Boyer and Schucany (1978) were also
used in the early stages of the investigation, but proved to be
inadeduate even in the very simplest situation where the underlying
distribution was trivariate normal and the null hypothesis HO: P19=P13
was true., These methods were thus eliminated from subsequent parts

of the study.

For instance, the procedure proposed by Davis and Quade (1968)
uses Kendall's tau as the measure of correlation and a U-statistics
approach to the hypothesis testing problem. However, the initial runs
indicated that the empirical power was dominated by the Choi procedure.
This combined with the additional fact that the U-statistic approach
is more complicated computationally than the procedures using ranks,

led to the procedure being dropped from the study.



THE SIMULATION STUDY

An extensive simulation study was run to compare the test
statistics listed below. For each parameter configuration and
distribution assumption 1000 samples of size 10 and 1000 samples
of size 25 were generated and the appropriate one-tailed test per-
formed at a nominal level of .05.

Using the IMSL subroutine GGNSM, the first samples were
generated with X ,X2 and X, having the trivariate normal distri-

3

bution with variance-covariance matrix

1 ey P9
T = P1p 1 P23
P13 P23 1

Note that the parameter Pog is a nuisance parameter which must be

handled. Under H,, the study used 53 parameter configurations which

0’
adequately cover all the possibilities for p23 and p:L2 = P13 that
give a positive definite covariance matrix. Under the alternative
hypothesis, 52- different configurations, limited to the cases where
both Py and 0,4 are positive, were used. If the signs

of P and pyq are known, as is often the case in practical situa-
tions, an appropriate change of sign on one of the variables can
always be made so that p12 and p13 are positive. Some of the early
runs included configurations where Py OF both parameters were
negative, but all the results were strictly consistent with the

case where both parameters are positive. So those situations were

not used in subsequent runs.



Additional samples were generated under a trivariate log-
normal distribution. Each observation was obtained by generating
a trivariate normal observation (21,22,23) and making the trans-
formation Xi = exp(Zi), i=1,2,3. 1In order to obtain the co-
variance matrix L' for (Xl’XZ’XB)’ the generating trivariate

normal distribution has a covariance matrix with elements

= t -
Py log[oij(e 1) +1] ,

where the pij are the desired elements of I’'. This trivariate A
lognormal distribution not only has the advantage of being easy
to generate, but it also has marginal distributions that are
quite nonnormal.

There are fewer parameter configurations which give a
positive definite covariance matrix for both this lognormal and
the generating trivariate normal distribution, however. In the
present study 30 such configurations which correspond to HO are
reported, and 45 which fall in the region of the alternative
was studied.

Five test statistics were evaluated in the full study
(although, as mentioned previously, some early parts of the study
included others). The five, with the abbreviations used in the
tables of results are:

(W) Williams' test, as applied to the raw data. This is

the benchmark, at least as far as the normal distribution
is concerned, a;though its behavior under nonnormal cir-
cumstances had not been studied.

(C) The test proposed by Choi (1977). This requires

X3y by their respective ranks, R(XZi)

replacing X2i’ 3



and R(XBi)’ defining Zi = R(XZi) - R(XBi),-computing the
Spearman rank order correlation coefficient rS(Xl,Z') and
compering to the usual critical points for the Spearman
coefficient.

(NS) The normal scores procedure proposed by Boyer and
Schucany (1978). Exactly as (C) above except that the
expected normal scores N(XZi) and N(XBi) are used in place
of the ranks.

(WNS) Williams' test applied to the normal scores. That is,
Xli’ XZi’ X3i are replaced by N(Xli),vN(XZi), N(X3i) and then
Williams' test is applied.

(WR) Williams' test applied to the ranks.

