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ON ARMA PROBABILITY DENSITY ESTIMATION
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SUMMARY

A new method of probability density estimation is investigated
which exploits the Fourier series representation of a density function.
The new method employs density estimators Ep,q(')’ p=20,1,2,... and
q = 0,1,2,..., which are such that EO,q(.) is a Fourier series (Kronmal-

Tarter type) estimator and fp 0(°) is an autoregressive estimator. Each

’
A

of the estimators fp’q(') (referred to as ARMA estimators) is shown to
depend upon the en—transtrm, thus providing a strong motivation for
the use of estimators with both p > 0 and ¢ > 0. Small and large
sample properties of ARMA density estimators are obtained and a
data-based method of selecting optimal values of p and q is proposed.
The results of a simulation study show that, for the densities con-

sidered, a savings in integrated square error is attained by using

ARMA, rather than Fourier series, density estimation.



. CHAPTER I |

INTRODUCTION

~ The purpose of this work is to investigate
a method of probability density estimation which is based upon what

will be called the ARMA method of approximating a function. The

ARMA method employs representations of the form

q .
L skelkx

k=-q
[l—alelx- cee = O elpxlz

£ ,q(X) N

to approximate the real-valued function £(+*) over the interval
[-7,7]. The acronym ARMA is used because of the fact that, if

fp q(') is nonnegative, its numerator may be expressed as
b

kll—ele1x - aee - eqeiqx|2 for all x e [~r,7] .

Expressed in this way, fp’q(-) is seen to have a form equivalent to
the spectrum of an autoregressive, moving average (ARMA) process.
Because of the wide applicability of the ARMA model in time
series, representations such as'(1,1) have a very natural motivation
in spectral estimation. The motivation, to be developed fully in
succeeding chapters, for their use in probability density estimation
must obviously be somewhat different. TFor the present we simply point
out that the relationship of fp’q(-) to a numerical analysis tool
known as the en—transform implies that ARMA representations are
attractive as an approximation scheme. Their value as an approxi-

mation scheme in turn suggests their possible wvalue in the estimation

setting.



In Chapter TII definitions of the constants Bk(k=0,l,...,q)
and ak(k=l,...,p) will be given which, for a given function f(-),
‘uniquely define an approximator fp q(-) for each pair of values

(p,q). The approximator so defined depends only upon the Fourier

coefficients ¢(0), ¢(1),...,9(p+q), where

™
o(v) = [ ¥ myax, |v| = 0,1,2,...
-

(note that ¢(-~v) = ¢(v)). Thus if £(-) is the probability density

function of a random variable with support [-w,w], estimators

~

fp’q(-) of £(+) can be formed by estimating the Fourier coefficients
of £(-).

In 1light of the many existing techniques of density estima-
tion, one might reasonably question the consideration of the class
of estimators just described. In order to be of more than simply
academic interest, a new technique should either have the potential
for improvement over, or shed some informative light on existing
techniques. Hopefully, it will be shown that the method of density
estimation being proposed satisfies both of these requirements with
respect to

(i) Tourier series density estimators, and

(ii) autoregressive density estimators.

It will be seen shortly that these two classes of estimators
are members of the general class of ARMA density estimators. Before
embarking on an investigation of ARMA estimators, it will thus be
expedient to briefly discuss the origin and properties of Fourier

series and autoregressive density estimators.



1.2 Fourier Series Density Estimation

Cencov (1962) first suggested the use of Fourier series
ideas in the estimation of a probability density function. Let
L2(r) be a Hilbert space whose inner product is defined by

(6,9) = [ ¢V r(x)dx,

00

where r is a weight function. Let f(*) be the density of a random
variable X and assume that f(-) ¢ L2(r). Now, suppose Em is an
arbitrary m-dimensional subspace of Lz(r) with orthonormal basis
'{slm,...,gmm}. The best mean square error approximation of f(x)
in E 1is
m
m

fm(X) = i

¢, & (%),
k=1 km “km

where

= G = [ 5T,

If a random sample Xl,...,Xn is obtained from f(*), then Cencov

suggests estimating f(x) by

-~ m ~
f (X) = I ¢, & (x)s
m k=1 km “km
where
¢km =a iilﬁkm(xi)r(xi) .

Cencov points out that E[ll;m(x)—f(x)llz] can be made arbitrarily
small by choosing a sufficiently good approximating subspace Em
and then taking a large enough number n of observations.
Krommal and Tarter (1968) have investigated a special case
of the above by considering the weight function r(x) = E%E‘ I[a,b](x)

and the orthonormal system



L cos x-a cos mT x4
/2_ 9 ﬂ(b_a) 90y S (b—a) - .

Based on this system an estimator of f(x) (x ¢ [a,b]) is

PN

- 2o I; - X-a
= — - T —
fm(x) 5 + k=lqbkcosk (b—a) s
where
A 2 n kTr(Xi-a)
= —_—— X
cl,k (b-a)n izlcos (b-a) I[a,b]( i)

It can be shown that

~ o 1 1 .
cov(fs6 ) = ;[;_—5 Oyt 9440 - 4’3“’1{] (G 2%

where

2
% = P-a

b .
£f(x) cosTk (-Eg)dx .

This leads to a simple expression for the mean integrated square

error (MISE) of fm(-), namely

-—00

e 2 $o [ 2
E [.f (fm(x) - £(x)) r(x)dx] 7o (7;_: - ¢o)

Making use of these results Kronmal and Tarter prove the following

theorem.

Theorem 1.1 If the Fourier cosine series of the density £(-)

converges uniformly and if m = 0(/5), then

1im E(E (x) - f(x))2 = 0 (uniformly in xe[a,b])
o b

and

b.
1lim E f(f (x) - f(x))zdx =0.
[eo a n



The importance of this theorem is its eétablishment of the rate
at which the truncation point m may increase with the sample size
in order for %m(.) to be a consistent estimator of f(-). 1In
addition to this asymptotic result, Kronmal and Tarter devise a
procedure for choosing an m which, for a given sample size,
minimizes the MISE.

Approaches for estimating f(+) using different orthogonal
systems of functions have also been coﬁsidered. For example,
Schwartz (1967) has investigated the use of Hermite polynomials.
In the present study, however, our principal interest will be in
the trigonometric systems because of their close association with

ARMA approximators and estimators.

1.3 Autoregressive Density Estimation

Carmichael (1976) has adapted the idea of autoregressive
spectral estimation to the estimation of a probability density. 1In
order to briefly outline Carmichael's method, let f(-) be the pdf

of a random variable X with support [-m,m]. Define R(*) by

L
R(v) = [ e " Ff(x)ax , |v] =0,1,2,... .
-T .

Let (alm’a2m""’amm) be defined as the solution (assumed unique)

of the following system of Yule-Walker equations:

rl ‘R(-1) ... R(-m+1)7 i ahm7 " R(1) 7
R(l) 1 eee R(-m+2) LI - R(2) .
L R(m~1) R(m-2) ... 1 i Lo | R(m) |




The m-th order approximator of f(x) is then defined by

Carmichael as

1

‘1—0!. eix_a eZiX_ _
1m 2nm *** “mm

km
.0 = 57 mix 2
e |
where km is chosen so that R(0) = 1.
The term approximator is appropriate since it can be shown

that

T .
f e-lvxfm(x)dx = R(v), Ivl =0,1,...,m .
-7

When observations are available from f(+), an estimator %m(-) can
be similarly obtained by first estimating R(*).

Carmichael provides two motivations for the approach just
» outlined. One motivation involves regarding {R(v):|v| =0,1,...}
as the correlation sequence of a complex-valued, stationary time
series. The spectral density f(+) of this hypothetical time series
is approximated by the mth order autoregressive scheme fm(~).
Another motivation follows from showing the equivalence of fm(-)
to an approximator formed by constructing a set of polynomials;in

ix . . .
e " which are orthogonal with respect to the inner product

s . ”
(g,h) = [ g™ h(e™) f(x)dx.

-T

The weak consistency of fm(-) as an estimator of £(*) has
also been established by Carmichael. This result may be stated

as follows. Let X ,...,Xn be a random sample from f£(+) and

. n R
- 'X.
R(v) ='% Z e i j .
j=1

Then fm(-) is formed by replacing R(+) by R(*) in the system of



equations presented previously. If £(-) satisfies certain

regularity conditions and

m3/2
lim —— = 0 , then
me /o

n->o

Igm(x) - fw(x)[ B 0 uniformly in x, where f_(x)=f(x) a.e.[-m,7].
Parzen (1979) proposes an additional application of auto-
regressive representations in the estimation of density-quantile,
or £Q, functions, where £(*) and Q(*) are respectively, the pro-~
bability density and quantile function of a random variable X and

fQ(u) = £(Q(u)), 0 < u <1.

Although density—quantile estimation will not be investigated in
this work, the ARMA method is easily adapted to this problem. It
is hoped that some of the forthcoming observations pertaining to
density estimation will find applications in the estimation of

fQ and other types of functions, such as hazard functionms.



'CHAPTER TIT

THE DETERMINISTIC SETTING: fp q(-) AS AN APPROXIMATOR OF f(-)

2.1 Definitions and Assumptions

In the current chapter we will consider the problem of
approximating a function using a finite number of its Fourier
coefficients. To facilitate our discussion the following
definitions and assumptions are stated. The notation pre-
sented here will be followed consistently throughout the
remainder of this work.

’ (1) £(°) denotes a real-valued function with domain
of definition [-m,m], which we wish to approximate or estimate.

Unless otherwise stated, it shall be assumed that f£(-) is square

integrable on [-mw,m], i.e.,

T2
f f7°(x)dx < =,
~TF

(ii) The sequence {¢(v): |v| = 0,1,2,...,} of Fourier

coefficients of f(+) is defined as

T .
o(v) = f e_lvxf(x)dx, IVI =0,1,... .
-

Under the integrability condition in (i) [¢(v)l is finite for
all v. Note that if f(+) is a probability density function,
¢(+) is simply its characteristic function evaluated at the

integers.



(i1ii) Unless stated to the contrary, it will be assumed that

f(+) satisfies conditions which ensure that

f(x) = E%— ) ¢(v)eivx, a.e.[-m,7].
v=_o:)

One such set of conditions (see Apostol (1973)) is that £(°) be

continuous and of bounded variation throughout [-w,w].

(iv) £(-) will be said to have an ARMA representation iff

q .
g elV¥
-q v
f(x) = : " s a.e. [-w,7] ,
Il—a e o .ma elpxlz
1
vhere p and q are non-negative integers, BV(|vl = 0,1,...,9) and

ak(k =1,...,p) are complex constants with B-v ='§v , and the

roots of 1 - alx-...-apxp = 0 all lie outside the unit circle.