RESULTS AND CONCLUSIONS

Tables 1 and 2 present the results of the simulation study
under the trivariate normality assumption and at parameter con-

figurations consistent with H for samples of size 10

o' P127°13
and 25, respectively. The .05 level-used here would imply that

the particular test being considered ought to reject H, approxi-

0
mately 50 times, at any of these null parameter values.
The most readily apparent observations from the tables are
that, as expected Williams' test very consistently rejects HO
about 5% of the time, and that both C and NS tend to be extremely
conservative when the magnitude of P19 and P13 is large (in fact

when P1s .9,neither test rejected any of 1000 samples of size

25 and together they rejected omnly 3 times for samples of size 10).
It is clear, in fact, that these two tests, which are based on

rank correlation and thus might be expected to be distribution



free, are not even parameter free. Note also that the two
procedures which replaced the data by scores (either ranks or normal
scores) and then used Williams' procedure behaved well. WR rejected
29 and 91 times in the two most extreme casés while WNS rejected 32
and 88 times in its most extreme cases. Although neither is as
stable as Williams' test (as expected), likewise neither suffered
any serious difficulties in maintaining something close to the
nominal level for the test.

The power study at the normal distri%ution tends to confirm
the suppositions in the preceding paragraphs. Since P # P13
causes the parameter space to be three-dimensional, the entire
study does not lend itself readily to tables. However, we
illustrate the points with a few sequences of parameters chosen
from the study with P13 and p23 fixed and p12 moving away from P13
a case in which we expect to see increasing power. Three such
examples appear as Table 3. 1In each case we see that C and NS
have considerably less power than the competing procedures. (In
at léast one case that observation must be tempered by noting that
C and NS fell significantly below the nominal level at the null
hypothesis, and thus might be expected to fall short in the power
comparisons at nearby parameter configurations as well.) We also
note again that while WNS and WR do not achieve the same power as
Williams' test, they do not fall disastrously short of the desired
performance.

Tables 4 and 5 illustrate the performance of the same test

statistics at the null hypothesis when the trivariate distribution



has lognormal marginals. Several important observations need to

be made here. First, as before C and NS do not maintain the desired
.05 level. Again the parameter configuration where they had

the most difficulty were those which had the greatest magnitude ’
for P1o and 13> and, as before, they tend to be extremely conserva-
tive at those valués.

Second, as might have been suspected, the behavior of Williams'
test breaks down for this highly skewed distribution. For sample
size 10, the observed significance level varies from .007 to .149
with 20 of the 30 parameter configurations giving values outside
the interval .037 to .063 (which is .050 + 2 standard errors) and
for samples of size 25, the observed significance level varies from
.002 to .214 with 24 of the 30 parameter configurations giving
values outside the ;037, .063 interval. On the other hand, the
tests that replace the data by scores and then apply Williams'
procedure fared much better. WNS was outside the interval .037
to .063 only 3 of 30 times for samples of size 10 and 2 of 30 times
for samples of size 25, while the figures are 6 of 30 atn = 10
and 5 of 30 at n = 25 for the WR procedure.

In Table 6, sample sequences of parameter configurations which

move away from H, are again considered. It should be noted here

0
that the C and NS procedures have lower power than the other proce-
dures in general. It should also be noted that in the last example
the procedures using the score functions surpass Williams' test

in terms of power as the P12 and 13 become more separated, even

though Williams' procedure had a large observed significance level

at HO.
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The results here are typical of those of the whole study in
that, in most cases, the WR and WNS procedures were competitive
with W, never having an inordinately smaller power. In fact,
in some cases where & has more power, it appears attributable

to the fact that the true level of W is not very stable for

this distribution.

RECOMMENDATIONS

In situationsxwhere a practitioner is comfortable with
the assumption of trivariate normality, it is recommeqded that
Williams' test be used. This is consistent with Neill and
Dunn (1975). On the other hand, when normality is not a good
assumption it is recommended that WR or WNS be used, as their
behavior is much more stable than Williams' test, and competitive
in terms of power. Between the fwo tests, the choice might be
difficult. Using the power study, WNS appears to be slightly
better. On the other hand, use of the ranks does not require
special tables and it appears that the computation, particularly
if it is to be done by hand, might be sufficient to recommend the
WR procedure.