2.2 Discussion and Definition of £ (-)
2

Before moving to the stochastic setting, the ARMA method
will be motivated by demonstrating its value as a deterministic
approximation scheme. In the current section the ARMA approxi-
mator fp’q(') is defined and shown to be related to the en-trans—
form. 1In Section.2;3:truncated Fourier series, autoregressive,
and ARMA approximators will be compared as to their ability to
approximate a function f(+). Comparisons will be made on the
basis of how well the approximator fits f£(+) visually, and also

by means of the measure

ISE(£%) = [M(£*%(x) - £(x))%dx,
-7

10



where f£*(-) approximates f(-).

Given the Fourier coefficients ¢(0), ¢(1),...,6(m) (note

$(-v) = ¢(v)) of a function f(.) with a series representation as
in the previous section, the most obvious choice for an approxi-

mator of f(x) is

£ (x) =-2i— T e(v)elVE .
v=-m

The error associated with this approximation is

|f(x)-fm(x)| =571r— |z ¢(V)eivxl >

lv] >m

which can be made arbitrarily small by choosing m large enough.
The convergence of fm(-) to £f(+) is uniform if f(+) is continuous
and of bounded variation (see Apostol (1973)). In addition to

the pointwise error of fm(-), we have, by Parseval's theorem,

1° 2
ISEC(E) = I [o(]” .

v=m+1

In certain applications or for certain functions, a suitable
choice for m may be prohibitively large. In other words, fm (*)

0
based upon a reasonable number m, of Fourier coefficients may not

0
provide an adequate approximation to f(¢). Suppose, however, that
¢(m0+l), ¢(m0+2),... are in some sense related to the previous
Fourier coefficients. It may then be possible to exploit this
relationship and construct aﬁ approximator based on ¢(0),¢(1),...,
¢(m0) which has better error properties than does ﬁng-).

A model for the relationship between the Fourier coefficients

of f£(+) which is often at least approximately satisfied is

{¢(v)} & L(p,A) for v>q . ' (2.1)

where {fm} e L(n,A) for m > m, if there exists a smallest integer

n > 0 and a set of ci's such that

11



fm + lem—l + ... + cnf =0, m>m

m-n 0°

In the following theorem we establish the equivalence of
functions whose Fourier coefficients satisfy (2.1) and

functions having ARMA representations.

Theorem 2.1  Suppose the roots of

- - —q %P =
1 U X=eee apx 0

all lie outside the unit circle. Then f£(+) has an ARMA repre-

sentation of the form

q .
r g elVX
v=—q "
f(x) = rp ip% g a.e. [-m,7]
|1—a1e —...-q € |

iff ¢(v) - ul¢(v-l) - e - ap¢(v—p) =0, v>q.

Proof: Suppose first that ¢(v) satisfies the prescribed

difference equation. Now consider the function f* ()
b

satisfying
q .
5 Bvelvx
£% (x) = =—q - : for x ¢ Fw, 7l
P9 1-¢a o - elpxl
. 1 P

where the Bv are chosen so that

[T ¥¥ex (x)dx = ¢* (§) = ¢(§) for |j] = 0,1,...,q.
- P4 P»q

The system of 2q+l1 equations which must be solved to find the
Bv is readily seen to be linear, and it is tacitly assumed that

the system has a solution.

12



Now consider, for v > q,

o* (v) - a

3.q l¢;,q(v—1) - veo = a_¢* (v-p)

P P»q

T . . .
f (e—lvx—ale-l(v-l)x- —a e—l(v—p)x
-

= ce e f* (Xd
YE},q (¥ 9%
= fﬂe_lvx(l—aleix—...—a ePHyex  (x)dx
T P P>q
3 . q _ _
o—ivx dgx ¢ 8 e ix(q V)dx
= f“ =9
-T (145 e—ix _ -3 e—ipx)
1 cee 0
q -
v-q-1 I szq v dz
= -1 v=—q .
1 (14&iz - e - a zp)

Since v > q and the roots of 1 Qalz-...;abzp = 0 are outside the
unit circle, it follows that the above integrand is analytic

on and inside the unit circle. Thus, by the Cauchy-Goursat
theorem the integral is zero. It follows that ¢;’q(v) satisfies
the same difference equation as ¢(v) for v > q. Since ¢(v) =
¢;,q(v) for v = 0,1,2,...,9 we must then have ¢(v) = ¢;’q(v) for
Iv[ = 0,1,2,... . By the uniqueness of the Fourier coefficients
of square integrable functions (and it is easily shown that a
function having an ARMA repreéentation is square integrable), it

follows that

f(x) = f* (%) a.e. [-m,m] .
Psqd

H]

13
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One part of the theorem is thus proven.‘ By mimicking a portion

of the above argument it is easily shown that
¢(V)-a1¢(v-1) T eee T ap¢(v_P) = O b v > q ’

whenever f(+) has the stated ARMA representationm.
Implicit in Theorem 2.1 is a method for forming an approxi-

mator of f(+) in the situation where

$(v) - a1¢<€r-1>—...-ap¢<v—p> =0, v>q.

Given ¢(0), ¢(1), ¢(-1),...,6(-p-q), ¢(p+q) an approximator
f; q(') can be constructed by first solving the system of
b

equations
a1¢(q) + a2¢(q—l)+...+ap¢(q—p+l) = ¢(q+l)

a1¢(q+1)+a2¢(q) +...+ap¢(q—p+2) = ¢(q+2) (2.2)

a1¢(q+p-l)+a2¢(q+p—2)+-.-+up¢(q) = ¢(q+p)

for al,...,ap. The coefficients 80,8_1,81,...,B_q,6q can then be

found by forcing ¢; q(v)v= $(v), Ivl =0,1,...,q, where
’

T -ivx
* (v) = e f*¥ (x)dx and
d)P’q( ) I,n. Psq )
q .
ivx

V;Zq Bve
f%* (%) = — -
P-q |1 -« e, . .- elpx|2

1

Under the assumption that the roots of 1 —alx—...—apxp =0

lie outside the unit circle, the approximator f* (+) satisfies
P,qd



¢S,q(") = ¢(v), |v|] =0,1,...,p+q . (2.3)

This property follows from the fact that by (2.2) and Theorem 2.1,

$(v) and ¢; q(v) both satisfy the difference equation
]
y(v) - aly(v~l)-...-apy(v—p) =0

for v = q+l,...,q+p subject to the initial conditions y(v) = ¢(v),

!v| =0,1,...,q9.

Property (2.3)justifies the use of the term approximator

for f; q(-) even when ¢(+) is not well modeled as the solution to

b

a difference equation. The following error properties of f; q(-)
b

are a simple consequence of (2.3).

) _ 1 _ ivx
129 - £, @1 = 35l 200 - o o)
(2.4)

1 5 2
z I¢<v>-¢§,qcv>| .

ISE(f* ) =
P>q v=p+q+1

Although the method discussed above for constructing f* (-)

H]

is informative, it can be quite cumbersome analytically. The approxi-

mator fp q(-) to be defined below will be shown to be identical to
b

1X—--.-C‘~PX =

lie outside the unit circle. However, fp q(') has the advantage of
b

f; q(') under the assumption that the roots of 1 - o
3

being much simpler to construct than f; q('). In addition, the
’

dependence of fp q(-) upon a numerical analysis tool known as the
b}

en-transform provides important insight into why the ARMA method
is of value as an approximation scheme.

Before defining fP q(-) we give the following definition of

H

15



the en-transform.

Definition 2.1 Given the sequence {ak’ak+1""’} of complex

numbers and the partial sums Aj =3 a_, we define (for m>nt+k-1)
v=k

Am—n A'm.-n+1 ot Am

T | am—n+2 tte 2l

a a e a
en(Am) =

1 1 .o 1

&p-ntl  2me-n+2 Tt &l

a a .1 oo a

whenever this quantity is defined. If both numerator and

denominator are zero, then define en(Am) = e.

n_ICA,m). If only

the denominator is zero, then en(Am) = ®,

The important result associated with the en—transform
is that in a wide class of problems en(Am) is a better apprbxi—
mation to A_ than is A e With Definition 2.1 we are now in

a position to define the approximator f ().
b

Definition 2.2 Let {¢(k), ¢(k+l),...} be a sequence of Fourier

coefficients of £(+). Then the approximator fp q(-) of f£(*) is

b

16



defined as

£ 0 = %[¢(0)+2Rea1{ep(Fq(x))—Fo(x)}], x € [-m,7],

where
p\ad-p+1, ¢g+1-p<0 and
k =
1, q+1-p>0
k|
I oswet™ , §>k
v=k
F.(x) =
j )
0 , j <k .
Since

F-[6(0)+2Real ( £ oM™ ,
m

f(x) =-%F T ¢(v)eivx

. -] .
ep(Fq(x)) - Fo(x) is seen to approximate I ¢(v)elvx. The
v=1
extent to which ep(Fq(x)) - Fo(x) is a better approximator of

this quantity than pchb'(v)eivx depends upon the particular

v=1
sequence {¢(v)}. Conditions under which en(Am) converges more
® n+m
rapidly (as m -+ @) to I a, than does I a_have been estab-
v=k v=k

lished by different authors, including Shanks (1955), McWilliams

(1969), and Gray, Houston, and Morgan (1978). Except for Theorem
2.2, however, the discussion of these conditions will be postponed
until Chapter IV. For the present, we simply note that they pro-

vide an important motivation for using the en-transform in situa-

tions where {am} is not the solution of a difference equation.
The strongest result concerning the en-transform is the

following.

17



Theorem 2.2 Suppose the complex sequence'{ém} is an element of
L(n,A) for m > mo and that the roots of the associated character-

istic equation are outside the unit circle. Then

e (A) = I a for allm>nm
n m v -
v=k

0 -
Proof: See Gray, Houston, and Morgan (1978) for the case of
’{am} real. The extension of the proof to include'{am} complex
is trivial.

By applying the results of Theorems 2.1 and2.2, the equi-
valence of f;,q(-) and fp,q(-) is easily shown. Morton (1981)

has also proven this result in the context of power spectral

density estimation.

2-3 . * . .o 1
Theorem Let fp,q( ), fp,q( ), and 505 ,ap be as defined

previously, and suppose that the roots of 1—alx—...-apxp = 0 are

outside the unit circle. Then we have

f;,q(.) = fp,q(') )

'

Proof: Let k be as in Definition 2.2 and consider
[+

I ¢* (v)eivx, where ¢* (v)
v=k »q »q

is the vth Fourier coefficient of f* (+). Since {¢; q(V)}
. ’

b4

satisfies a pth order difference equation for v > q, then so does

{¢; q(v)elvx}. Therefore, by Theorem 2.2, we have
e, (F¥x)) = I ¢% (e .

*
v=k P°94

18



This implies that

1
E;[¢;’q(0) + 2Realf{ ep(Fg(x)) - FO*(x)}]

@

1 ivx
= —[o% (0 T 0% = f*% .
o [¢P,q( ) + 2Rea1(v=l¢p’q(v)e )] fp,q(x)

However, since ¢; q(v) = ¢(v) for |v| = 0,1,...,p+g it follows

that

1
E?[¢;,q(0) + 2Realf ep(Fg(x)) - FS(X)}]

1
= SrleC0) + 2Real{ ep(Fq(X))~F0(x) 1= fp q(x).

, £ = f* .
Thus P,q(x) : q(X)

E

Since f; q(-) and £ q(-) are equivalent under the condition
’ b

(which shall henceforth be referred to as condition S) that the

roots of 1 - alx - eee - apxp = 0 lie outside the unit cipcle, it

follows that fp q(') satisfies the error properties of (2.4) under

s

condition S. However, the following two important facts are noted
at this time,
(a) If condition S is not satisfied, then f; q(') and
’

fP q(°) are not in general equivalent.
’

(b) If condition S is not satisfied, then neither f* (-)

nor fP q(-) possess the property that their first

’

P + ¢ + 1 Fourier coefficients are equal to ¢(0),

$(1), ..., o(p+q).

Because of fact (b), it is not clear in what sensevfp q(-) is
’
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approximating £(*) when condition S is not satisfied. When using

fp q(-) for approximation purposes it is thus important to always
?

verify whether or not this condition is met.

In concluding this section two special cases of fp q(-)

are noted. When p = 0

q .
£9,q( = E]r'——[¢(0) + 2Rea1(vzl¢(v)e1vx)] ,

a Fourier series approximator, and when q = 0

k
f (x) = _-E 1

p,0 27 ll -dleix-...-a eipxIZ

an autoregressive approximator. The first of these two relationéhips
follows trivially from the definition of en(Am). The second follows
from the fact, proven by Pagano (1973), that condition S is always
satisfied whenever q = 0 (assuming {¢(v)} is positive definite),

and thus, by Theorem 2,3, fp,o(') E'fl’g’o(-). Autoregressive approxi-
mators have an advantage over ARMA approximators in that they always
satisfy condition S, which of course implies that ¢p’0(v) = ¢(w) for
|v| = 0,1,...,p. However, as will be illustrated in the next and
succeeding sections, there is much to be gained in considering
fp,q(.) for q > 0.

2.3 Examples Comparing Fourier Series, Autoregressive, and
ARMA Approximators

By way of illustration we will now compare the Fourier
series, autoregressive, and ARMA (p > 0 and q > 0) methods of
approximating a function. Since these methods are of interest

to us in the context of density estimation, the examples to follow



involve, for the most part, functions which are commonly used
as models for probability densities. Although they are cer-
tainly not exhaustive, the examples given serve to illustrate
the value of the ARMA method as an approximation scheme.
Numerous additional examples already exist which show drama-
tically how the en-transform accelerates the rate of conver-
génce of slowly convergent sequences, and in some cases induces
convergence of divergent sequences (see Gray, Houston, and
Morgan (1978)). Since the sequences {Fm(x)} associated with
the functions of this section are not what would usually be
considered slowly éonvergent, the examples which follow are
not as dramatic as those just mentioned, but nonetheless
interesting.

In our first example, we investigate how well the Fourier
series and autoregressive methods fare in approximating a density
for which there exists an error-free ARMA approximator. Con-

sider the function

f D) = 25 + 26,60 (ke [om,0])

a mixture of the densities

1 ('4742)Il“5°eixlzl1—(.4051(“[85eifL3}
o |1—(.8Oei(“/4))eixl2

fl(X) =

anq

1 (.2775)
£,(x) = 5= - .
2 2m { 11+ (.85i)e1x|2,}

A result which will be proven in Chapter III is fhat thé:mixfure
of densities having ARMA representations itself has an ARMA

representation. With this result it is easily verified that

21



f(l)(') has an ARMA (2,3) representation. By the earlier results

(1)
2,3

identical to f(l)(‘), or, in other words, f(l)(-) is completely

of this chapter, it then follows that the approximator f (+) is
determined by its first five Fourier coefficients. Of interest,
though, is a determination of how well the Fourier series and
autoregressive approximation schemes perform in this situation.
In Figures 2.1 and 2.2, respectively, the Fourier series

and autoregressive approximators based on ¢(1)(1),...,¢(1)(5)

W .y, (1)

0,10(')

and f(l)(-), and in Table 2.1 a comparison of ISE is given for

have been plotted with £ Figure 2.3 shows a plot of £
the two methods being considered. The ISE for each approximator
has been approximated numerically by Simpson's rule using 201
function evaluations on [-m,7]. (The ISE in all the examples to
follow has been calculated in the same way.) The autoregressive
method is seen to perform considerably better in this instance

than does the Fourier series method. In a visual sense félé('),
: ’

fglé(-),...,fgé)o(-) are virtually indistinguisable from f(l)(.)
’ ’

(and hence a plot of fiézo(-) has been omitted). The Fourier
series approximators, however, have difficulty in resolving the
peaks of f(l)(-) without introducing spurious variation. This
shortcoming is even more important in the stochastic setting
where it is desirable to limit the cause of spurious variation
in a fitted curve to sampling variability. In Chapter VI a
data set is discussed which verifies the practical importance
of densities such as f(l)(°) which have rather sharp peaks.

In our last three examples we compare the three different

approximation schemes on functions which do not have ARMA repre-
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ISE COMPARISON FOR FOURIER SERIES AND AUTOREGRESSIVE

10
11
12
13
14

15

TABLE 2.1

APPROXIMATORS OF THE FUNCTION f(l)(-)

ISE Cf(1>)

0,k

.04216
.03332
.02574
.01495
.01307
.00865
.00577
.00487
.00299
.00230

.00174

1sE (£¢D)

k,0
.00238
.00055-
.00025
.00008
.00003
.00001
.00000
.00000
.00000
.00000

.00000

26
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sentations. In this way the versatility of the ARMA method is
investigated by examining its performance in situations which

are other than ideal for it. The functions considered are

(), _ 1224 xtr 15 xtbr, 2
£ - BBELD @t w,
£ = 253“‘1"]1[_TT R

-

and

£ () = 6 P expl-20xtm) 121}

The function f(z)(-) is simply a Beta (16,3) density which has
been shifted and rescaled so that its support is the interval
[-rsm]. The second function, f(s)(.), is a truncated double
exponential (or Laplace) density, and f(4)(.) is a Weibull
density (with scale parameter 2 and shape parameter 6) which
has been truncated at m and then shifted and rescaled to have
support [-w,r]. Since f(3)(-) and f(4)(-) exclude, respectively,
only .00035% and less than 10—972 of the area of the original-
densities, the comparisons to follow may be regarded as compari-
sons of the ARMA, Fourier series, and autoregressive density
estimation methods in the absence of stochastic errors.

Pictured in Figures 2.4 - 2.12 are plots of various
approximators along with the functions f(i)(-), i=2,3,4.
Comparisons of ISE are given in Tables 2.2 - 2.4, Both visually
and in terms of ISE, the ARMA approximators display a decided
advantage over the other two approximation schemes. A hallmark
of the ARMA method which surfaces in these three examples is

the ability of ARMA approximators to correctly fit both the
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TABLE 2.3
ISE COMPARISON FOR APPROXIMATORS OF THE FUNCTION f
(3) (3) (3)
E ISE(£5°5) ISE(fy"y ) ISE(f Q)
1 .55890 .84191 .84191
2 .35518 .02652 .31226
3 .22480 .00403 .10221
4 .14523 .00602 .08036
5 .09675 .00613 .01784
6 .06662 .00517 .02481
7 .04733 .00410 .00407
8 .03460 .00319 .00969
9 .02595 .00249 .00151
10 .01989 .00196 .00472
11 .01555 .00157 .00095
12 .01237 .00127 .00274
13 .00999 .00105 .00077
14 .00818 .00088 .00180

15 .00678 .00075 .00067
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TABLE 2.4

ISE COMPARTSONS FOR APPROXIMATORS OF THE FUNCTION £ (+)

SECESY)  ISECE( ) TISECES ) TSE(E{ )
44243 1.84975 1.84975
.23112 .20863 1.22354 1.22354
.10407 .03968 11457 92122
04104 00804 01615 87385
01463 .00155 .00228 68997
.00488 .00028 .00030 66224
.00155 .00005 .00003 28571
.00047 .00001 .00000 1.27134
.00013 .00000 .00000 54683
.00004 .00000 .00000 .90297
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tails anﬁ the peak of a function. In-Figures 2.4, 2.7, and 2.10
the Fourier series approximators are seen to correctly (or nearly
correctly) fit the peak of each fuﬁction only at the expense of
incorrectly fitting the tails. By contrast, the ARMA approxi-
mators of Figures 2;5; 2.8 and 2.11 (based in each case on the
same number of Fourier coefficients as the corresponding Foufier
series approximator) smooth out variation in the tails while
still correctly fitting the peaks.

The autoregressive method performs quite well on the
function f(3)(°) but does very poorly on f(z)(-) and f(4)(-).
This phenomenon can be explained quite simply by examining the

Fourier series representation of the approximator f (+). By

k,0
property (2.4) we have

1 :
lt@-£, (| = 5 | 2 GW=0, ()|

Iv[>k
and
o«

1
w

ISE(f, ) = z |
k,0 v=k+1

$(v) - <1>k,0(v)l2 :

The approximator fk 0(-) obviously, then, performs poorly if it
does a poor job of extrapolating the Fourier coefficients ¢(k+1),
¢(k+2),... . This is clearly what has occurred in the examples

involving f(z)(~) and f(4)(°).

Qur examples seem to indicate
that, in general, fixing the autoregressive order and allowing

the moving average order to .increase is the best scheme for

reducing the error inherent in Fourier series approximators.



. 42

Having examined the advantages of using the ARMA (as
opposed to Fourier series or autoregressive) approximation
method fhe remainder of this work is devoted to an investi-
gation of the ARMA method in the stochastic setting of prob-

]

ability density estimation.
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CHAPTER III

SMALL SAMPLE PROPERTIES OF ARMA DENSITY ESTIMATORS

3.1 Introduction

We now formally begin our study of probability density
estimation via ARMA representations. In the current chapter
we introduce the estimation problem and define an ARMA estimator

A

(*). Alternative ways of expressing fp q(') are derived
b

f
pP.q

which serve to motivate ARMA estimators and show explicitly

their relationship to Fourier series estimators. The main result
of this chapter, however, will be establishing the relationship
between %P’q(') and the generalized jackknife statistic. Tt will
be shown that ARMA estiﬁators employ an adaptive, higher order
generalized jackknife scheme.

Chapter TIIT:is concluded with a result concerning"the ﬁixture
of densities having ARMA representations. The mixture of auto-
regressive densities is seen, in general, to be an ARMA density.
This result conveys the necessity of ARMA representations to a
theory based on the representation of densities by autoregressive

schemes.

3.2 Definition of the Estimation Problem and £ (=)

]

Suppose Y is a random variable with continuous probability

density function g(*) and that a random sample Y Y is obtained

120>

from g(+). In the remainder of this work we shall be concerned with



the problem of estimating the function g(-).