In retrospect, one notices that replacing the data by ranks
and then applying the usual normal theory techniques to make the
appropriate inference is an idea that Iman and Conover (see Iman
(1974) or Iman and Conmover (1979)) have espoused in a number of

other statistical settings.
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TABLE 1

Monte Carlo estimates of True Significance Levels

{(Number of times H

Normal Distribution, n=10, Nominal a«=.05

0

rejected in 1000 trials)

P12 = P13
-9 -7 -5 -3 -1 0 .1 .3 .5 .7 .9
59 58 66 45 55 45 45 53 53 37 49
3 21 36 42 39 47 45 39 29 15 1
3 23 41 45 46 62 57 51 32 1% 2
88 61 58 50 53 55 48 53 46 40 75
85 63 45 55 53 47 59 47 59 59 91
42 34 54 38 43 44 36 59 36
4 29 39 39 4 40 38 33 10
7 25 47 48 49 47 44 38 18
55 43 48 47 48 44 49 49 55
50 55 4 51 53 50 45 60 59
45 45 42 45 43 42 43 47 48
7 27 46 48 40 41 35 27 7
8 25 46 53 45 44 37 - 26 9
55 50 42 52 39° 41 41 46 45
72 68 42 50 40 57 52 51 70
45 45 38 39 42 51 42 38 41
3 17 - 31 37 45 45 31 24 7
5 22 33 41 46 46 42 28 8
41 51 42 33 42 47 43 50 57
54 52 50 42 52 57 59 45 37
39 40 49 40 48 46 37
15 31 55 24 40 36 20
17 36 59 31 47 45 17
35 42 44 30 41 43 37
59 45 53 51 54 42 43
33 38 33 33 45
27 33 48 35 35
31 38 47 39 33
32 36 38 37 37
40 49 34 55 44
33 40 36
44 54 42
48 59 46
38 41 34
36 46 34



TABLE 2

Monte Carlo estimates of True Significance Levels

(Number of times H., rejected in 1000 trials)

0
Normal Distribution, n=25, Nominal a = .05
P12 = P13
- =.9 -7 -5 -3 =1 0 1 .3 .5
W 53 54 58 60 50 48 51 48 45 36 29
C 3 21 37 43 55 41 41 35 24 8 0
NS 4 23 37 51 58 44 51 36 27 8 0
WNS 88 57 43 39 53 42 57 47 45 47 53
WR 66 57 47 53 42 49 49 49 48 64 81
W 48 50 56 50 48 49 46 47 37
C 13 26 43 49 43 40 42 22 8
NS 13 32 47 49 52 43 42 20 4
WNS 54 51 46 58 60 46 43 43 45
WR 62 67 46 47 50 67 52 50 43
W 51 40 44 45 45 57 55 57 48
c 4 23 38 43 42 46 39 28 9
NS 4 24 40 53 48 54 48 26 10
WNS 55 39 44 49 48 55 55 48 49
WR 50 64 45 49 55 38 47 38 66
W 48 52 54 67 60. 55 38 44 54
C 1 26 45 49 51 46 38 22 4
NS 1 26 46 52 57 54 40 28 6
WNS 44 53 56 63 59 46 41 54 59
WR 58 45 55 43 45 41 58 51 62
W 39 43 43 44 37 41 47
c 10 29 50 44 33 25 20
NS 12 27 53 54 45 32 22
WNS 37 45 44 44 47 42 46
WR 60 51 42 43 40 46 46
W 49 42 38 35 44
c 40 32 42 45 33
NS 43 40 46 47 42
WNS 48 40 41 45 46
WR 58 33 44 47 47
W 40 39 46
C 39 42 43
NS 45 44 44
WNS 42 47 50
WR 43 29

54



TABLE 3

Monte Carlo estimates of Power of the Tests
(Number of times HO rejected in 1000 trials)

Normal distribution, Nominal a=.05

Pog = .9, P13 = .5, n =10
P12
.5 .6 .8
W 53 182 982
c 29 77 410
NS 32 89 425
WNS 46 131 727
WR 59 127 758
p23=0, p13=.1, n = 25
P12
.1 .2 A .6 .8
W 55 78 255 666 953
c 46 81 196 499 817
NS 54. 84 221 524 822
WNS 46 80 239 623 930
WR 41 90 280 580 924
Ppg==+3s P13 = -3, m = 25
P12
.3 A .6 .8
W 41 97 299 797
c 25 58 165 355
NS 32 70 169 376
WNS 42 90 282 717
WR 46 91 281 689




TABLE 4

Monte Carlo estimates of True Significance Levels
(Number of times H. rejected in 1000 trials)

Lognormal Distribution, n=10, Nominal a = .05
P12 7 F13
-.3 -.1 0 .1 .3 .5 .7 .9
W 20 42 48 63 95 109 131 149
C 6 45 44 33 30 20 7 1
NS 11 49 54 48 33 22 7 3
WNS 56 45 47 44 47 45 53 98
WR 58 47 50 44 64 44 61 112
W 14 41 54 55 101 128 129
C 12 35 40 37 33 13 4
NS 16 47 47 49 37 17 6
WNS 70 47 45 47 41 41 60
WR 68 43 47 45 44 66 64
W 7 32 53 70 96 116 141
C 4 41 42 47 26 15 3
NS 8 55 45 49 21 19 5
WNS 42 61 46 44 39 53 59
WR 42 60 49 52 51 52 67
W 40 47 77 92 143
C 37 38 45 32 17
NS 41 40 48 29 20
WNS 37 37 42 49 48
WR 40 48 41 47 58
W 32 56 70
C 41 47 32
NS - 42 51 38
WNS 44 42 35

WR 44 42 47
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Monte Carlo estimates of True Significance Levels
(Number of times H, rejected in 1000 trials)

TABLE 5

Lognormal Distribution, n =25, Nominal o=.05

WNS

NS
WNS

P12 = P13
-3 -1 0 .1 .3 .5 .7 .9
30 29 54 75 111 133 147 195
11 43 41 38 26 20 10 0
18 45 45 52 28 23 11 0
55 49 55 51 45 46 51 72
56 63 39 56 50 50 61 75
15 35 49 69 113 133 199
10 45 41 46 34 24 5
10 47 47 50 29 27 5
47 51 53 57 57 57 56
57 40 56 64 56 61 64
2 40 51 72 121 160 214
6 54 45 42 31 18 4
8 60 49 50 37 19 5
38 65 50 50 47 51 49
64 55 43 58 38 56 78
35 54 81 134 173
51 38 38 33 8
‘56 41 48 32 7
62 54 56 53 47
46 47 42 47 54
26 48 69
48 41 40
53 43 41
59 45 48
43 53 37



TABLE 6

Monte Carlo estimates of Power of the Tests
(Number of times H, rejected in 1000 trials)

0
Lognormal distribution, Nominal o = .05
p23=.6, p13=.1, n =10
P12
.1 .2 4 .6
W 55 132 348 778
c 37 88 249 607
NS 49 101 266 605
WNS 47 104 314 757
WR 45 109 363 725
pz3=.3, pl3=.3, n =10
P12
3 A 6 8
W 96 153 319 578
C 26 50 113 191
NS 21 63 121 207
WNS 39 80 204 497
WR 51 88 222 485
p23=0, pl3=.l, n = 25
P12
.1 .2 4 .6 .8
W 81 142 355 642 918
C 38 91 274 568 843
NS 48 104 294 592 858
WNS 56 105 366 743 979
WR 42 112 380 716 971
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