All theoretical results will be based upon the assumption
that Y haé the finite support [a,b]. To be comsistent with pre-
vious notation, we shall in this situation consider estimating the
density f(+) of the random variable

i3
(b-a)

X = [2Y ~(b+a)]

which has support [-m,7m]. As before it is also assumed that £(*)

has the Fourier series representation

o

£(x) = -271; T oe(w)er® ., a.e. [-m,7] .
v=—m

Tapia and Thompson (1978) note that the finite support
assumption is only a small liability in practice since, in the
absence of any prior information about g(+), it would be unrea-
sonable to estimate the density outside the range of the data.
If the support of Y is indeed infinite, or unknown, then a and
b may be replaced, for a given data set, by y(o) and y(n+l)’
where

i " L] o .

(i) Y(O) and y(n+1) are "natural’ minimum and maximum

values for the random variable Y, or

(i1) Yoy = V() and Y(at1) = Y(a) (y(i) denotes the

ith order statistic of the random sample yl,...,yn).

The density g(+) is then estimated over the interval [y(O)’y(n+l)]'

by first estimating an associated f(+) over the interval [-m,w]

using the transformed sample

- w _ .
T BTy T Tt V@)l G heeen)

44



Under the finite support assumption f(*) is characterized

by the Fourier coefficients

T .
o(v) = f e—lvxdF(x), v=1,2,...,
-7

where F(+) is the cumulative distribution function (ecdf) of X.

Given a random sample X1""’Xn from £(*) we shall estimate ¢(v)

by forming an appropriate functional of the empirical ecdf Fn(-),

i.e.

- L
$(v) = [ TR _(x)

-

-ivX

N ~g
o
e
-
<
]
-
-
N
-
.

The empirical characteristic function ¢(v) is obviously unbiased
for ¢(v) and also possesses the following easily established

properties (see Tarter and Krommal (1970)):

var(b(v)) = =@ - [o(w)|?

cov(8(v))5 8(v,)) = E((v)8(v)) ~ (v )6(7,)

ISR ICATICA) I LA

For the situation where the support of the original random

variable Y is infinite or unknown we have

-~ n - )
¢(V) = _3‘; ng e'lvxj
= 1 1;:1 expi T -ivﬂ'-Y 3 [2Y,—(Y( +l)+Y(O))]}' .
T =1 (n+1) 77 (0) 3o

(3.1)
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In this case ¢(v) is unbiased for the parameter

px(v) = E(e Ty
LA
= f e "VEE(x) dx ,
-7 .

where £(+) is the density of the random variable

m

X =
T a1y Y (0)?

[2Y1 - (Y(n+1)+ Y(O))]

The density being estimated on [-m,7] by the methods to be dis-

cussed below is thus

<«

£(x) = % T ox(v)elVE

'V=—m

(where it is assumed that this Fourier series converges). We

note that if Y(O) and Y(n+1)

(3.1) hold if ¢(v) is replaced by ¢*(v).

are nonstochastic the properties in

We are now ready to define the ARMA estimator fp q(') of
b
f(*), where it is understood that f(+) arises in one of the two

ways described above.

Definition 3.1 TLet {¢(k), ¢(k+l),...} be a sequence of estimated

Fourier coefficients. Then the ARMA estimator fp q(-) of £(°) is

defined by
fp,q(x) = E%—[l + ZReal{ep(Fq(x)) - Fo(x)}], x € [-m,7]
where

{q +1-p,q+1-p<0
k =

1, q+1-p>0



and

’E'j(X) = '

It is seen that fp q(-) is simply the stochastic analog of the

b

approximator fp q(-). Just as in the deterministic setting we
bl

have the two special cases

- q A .
fO (x) = El[l + 2Real( T ¢(v)elvx)]
, T
v=1

and ~

“ k

NG T S ,

p,0 o |1-m 1X_ - o elPX 2

1 cee 0

a Fourier series and autoregressive estimator respectively.

3.3 The Generalized Jackknife Property of fp q(-)

]

Schucany, Gray and Owen (1971) introduced a generalized
notion of the jackknife statistic which greatly enhances the
effectiveness of the jackknife as a bias reduction tool. Their
work exploits the specific form of the bias expansion of an estima-
tor and gives the proper notion for reapplication of the jackknife.

Following Gray and Schucany (1972) the generalized jackknife

may be defined as follows.

. . . .2 " N . ~ .
Definition 3 Let 91,62,. .,6k+1 be k + 1 estimators for 6

based on the random sample X ""’Xn' Furtheriglet—aij, i=1

1
DI X3

and j = 1,...,ktl, be real numbers satisfying



1 1 ... 1

11 %12 °° %1,k
. . . #0 . 3.2)

1 %2 vt kil
Then the generalized jackknife G(el,ez,...,ek+l) is defined by

A

8 8, <o 9k+1

12°°° 21,k+1

- A 81 %2ttt %, k+l|

G(Bl,ez,...,8k+l) =

1 1 ...1

12°°° 21,k+1

81 %2t % ,kH1

A simple form for the bias of the generalized jackknife is obtained

in the following theorem.

Theorem 3,1 If

E(ej) -0 = .E hij(n)bi(e), j=1,2,...,ktl

and (5.2) is satisfied with a.. = h,.(n), then
1] 1]

E[G(Sl,ez,...,9k+l)] =6 + BG(n,e),



where
Bl BZ o Bk+l
hll(n) hlz(n) .e. hl,k+1(n)
by o) e By g, ()
BG(n,e) =
1 1 . 1
hll(n) hlz(n) .- hl,k+l(n)
@ R,@ e hy ;0
and
B,= I  h,.(n)b,(8), j=1,2,...,k+1.
gm0

Proof: See Gray and Schucany (1972).

A A A

An immediate corollary to Theorem 3.,1is that G(Gl,ez,.. 6, .Y

2 7k+1

is unbiased for 6 if
Ca k ~.
:E(Qj) = 8 +izlhij(n)bi(e)’ j= 1,2,...,k+1,

In order to see the sense in which'f? q(-) is related to

the generalized jackknife recall that

. 1 - -
fp,q(x) - 5 [1+ 2Realfep(Fq(x)) - Fo(x)}]

where

49
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Fq_p(X) Fq_p_‘_l(x) . Fq(X)
6(amprD et TP gy LaPDX g gy tlath)x
! - ; i .
b(q)e ax ¢(q+1)e1(q+l)x . ¢(q+p)el(q+p)x
e (F (x)) =
P q 1 1 1
d(a-pr1y et TPFDE 4o iyt (PTG gyt (@D
d(@e' ™ p(er)et(TDE G (qapyet(aHPIX

Now, if G(F X F
, (Fo_ (s F_u

(x),...,Fq(x)) is the statistic obtained by

replacing ¢(4) in the above determinants by fixed, known quantities,

then G is a generalized jackknife statistic. ~“More importantly, we

note that ep(Fq(x)) and each of Fj(x), j = q-p,...,qs are estimators

of

z ¢(v)eivx
v=k

(where it is assumed that the support of Y is finite and known),

and that Fj(x) has the bias expansion

E[§j<x>] - tvx

Fowel™ = o F (el = o1 g vyl HIE,
v=k v=j+1 v=1

In the notation of Theorem 3,1, and allowing hmj(n) to depend on

unknown parameters, we then have

4>(m+j+q—p—l)ei(m+j+q_p_1)X = hm (n),

3

i=l,.e.s p+1, m=1,2,... and bm(e) = -1,
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- % ¢(v)eivx - ¢ (v)éivx cee =% ¢(v)eivx

v=q-p+1 =q~p+2 v=q+1
¢(q_p+l)ei(q-p+1)x ¢(q_p+2)ei(q—p+2)x o ¢(q+l)ei(q+l)x
¢(q)eiqx ¢(q+l)ei(q+1)x .. ¢(q+p)ei(q+p)x
1 1 ees 1
$(aptD) e TPHDE o pyoy lampDx gyt (et DX
8(q)et T <1>(q+1)ei(q"'1)X cee ¢(q+p)ei(q+p)x

Therefore ep(Fq(x)) may be regarded as estimating a random variable

G* whose bias has the same form as that of a generalized jackknife.

As has been pointed out previously, the ARMA method is

especially effective in approximating functions whose Fourier

coefficients are well approximated by the solution of a linear,

homogeneous, difference equation with constant coefficients. Of

interest, then, is the bias of ep(Fq(x)) under the assumption that

the density f(+) has an ARMA(p,q) representation. Under this assump-

tion we have, by Theorem2,2°,

® ivx _ ‘
vikCP(V)e = ep(Fq(X)) .

Thus, we have immediately that

Bias[ep(%q<x>)1 - E[ep(§q<x>) - e (B GN]
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It is still possible, however, to gain some additional insight
into ep(Fq(x)) by showing precisely how it is related to the
jackknife under the ARMA assumption. To illustrate this rela-

tionship, we note that, again by Theorem 2.2,

-~ ® ivx jtp ivx
Bias[F.(x)] = - ¢(W)e =-e (Z ¢(V)e ),
J v=3+1 v=j+1

j = q-ps+++5q. An alternative form for expressing the en-trans-

form is
A + +...+ A
cm—n m-n cm—n+1Am—n+l cm m
e (A)= ’
n o c + c + ... +¢
m-n m-n+1 m

which is obtained by expanding the determinants in the definition
of en(Am) by cofactors of the first row. Using this form of e
we have (to be proven in Section 3.4)

j+p .
e (I (D)

P v=j+1
Jtp . . j4p-1 , o o
) ¢(V)elvx—alelxqz s(yelVE- . —a _1e1(p l)x¢(j+l)el(3+1)x
v=ij+1 v=3+1 P
l1~-a eix - -a eiPx
l LK N ] p

where the aj are as in Theorem 2.]1. Fj(x) obviously, then, has a

finite bias expansion, and using the notation of Theorem 3,1 we

take .
o e1(p-m)x
_p-m
1-o.el¥_ . ._o olPX , m=1,...,p-1
1 12
bm(e) = -1 -
] 'Y =
1-a elx-...-a eipx
1 12
q-p+j +m-1 ivx
and hmj(n) = I d(v)e , m=l,...,pand j =1,...,ptl.

v=g-ptj



By Theorem 3.1 it follows that

where

E[G**(Fq_p(X),---,Fq(X))] =

I ¢(v)eivx

IAz,o(x)l

v=k

*% (F F =

G (Fq_P(X),-~~,Fq(X))
Fq_p(x) Fq-p+1(x) . Fq(x)
$(qmptl) el (TPHIE o gy L (am x|y iyt (aD)x
q-p+2 q-p+3 . q+2 )

T oe(v)e z ¢(V)elVX b ¢(v)e1vx
v=gq~-p+1 v=q-p+2 v=q+1

q ; q+l ; q+p .

T ¢(v)elvx T ¢(v)elvx eee 4>(v)e1VX
v=q-p+1 v=q-p+2 v=qt+l

1 1 e 1
3(q-prD) el (TP g piny L@PiDx gy tlat)=
q-p+2 . q-p+3 . q+2 ..

I g Ioop(v)e Io(we
v=q-p+1 v=q-p+2 v=q+1

q . . q+i q+é .

I op(we T I ¢(v)el’® I ogwe
v=q-p+l v=q-p+2 v=g+1
lAl,o(X)‘
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Let A, (j+1)(x) be the matrix obtained by subtracting the (p-j)th

row of Ai j(x) from the (p+1-j)th row of Ai

j(x), i=1,2 and

j = 0,190--,p-2. Then

121, (p-1) @ |

= GR(F. (%),...,F (%)) ;
q-pP q
|22, -1y @]

but, by a basic property of determinants, we also have
|21, (p-1) ®| |4g,0@|

|22, (p-1) | 122,00 |

and therefore

G*(Fq_p(x),...,Fq(x)) = G**(Fq_p(x),...,Fq(x)).

As noted previously, ep(%q(x)) estimates the random variable G¥*,
Therefore, under the assumption that f£(¢) has an ARMA (p,q) repre-
sentation, ep(%q(x)) is seen to estimate a random variable G**
which is constructed by the generalized jackknife scheme in sugh

a way that

E[G**] = T ¢(v)e VE |
v=k

Although it is not possible to obtain a simple expression
for the bias of ep(%q(x))’ the following observations are possible.
Suppose f(*) has an ARMA (p,q) representation. Then the bias of
ep(iq(x)) is a result of the error inherent in the;estimation of
o(v), lv! =1,2,...,ptq. This source of bias may essentially be
removed by taking a large enough sample size n. By contrast, the

®

bias of F,(x), a logical competitor of e (F (x)), is - L ¢(v)e1vx
J P q v=j+1
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regardless of the sample size. These observations provide a motiva-
tion for considering ARMA estimators as a possible alternative
to Fourier series estimators.

To this point we have considered only the bias of ep(ﬁq(x)).
In concluding this section we note that the bias of %p,q(x) depends

only upon Bias[ep(Fq(x))]. We have

Bias[fp’q(x)] = E[fp,q(x)] - £(x)

= -]i'-_’?[l+2Rea1{E(ep(‘r:q x))) - E(i‘o(x)) 1]

—%;[l+2Rea1(v§k¢(v)eivx - Fo(x))]

- % Real {E(epdq(x))) - Fy(0)}

l-Real ' ¢(v)ei - F.(x)}
T 0
v=k

1 : ~ _® ivx
= Real {E(ep(Fq(x))) vikzb(v)e }

I
[

Real{Bias[ep(Fq(X))]} .

A

3.4 Alternative Ways of Expressing fp q(-)

2

A

In this section some different ways of expressing fp,q(-)
are derived which will be useful in later chapters and also show
explicitly how ARMA estimators are related to Fourier series
estimators. The basic result involves using the alternative form

of expressing en(Am) referred to in the previous section. This

result is stated in the following theorem.



Theorem 3.2

where (al,a

Proof:

ep(Fq(x)) =

A A

&(q)
5(q+1)

@(q+p—1)

ep(Fq(X)) =

&(q—l)

$(2)

$(q+P-2)

c

-

e %(q-p+1)
. $(q-p+2)

e 8@

.

$(q+1)

5(q+2)

.;(Q+P)J

F (x) - a,e F X) = ci0 = O € F X
g = e E L TE @)
l1-2a elx - hee —= elpx
1 2

2,...,ap) is the solution of the system of equations

. (3.4)

aep®E_ O Fe LGIF L @+ e GOF_(x)

q

c _p(x) +c

q-p+1

(x) +

eeo + cq(X)

where the cq_j(x) are cofactors of the first row in either the

numerator or denominator determinant of ep(Fq(x)). By performing

approriate row and column operations within these cofactors it

is easily verified that

ep(Fq(X)) =

where

$(a)
é(q+1)

$(q+p-1)

aOFq(x) - aleleq_l(x)— ..—apeleFq_p(x) (3.5)
ix
ao - le - e a
$(q=1) ... 0(q=3+2)  4(q+l) $(q=) ... $(q-pHl)
$0)  ee. $(q=5+3)  $(q+2) $(q-§+1) ... ¢(q-p+2)

-

$(q+p=2)

. 6(atp-3+1) $(q+p) ¢(qtp=i-1)... $(q)
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j=1,2,...,p and

$(q) $(q-1) ... 5(q—p+l)
ag = | = R -
¢(q+1) ¢(q) eer ¢(q-pt2)
$(atp-1)  $(qtp-2) ... ¢(Q)
a; a, a
It follows that (-——,-——,...,-—R ) is the Cramer's rule solution
3 3o 1)

to the system in (3.4). By dividing numerator and denominator of
(3.5) by a, the result follows.

By the previous theorem fp q(x) may be expressed as
b

N F (x)-0,e7F . (®)-...—a e " F _ (x)
£ (%) = 2= [1+2Rea1( 4+ —L+ 91 9P _F (x)].
P»>q 27 T - o olPX 0

1 cen 0

The results of Chapter I7,show that, if o ..,ap satisfy

A

condition S, fp q(-) satisfies

’

by ) =4, |v] = 0,1,...,p+q

where

A A

_ T —ivx
¢p,q(v) --£ e fp’q(x) dx.

Using this fact and the result of Theorem 3.2, it is informative

to re-express f (x) as
P P>d

P ) = L [leorealle ((0)-F (o) T a()elE D 8 (v)el VR ]
X) = — Realie xX))- x)+ v)e - v)e
P»>q 2m P q 0" =1 v=1
P+q4\ -~ -~
- % T o(v)elVE + %Real(ep(Fq(x)) SO

v=-p-q
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A

= f (x)
0,p+q
ptd - . N pPHq. . ~ s_.Ptqa. .
T ¢(v)elvx—a eix ) ¢(v)elvx—...-a e PX 3 ¢(v)e1VX
1 v=q+1 1 v=q P v=q-p+1
- =Real = —
T ix ipx
l-oqa,e - - qa e
1 P
- f
0,p+q )
PN . ~ p+q . . ~ 2_.Ptq. .
1 alelx¢(p+q)el(p+q)x+a2eZix T ¢(v)e1vx+...+a e PX 3 ¢(v)e1vx
+ ;Real v=p+q-1 P =q+1
1 - & eix - - & eipX
1 12
= % + ; . . (3'6)
0’P+q(X) gpsq(X)

Expression (3.6) shows fp

estimator f (*) and a function gp q(-) which, under condition
9

0,p+q

S, has the Fourier series expansion

q(-) to be the sum of a Fourier series
bl

1 " ivx
5= I ) (v)e ’
2Ty |>pq P24

where the ¢p q(v) are extrapolated from ¢(v), |v| 0,1,...,p%q,
b .

A

using the difference equation y(v) - aly(v—l)—...—apy(v—p) = 0.

We note, though, that (3.6) is valid regardless of whether or not

condition S holds, although gp q(') does not have the same inter-
b

pretation in this case. The validity of (3.6) will be useful in

Chapter V = when we consider estimating the MISE of f ().

A simple example which illustrates the consequences of (3.6)

will be helpful at this point. Consider the ARMA estimator fl q(-).
b
By (3.6), we have
" n ~ e A . +1)X
_ ~ 1 a elxq>(q+l)el(q
fl,q(x) = fO,q+l(x) + TrReal 1 — ,

1 - ale



: 8 (q+1)
! $(q)
If |a,| < 1, ——%—“T— = T ave "™ and thus
1 ix 1
1-a,e v=0
1
ix? i(q+1l)x
a, e ¢(qtl)e ©°
1 _ = T [a ¢(q+l)]av i(vt+qt2)x
ix 1
l1-o.e v=0
1
S I TSSO AL S
v=q+2

Therefore,

£ _ £ 1 ivx

fl,q(X) = fo’q+l(x) + Zﬂlvzl:>q+ll (V)e
where

-2
¢1 q [dl¢(Q+1)] GV 2 v = 42, g#3,... . (3.7)

Obviously ¢, (v) - a.¢, (v-1) = 0 for v > q + 2, but we also
1,q 171,q

have (by (3.7))

A

¢l,q(q+2) = a1¢(q+l) = ¢1,q(q+2) - al¢(q+1) =

This shows explicity how the ¢1 q(v), v = q+2, q+3,..., are extra-
bl
polated from 4(q) and ¢(q+l) by using y(v) - aly(v—l) = 0.
Suppose now that in the above case condition S is not

satisfied, i.e. suppose |a1| > 1. We then have

i(gq+2)x i(q+l)x

&lé(qﬂ)e 4 (qHl)e

~ o ix ~e]l ~ix
1- ale 1 - al e

z —¢(q+1)a
v=0

-v 1(q+l -v)x
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qtl . “v-q-1 ivx
= I -¢(q+1)az S
v=0
-l “v-q-1 i
+ I -¢(q+1)az T2 VE,
v=—m
This implies that
‘ oo i(q+
1 a1¢(q+1)el(q 2 1 (atl . ~ v=-q-1 ivx
—Real — : = —Realy I -¢(q+l)a =2
n ix T ! 1
-1 - ae v=0

+ I —¢(q+1)al—v_q—lelvx}.
v=1

Using this expression and (3.6) it follows that

£ g = 316 ((0) + 2Real( T 4y ()]

1 v=1
where
~ L ) et
41,q(® =1 - 2Reallé(q+D)aT7]
and (3.8)
¢ v) =
1, _

—¢(q+l)a1v_q_l sy V= q+2, q+3,...

It is easily verified that ¢ (v) - a_1¢ (v-1) = 0 for v > q.
1,q 1'1,q
However, by (3.8), fl q(') does not integrate to 1 and does not
’
satisfy
41, = 4@, vl =1 1

A

Therefore, fl q(-) is not as easily interpreted in this case as it
’
is when condition S is satisfied. It should be péintéd out, though,

that the efficacy of fp q(') as an estimate of f(+) may be assessed
’ »
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regardless of whether or not condition S is satisfied, as will be

shown in Chapter v.

3.5 The Mixture of Densities Having ARMA Representations

As pointed out in Chapter I, Carmichael approachesthe
density estimation problem by using autoregressive schemes to
represent the demsity f(+). Under fairly mild smoothness condi-

tions on f(°*) Carmichael shows that

lim f 0(x) = f(x), uniformly in x, (3.9)
v

which implies the existence of a Py (for € arbitrarily small) such that

[f(x) - fp O(X)I < e, a.e. [-m,7]. This result provides a justi-

0’
fication for using autoregressive representations in the estimation

of probability densities. However, it also leads indirectly to a
justification for considering ARMA representations. In order to

show why this is so we state and prove the following theorem.

s

373 .
function (defined on [-m,m]) having the ARMA (Pj’qj) representation
qa
ZJB, e
v=-qJV
i

Theorem 3.3 Let fp q (*) (j = 1,2) be a probability density

ivx

{l—a.leix—...—a. eipjxlz
J JPj

and let 0 < vy < 1.

Then the mixture density yf () + (1~)f (*)
pl’ql p2’q2

has an ARMA(p1 + pz,k) representation, where k < max(ql+p2,q2+pl).
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Proof: Let |1-a X - elpjxl2 =a (x), j=1,2.

63"

1 ip.
| ip; 3
Then, q
1 ivx .
Y vg—qflve
v (x} + (1-v)f (x) =
P Py:9) a, (%)
q
2 ivx
(l-zlquZVe
+ 2
a, (x)
q . q .
1 ivx 2 ivx
Yaz(x) z Blve +(l-y)a1(x) z BZve
v=-q, v=-q,
al(x)az(x)
The denominator is obviously of the form
|1-c eix - ee. — O ei(p1+p2)xl2 .
1 PP,
pj ivx
In addition, since aj(x) may be expressed as I bj e ,the numerator
v=—-
K 3
is of the form I B eivx where k does not exceed max(q,+p,,q,+p,)-
v==k ¥ 1°2°7%2° 71

The result thus follows.

By induction a similar result follows for the mixture of
m ARMA densities (m > 3).
A special case of Theorem 3.3 which is of interest is the

mixture of autoregressive densities. The mixture of £ 0(-) and

Pl’
f (+) is, by Theorem 3.3, an ARMA (p, + p,,k) density where
P50 172

k < max (pl’PZ) and, in general, k > 0. Carmichael's result, (3.9),

and Theorem 3.3 are thus seen to provide a strong motivation for



64

ARMA representations in situations where f(*) arises as the
mixture of densities. Of course (3.9) shows that even the
mixture of densities may be well approximated by an auto-
regressive scheme. However, the ARMA (pl+p2,k) representation
will necessarily be more parsimonious than a satisfactory auto-
regressive representation. This is important in the stochastic

setting where fitting too many parameters is to be avoided.



CHAPTER IV

LARGE SAMPLE PROPERTIES OF ARMA DENSITY ESTIMATORS

4.1 Introduction

We continue our study of ARMA density estimators by
establishing some of their large sample properties. In Theorem
4.1 conditions are stated under which %ﬁ’ () converges in prob-
ability to f(*), where p remains fixed and q tends to infinity
at a specified rate with the sample size n. The results of
Section 4.3 are the stochastic analogs of some of the work of
McWilliams (1969) involving the en—transform.' Sufficient condi-
tions, which are more informative than those in Theorem 4.1, are
established for the convergence in probability of_%l’q(‘) to £(*)
(as q and n tend to infinity). More importantly, El,q(.) is

shown to possess a certain optimality property for densities

satisfying
lim-g£2ill = R
e 2V :
Finally, we point out that higher order (p > 2) results paralleling

those for f1 q(-) are undoubtedly obtainable.
2

4,2 Conditions for the Consistency of fP CL(')

A minimal requirement of any density estimator is its conver-
gency (in some sense) to the true density function as the sample
size tends to infinity. Considerable attention in the literature

has been focused upon establishing some form of consistency for
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various types of density estimators. The mean square error con-
sistency of Fourier series estimators has already been indicated
in Chapter I.- Parzen (1962) has proven that for suitably chosen

weighting functions K(:), the kernel density estimator

n x—X.
£ (x) = z K( J)
n j= h

is mean square error comsistent for f(x) if h = h(n) satisfies 1lim h(n)=0 and
n—>o

B

lim nh(n) = ». Other estimators and different convergence criteria
n->re

have also been considered (see Tapia and Thompson (1978)).

In the following theorem conditions are stated under which

fp q(~) converges in probability to f£(-).
’

Theorem 4.1 Suppose f£(*) is a density defined on [-w,m] which

is continuous and of bounded variation on that interval. Based

A

on the random sample X ""Xn from £(+), let a§p’q)(j=l,2,...,p)

1,
be the solution of the system of equations in (3.4). For a fixed

p > 1 and q(n) = o(vn) (where lim q(n) = =), suppose

>
~(p,a)p+ ~
N i i SN Ll
p-lim j v=p+q—-i+l , = 0, j=1,...,p, (4.1)
n>eo z
Pyq
where z = minll—a(p’q)elx—...—a(P’Q)eipx!. Then

? xe[-m,m] P

p-lim fp q(x) = f(x) forall x € [-m,7] .
b . .

n>®

Proof: Using the relationship established in Chapter III we have

(assuming the existence of each limit)

~1im % (x) = p-lim E x) + p-lim o (x) .
. ™ P 0,p+q ™ e 8p,q*)



Since f(*) is continuous and of bounded variation on [-m,7], £(x)
has a Fourier series representation, and thus

Bias[%o’p 1 = s(v)el® | (4.2)

2"! | >ptq

which tends to zero as q +~ <. We have also

N ptq.
var[fy , (®1 = —fvar[Real(vile)e ]
ptqa . 1 PHa
< var[ Z.¢(v)e ' F] = =5 L var (¢ (v))
Tr2 v=1 1T2 v=1
pHq N ~
+ % I I cov(d:(v),d:(k))ej'(v“k)x
m v=l k
ptq 2
- L i%aboh
T v=1
ptq _
+ 51707 1 G- et O
m v=1 k#v

- n n

If p is fixed and q = o(/n) it thus follows that

1im var[fo,p+q(x)] = 0. (4.3)

noe

By €4.2) and (4.3) we have (for q = o(v/n) and unbounded)

I111an[£ +q - f(x)] =0,
and thus
1lim £ ) = £ .
P-n_)im O,p+q(x) (xl)

We must now show p-lim g_ (%)

9.4 0 in order to prove the theorem.
n>® ?
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Recall that

A

=1 P ()
g ’q(x) = TrReal[ T Bj )] ,

P 3=1
where
N . ptq . :
agp,Q)ele T ¢(v1e1VX
g(Pa QY ___v=ptg-j+ .
ki l_aip,q)e1X__.._a(p,q)elpx
P
Since
~ pHq ~
v=ptq-j+1
z
Psq

bounds lsgp’q)(x)l, it follows (from condition (4.1)) that

P
p-lim B§P’q)(x) = 0. Therefore, p-lim I ng’q)(x) = 0 and
n>® ~ nre j=1
consequently p-lim g q(x) = 0. Since x was chosen arbitrarily

e ?
the result follows.

Several comments are in order regarding Theorem 4.1. First,
it should be pointed out that, since the method of estimating ¢ (v)
is fixed, condition (4.1) is implicitly a condition on the Fourier
coefficients of f£(*). In this work, however, the problem of trans-
Iating (4.1) into explicit conditions on the sequence‘{¢(v)} has
not been solved. It is hoped that a satisfactory solution to this
problem may be obtained after future research. For the present,
though, we note that the importance of Theorem 4.1 lies in the.
fact that it points out where the difficulty rests in inducing

- A

convergence from £ (*). Since f (x) is consistent for

Psq 0,p+q

f(x), it is clear that conditions need only be established to

insure that p-lim g_ _(x) = 0.
o Psq
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. ‘Although we will not be able to substitute conditions for

(4.1) which are as explicit as desired, the following observations

make (4.1) more palatable. We have

pHq ~ PHq N
o] = T [e(v) - ¢(v) + 6(v)]

v=p+q-j+l =p+q-j+1
ptq . pHq
< em-e| + = e},
v=p+q-j+1 v=p+q-j+1

which converges in probability to zero (as m - ®») by an argument

similar to that in Theorem 4.1. In addition, it is easily verified

that

phg
$ |e()-s()]| =0 (}—_—) :
v=p+q-i+l Pvn

and thus a set of conditions which may replace condition (4.1) 1is:

|&§P,Q)|
1) —o—— = o (m), (=12,...,p)

P»q

pHq 1
(ii) e = ol &) .
v=q+1 ( n )

Although it is still not precisely clear for which densities (i)

and (ii) are valid, this set of conditions is somewhat more informa-~

tive than condition (4.1).

It is important to note at this point that one member of the

ARMA class, fo q('), is mean square error comsistent for f£(+) under
’
the single condition that f(+) have a Fourier series representation

for all x ¢ [-w,w]. This fact was proven in Theorem 4.1. Because

of the consistency of f0 q(-), Theorem 4.1 would not be extremely
b4



important unless it could be shown that fp q(-) (for p > 1) in

]
P

some sense converges more rapidly to £(*) than does fO ().
’

Establishing conditions which insure the more rapid convergence

~

of fp q(') proves to be quite difficult in general. However,
3

in the next section we consider the special case of fl‘q(') and
b

obtain some quite satisfying results.

4,3 Large Sample Results Invoiving f1 q(-)

Given a complex-valued sequence of partial sums'{Ak,Ak+1,...}
which converges to A_, McWilliams (1969) has established conditions

under which the following results hold:

A - el(Am)
lime (A ) = A (n=1,2), lim =0,
> nm mHee A, - A.m+1
and
A -e a )
lim 2wt 0 (for any j).
m=> Au - Ahﬁﬁ

The theorems in the present section involve el(Fq(x)) and are’
the stochastic analogs of the above results involving el(Am).

Essentially the same results are obtained with lim replaced by

p-lim.
Am—el(Am)
A sufficient condition for 1lim ' = 0 is
A -A
m "o “mtl
2
lim =R, 0<|[Rf<1 » (4.4)
m m-1 )
where a_ = A - A .. Recalling Theorem 2.2 it is seen that,
m m m-1
if
2n
=R form>m,,
a 0

m-1



then
A -e (A)
1 o = 0 for m Z_mo .
A - Am+l

Condition (4.4 is thus seen to be a relaxing of the condition

needed for el(Am) to be exact, with the result being that el(Am)

converges more rapidly than Am+1'
In the setting of interest here we have am = ¢(m)e1mx
and 2n - ¢ (m) eix . In this case, then,a condition equi-

a 1 ¢ (m-1)

valent to (&%.4) is

o -r,0<(rl < 1. .5)

lim
m>e

If (4.5) holds we have

F (x) - e (F_(x))
lim 1 o -0,
me F&(x) - Fm+1(x)

where F_(x) = I ¢(v)elvx. This property suggests that, under
~ v=1 R

%.5), el(Fm(x)) might converge more rapidly in some stochasti
sense than does Fm+l(x). This possibility will be investigated
later, but first it is necessary to verify that el(Fm(x)) does

indeed converge to Fw(x) under a condition similar to (4.5).

The verification of this fact is the subject of the next theorem.

Theorem 4.2 Suppose f(*) is a probability density function
defined on [-7,7] and that £(+) has a Fourier series representa-

tion for all x in that interval. Further, suppose that (4.5 holds
q ~

R
and that';fay =0(1) (asn—+=»), Iff (¢) is based on a

1,q
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random sample Xl""’Xn from £(+), and ¢ = o(€n n) (with q

unbounded), then

p-lim £, (x) = £(x) for all x e[-m,n] .
Tosen >4

Proof: Since % (x
l,q )

711 + 2Real(e; (F O],

£(x) = 3-[1 + 2Real(F_(x))],

and

p-1lim Real (Z ) = Real{p-lim Z ] .
N n e B

it is sufficient to show that

p-lim el(%q(x)) = F_(x).

nre

Observe that

> ~ ix2 ' ~
5 _ 5™ - e Fga® U 1¢: 2 )
el(F (X)) ~ ix ’ (a( ) ~ )
d 1-acye d 4(q)
] $(Qe T +‘%q_l(f)[1-&(q)eix]
1-o0 et*
(q)

N 1) Pl
q-1 ~ ix

e

Since q = o(€n n) it follows from the proof of Theorem 4.1 that

p-lim Fq_l(x) = F (x). Thus, if

nre

" igx ‘
p~lim —QLS%E———I; =0
e l1-a, e

(@)

the result is proven. We have
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p-lim $(q) = lim ¢(q) + p-1im(s(q) - #(q))

n->e n->e n->e

p-lim ($(q) - 6(q)).
ne

Since E[&(q) - ¢(q)] = 0 for each q, and var[&(q) - ¢(@] =
—(1—‘¢(q)| ) >0 as n +=, it follows that p—lim(¢(q) - ¢@q)) =

and comnsequently p-lim ¢(q) = 0. As |¢(q)eiqx| = |¢(q)[ we

n e
also have
p—lim|¢(q)equl = 0.

n-re

(4.6)

Now consider

$(gq+l)

1in & =p- 112 ¢<q

e o 1+ ¢( 3 (6(a) - 6(a))

+ ) (¢(q+1) -$(q+1))

By the above ¢(q+3) - ¢(q+j) =0 (7=-D (j = 0,1), and thus if

%&g ¢% ) 7%r 0 we have p;iim a(q) = R. Now,

R 1

$(Q)  pa—

: ____ L
lim o) 7=

n->«

=
[N

q
By hypothesis [ $%HY| is bounded, and so it is sufficient to show

1¢Fj = 1lim & 0 (r=|r]).
n>« Rq n nreo quH

Now, ‘?—Vl(rq/l—l)=q nr +—;— nn=4nn {L-VL—]-:- + —} -+ ® ag n o since

q = o(&n n). Since £n(rvn) = we have rq/ﬁ'+ . and thus

1im = 0. As stated above this implies that p-lim a( ) =R
ne rq/;l_ n-° q

A

and consequently p-lim l-a elx=l—ReiX#0. Along with (4.6), it
e (q)

then follows that

. 2 i
p-lim _¢(qQ)e ¥
n-° ~ Aix
l-a e
(9)

= 0, and the proof is complete.

The assumption that q tends to «» at a rate slower than
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~

Zn n is undoubtedly more severe than is needed to induce fl (*)
b

to converge. From the above proof it is clear that if

p-lim (1-&(q)eix) = 2(x),

<
where Z(x) satisfies P[Z(x)#0]=1, then the result of Theorem 4.2

follows. However, the assumption that q=o(£n n) proves to be
advantageous since this assumption will be necessary in order to
prove subsequent more rapid convergence results.

In the next theorem we establish a more rapid convergence
property of el(%q(x)). This result and its proof closely parallel
the result and proof of McWilliams in the deterministic setting.
Theorem 4.3 Under the conditions of Theorem 4.2 we have

() - ey (F_(x))

p-lim = = 0.
e Fw(x)—Fq+1(x)
Proof: Clearly a A 1x*
X F (x)—a(q)e F _l(x)
F () - e (F () _ F,(x) - 1-a(q)elx
F_(x) - Fq+l(x) F_(x) - Fq+l(x)
R d)((1+1)e1(q+l)x
) Fo(x) = F (x) = 1-a(gel®
Fm(x) - Fq+1(X)
R $(q+1)&(q)ei(q"'2)x
= Fal0-Fn® - 1T R(gelx
Fm(x) - Fq+l(x)
$(q+1)&(q)éi(q”)x
1 - ;L . eix
‘ - 1- (q) .
F(x) -F (%)

q+l
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Therefore,
F () - e (F (%)
p~lim } 4
e Fw(x) - Fq+1(x)
~=1 ~ i(q+2)x
a ¢(q+2)e
-1- R paan
$§g+2>
1 ¢ (g+2)
= 1- — p~-lim - — —= - : .
1-Re™ me (0@ DN Tr L -F 04 4t

v=q+2

Using arguments similar to that in Theorem 4.2, it is easily verified

that

—1in1 éﬁﬂizl = 13 1 _x _
e #Cqr2) T bEmd polim gy (R (0 - By 691 = 0.

In addition, McWilliams has shown that

(-]
lin [o(qr2) X TDF g @yt L
) v=q+2 1-re’ ¥
under the assumption that 1lim %%E%I) = R. It therefore
>

follows that

p-lim F (%) - el(Fq(X)) o 1

e F (x) -F

Two points should be made about the result in Theorem 4.3.
First, the theorem should be regarded as an optimality property

of %l q(-) but not as proof that £ q(-) converges more rapidly
>

1,

to £(.) than % («). In order to prove this result it is

0,q+1



necessary to show
Real(F_(x) - el(F (x)))
p-lim | = 0
n->e Real (F,(x) - Fq+1(x))

which of course is not an immediate consequence of Theorem 4.3.
However, since f(x) is completely determined by Fw(x), an estimator
of Fm(x) which has good properties is of considerable importance.
The second point to be made regarding Theorem 4.3 involves the

A

rate at which q + ». In order to insure the convergence of fl, ()
it was seen in Theorem 4.2 that we must have q = o(£n n). However,
restricting q in this way in a comparison of el(iq(x)) and %q+l(x)
is, in a sense, unfair, since %m(x) is consistent for Fm(x) even
when m = o(¥n). Ideally, a comparison of the rate of convergence

of el(Fq(x)) and Fm(x) should be made with q = o(dn n) and m = o(vn).

By modifying the conditions of Theorem 4.3 it is possible to show

that ' ~
F (x) - e (F_(x))
p~lim } 9 = 0,
n>o F_(x) - Fm(x)

where ¢ =o(fn n) and m = o(/n). This fact will be proven in

Theorem 4.4,

Before moving to Theorem 4;5 we shall examine the effect
which an assumption like (4.5) has on var[%m(x)]. This is impor-~
tant, as the rate at which %m(x) converges to F_(x) is directly

affected by var[Fm(x)]. Now, since om) _ cannot converge to R

¢(m-1)

any faster than in the case where

o(m) - : ‘
1) R form > my s G.7)



we will assume (4.7) and then calculate var[Fm(x)]. Under (4.7)

we have

¢(m) - R¢(m-1) = 0 for m > mys
which implies that ¢(m0+k) = ¢(mO)Rk, k=1,2,... . Using the

formula for var[Fm(x)]obtained in Theorem 4.1, we have

A m m-1m .
Var[Fm(x)] = _;L_l_ T (1—I¢(V) Iz) + l T T (¢(V-k)—(b(v)d)(—k))el(v-k)x
v=1 =1 v=k+1
m-1m
+ 1758 (400 (a0 L TTRE
v=1 k=v+l ‘

The first term in this expression is 0(%) regardless of what
assumption is made about ¢(v), and thus only the convariance
terms need to be considered in investigating the rate of con-
vergence of var[%m(x)]. The second covariance term is simply
the complex conjugate of the first, and so we consider only the

first term. Under assumption (4.7) this term is (for m > oy + 1)

m-1m . m . m s
1% 5 et T L1 0 0d* 54 ™ G
k=1 v=k+1 k=1 v=k+1

2
l¢(m )I m-1 _ k-m, _. m _ ]
_ 0 5 ®) 0, ikx o VMg ivx

n k=m0+1 v=k+1

.

It is easily verified that the last term in (4.8 is

“’(“‘0”2 ] %Re™® (1-|r|2@ g™ (rel®)mmpLiy (e 1X) Mgl

n

1-re’® 1- |r|? 1-Reix

The second term in (4.8) is
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Bl

mO —ikx m +1 m - .
I d(-k)e ¢(v)e + q'>(m0) T R 0eMVX
=1 v—k+1 v=m O+2

m, m.+1 .
= 2 50 20 gwp(m et O

0 =1 v=k+l

. ma+2 m+l
. ¢(m0) (Relx) 0 (Relx) m ¢( k)
a0 1o Rei =1

and the first term is

1 m-k ivx 1 m m-1 ik
T e(v)e = 3 (@k)ek)e ™
T op=1 v=1 T k=1

l

ix. k
m ikx ——-—2 (Relx)
= — I ¢k)e mQ
ngk-l R k=m0+1

¢(m,) m-1
- lg %)™ + — 2 5 k(re 1X)k$
™ k=1 RO kemj+1

m . m .
706 (k) e 1K — % 0% (k) e KX
=1 k=

n

+Eo
n

¢(m0) -(Relx)mo+l_ (Reix)m ]
RmO 1- ReiX

_ ix M2 ix 2
7

e

Rmo L (1 - Relx)

ix m0+1 ix.m
(my+l) (Re™™) - m(Re™™) ]
i

l-ReX

4

The important thing to note about the three terms which make up

m
(4.8) is that they are all 0(%). Since% r (1 - |¢(v)[2) is
k=1
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also 0(%), this implies that var[‘g‘m(x)]"= 0(—13). Under condition
(4.7) it thus follows that the truncation point m may be allowed
to become large more quickly than generally stated. Specifically,
i:‘m(x) is consistent for F_(x) so long as m = o(n).

We are now in a position to establish our most important

large sample result involving el(Fq(x)) .

Theorem 4.4 Under the conditions of Theorem 4.2 and the

additional assumptions that —(L(-E—) = 0(vYm) and
R

o -1
- a9 - o(gtv)  ivx _ o [ -
1 9(q-1) € (on ¢(q) ) ° (/rT R (4.9)
we have
p-lim F,(x) - el(Fq(x)) =0 for all x¢ [-w,7] ,
e F,(x) - F_(x)
o 1
where m = [n], 0<0L<§.
¢(g)e1qx
z 2 ix
Proot: F_(x) - e}(Fq(x)) ] F (x) - Fq—l(x) A- 1-a (q)e
F(x) - F_(x) F,(x) - F (x)
© . ‘;(S)eiqx :
| P ®-F (x)+ﬁzq¢(v)e B TR
F_(x) - F (x) + 1 o(v)el’™
v=m+1
Vo Vo iq)i' ¢ (v+q) 1V'x ‘——Aij‘—
—(F__.(x) F (X)) + —=¢(q)e z -1 ix
el o o ¢ RO R
o - o 1(m+l)x o~ $(mHldv)  dvx
E (Fm(x) - Fm(x)) + 7_m—- ¢(mtl)e V20 ————¢(m+1) e



We have

1im YO (mtl) = /E 9(mHl) okl
o vVm /E- Rp+l

since

¢ (m+1) = 0(/51)

Rm+1

and m = [na]

Also recall that

> ¢ (m+l4v) dvx _ 1
11m ZOW =

1—Relx

The previous considerations concerning var[Fm(x)] indicate that
one of the following holds

var[i—/g—(Fm(X) - ‘;"m(X))] * ey #0

or

var[ﬁg:(Fm(x) - %m(x))] +© agsn >,
™

It thus follows that the denominator of (4.10) converges in prob-
ability to a random variable Z(x) which satisfies P[z(x) # 0] =
Therefore, in order to prove the result it is sufficient to show
that the numerator of (4.10) converges in probability to zero.
Clearly (since g =o(n n) and m = [n%]) the first term of the

numerator goes to zero in probability as n + «, The second term

is (with a (x) = _Sﬂi!l )

v—o ¢(q)
6(q) - iz, ¢(q)
/a iqx 0 (_ /a_ , \ dqe)3q® - ye - 48
— ¢(q)e a (x) - —= )= $(q)e = -
vm q 1-a elX Ym | 1-a e:Lx
(@) (q)

80
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- 2
8(q) _ o(gtl) ¢(q)
- geiex ) (X)(cb(q) $(a) - (5&)
‘o (¢(q) _ 3(gtD) %)
¢(q)  ¢(a)

The denominator of the expression in brackets converges in prob-

ability to (1—Relx). The numerator may be expressed as

1
L 0GR 0 (=) 2

_ $(q+l) ix P ix Y _ p_'n
2,0 [1- ST + By (-e ] - (1 + )

1 1
0_ (=) L0 (=)
- 2@ - i(%) ¥y -1 +—u1—[a (x)(l-elx)-z-l—L] .

The limit in probability of the numerator of (4.10 is thus

1 Vn 1 igx ix (7-_)
14 — - -
T p+wlm ;%;OP(/E e [aq(X)(l e )-2- 3D e
+ ——— lim B ) 1q"[a (x) (1 - —(5(1% X 11, G
1-Re™ e Vm ¢(q
./ 1 :
Clearly p-lim —O0_(—)= 0, and, as noted in Theorem 4.2,
e /m P /o
0 (71=) L
p~-lim —L(—n—)—— = 0 and 1lim a (x) = .
oo ¢(q e g 1-Re ¥

Thus, (4.11) is simply

1 . /o iqx __(_q_-_iﬁ ix -1
—=—— lim — ¢(q)e " [(1- ) —a (X)),
(1—Re1x)2 O~ ¢(q) q

which by hypothesis is zero, and the proof is complete.

In light of previous considerations we point out that, if
instead of assuming (4.9) we assume that (4.7) holds and m = n%1,

0 <o <1, then the preceding proof remains valid.



Assumption (4.9), which is crucial to the proof of
Theorem 4.4, has to do with how quickly the ratio %ég%ll

approaches R. Note that since

1lim M=R, (1_M1_)eix)_a'l (x) ~ 0
q ¢(q) q

as n + ». However, in order for (4.9) to be satisfied $(q+l)

¢(q)

converge to R rapidly enough to compensate for the fact that -ll-|Rq|*@.

The convergence of ¢ (q+1) to R is the more rapid of the two, and

¢(q)

(4.9 is obviously satisfied, in the case where (.7) holds.
dition (%.9) may thus be regarded as an indication of how far the

Fourier coefficients of f(+) may depart from the model "¢(m)-R¢(m-1)=0

for m > mo" while still maintaining the property

F_(x) - el(quﬁ))

p-lim =0 .

== Fm(x) - %m(x)

We would indeed be remiss if the current section was concluded
without a discussion of how the previous results involving f

should properly fit into a general approach to density estimation.

82

First, if the Fourier series estimator f m(,') is employed to estimate f£(-)
9’

0

then the results of this section provide a justification for at least

considering fl,q(.) as an alternative to fO,m

nature of the density estimation problem QOesvnot allow us to make
specific assumptions (such as those in Theorems 4.2 and 4.4) about
the underlying density, but this fact should not blind us from the
realization that one estimator may perform better than another in
certain situations. In Theorem 4.4 conditions were established

under which £, (+) would reasonably be expected to perform better

1,q

(). The nonparametric



than Eo’m(-). With these thoughts in mind, the only question
which remains is the following. For a given data set, how does
one recognize if the situation calls for the use of %l,q(') (for
some q) rather than E

0 m(')? Two possible answers to this
’

question will be offered in Chapter V.

4.4 Extending Results Involving fl q(-) to Higher Orders
3

As mentioned in the previous section, McWilliams has investi-
gated certain properties of the ez—transform. Since

%z’q(X) = ‘%"F [l + 2Real(e2(£‘q(x))] (for q z 2)’

A

some insight into when f2 q(~) may be of value as an estimator of
. b4
f(+) can be gained by considering the theorems of McWilliams
involving e, (A ). The following two theorems, stated without proof,
2 m

have been proven by McWilliams (1969).

Sorkl
Theorem 4.5 If A -+~ A , =R >R #1, and
_—= m ® a m
R'm+1 B Rm

1lim
m>e R'm+2 - Rm+l

= Q # R, then e2(Am) > A, .
Theorem 4.6 If the conditions of Theorem 4.5 are satisfied, and
if further R # 0 and

A- A

w1
a-a R
@ m
then A - e (A )
lim = 2 _mt2 =0 for any j .
A_- A

83
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Using the results of Theorems 4.5 and 4.6 and proceeding as in
Section4.3 one could undoubtedly establish results for ez(%q(x))
paralleling those of the previous section. The proofs of these
results would be somewhat more tedious than those in the first

order case (due to the increased complexity of the e,-transform),

2
and perhaps not altogether necessary. It seems that the proven
worth of ez(Am) (as evidenced in Theorems 4.5 and 4.6) in the
deterministic setting is alone a motivation for considering

%Z,q(.) to be, in certain situations, a viable competitor of

the Fourier series estimator.

Except for the situation in which‘{am} e L(n,A), conditions
insuring the convergence of en(Am) and the more rapid convergence
of en(Am) than An+m have not been established for the cases where
n > 3. However, the importance of the exactness result obtained
in Theorem 2.2 should not be overlooked. Even when the assumption
{am}eL(n,A) is only approximately satisfied, en(Ah) can be expected
to be of considerable value. This fact was demonstrated in the
examples of Chapter II. Likewiée using Theorem 2.2 as a justifi-
cation for considering %p,q(') to be a candidate estimator of £(-),

there remains the problem of how to select p and q. This problem

is the subject of the next chapter.



CHAPTER V

THE PROBLEM OF SELECTING p AND ¢

5.1 Introduction

Up to this point, the primary objective of this work has
been to illustrate and discuss the various reasons why the class
of ARMA estimators are of value in the density estimation problem.
Armed with a suitablé class of estimators, we are left, however,
with the practical problem of choosing an appropriate estimator
(based on data X .

1,...,Xn) from this class. Given a realization

XyseeesX) from £(*), the class of ARMA estimates of the demsity

function is indexed only by p and q, and so choosing an appropriate

estimate is equivalent to choosing appropriaté values of p and q.
All density estimation methods have a problem similar to
the one described above. Typically a class of estimates is
indexed by a pafameter, often referred to as a smoothing para- -
meter, and a suitable value of this parameter must be chosen in
order to arrive at a final estimate of f(+). For example, when

employing a kernel density estimator

1 n x-X.
f(x)=——h- r k[—1) ,
" My=1 \ h

a suitable choice of the smoothing'parameter (or window width)
h must be made. Duin (1976) and Hermans and Habbema (1976) have
proposed a modified maximum~likelihood approéch to the problem

of choosing h. In addition, Silverman (1980) has suggested a
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method for choosing the window width based on the so called test
graph theorem. The problem of choosing a smoothing parameter
also arises in a method proposed by Wahba (1977). Wahba's esti-

mator is (for x € [0,1] and n even)

A n/2 2
Bx) = T ¢(2FV)4 e21rivx

v=-n/2 1+A(271v)

H

which is seen to be a Fourier series estimator to which a low-pass
filter has been applied. The‘smoothing of %(-) is accomplished by
varying the parameter A rather than the truncation point of the
Fourier series as in the method of Krommal and Tarter. Wahba (1978)
chooses A so that the estimated MISE of %(-) is a minimum. The pro-
blem we have discussed is shared even by the primitive histogram
estimator, whose smoothing parameters are the number and size of

its class intervals.

In ARMA density estimation, the pair of values (p,q) may be
regarded as the smoothingvﬁarameter. In the remainder of this .
chapter two different methods for choosing this parameter will be
presented. In the first method we propose the use of the S—-array
for choosing (p,q), since the ARMA (p,q) representation for f£(-)
is equivalent to assuming that {$(v)} ¢ L(p,A) for v > q. In the
second method (p,q) is chosen in such a way that the estimated
MISE of f; q(') is minimized over a suitably restricted subclass

]

of ARMA estimates.

5.2 S-Array Method of Selecting p and q

As proven in Chapter IT, the assumption that a function f£(-)
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has an ARMA (p,q) representation is essentially equivalent to

the assumption that
{o(v)} € L(p,a) for v > q.

Therefore, given estimated Fourier coefficients ¢(1), ¢(2),...,6(M), a
natural way of selecting (p,q) is te examine an S-array (see Gray,

Kelley, and McIntire (1978)) composed of valués Sﬁ($fm)eimX)(xe[—ﬂ,ﬂ]).

1]
0

S0 (b (m) e %)

S'p.@(m) 1%y

)
0
™
-
g
[N
|
-
i
=

supports the choice of (p',q') for the smoothing parameter (p,q) in

the sense that such a pattern supports the existence of a similar

pattern in the S-array based on Sn(¢(m)eimx)

Some experience with simulated data has shown that even when
a good constancy pattern exists in the parametric S-array, the
sample S-array tends to be more noisy than arrays encountered in
time series applications. The method of selecting (p,q) discuééed
above must undoubtedly, then, involve a good deal of subjectivity.
For this reason the S-array should be regarded as a tool for pointing
out a restricted class of candidate ARMA estimates. Additional analy-
sis may be performed on the restricted class of estimates to deter-
mine a final estimate of £(°).

One possibility for arriving at a final estimate would be to
perform some sort of smoothing in the S-array columns where con-
stancy patterns are apparent. Tukey (1978) has suggested the use
of his 3RSSS smobthing procedure as a means of making noisy patterns

in the S-array more informative. After smoothing competing columns
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a choice for (p,q) may become obvious. -A second possibility for
obtaining an estimate would be to estimate the MISE for each
candidate in the restricted class of ARMA estimates, and then
choose that estimate which minimizes the estimated MISE. A
procedure for estimating MISE is discussed in the next section.

In Chapter VI, 'the'S-array method of selecting (p,q)
will be exemplified in the analysis of two different data sefs.
The smoothing procedure discussed previoysly has not been investi-

gated, but we do examine the estimated MISE criterion.

5.3 MISE Criterion for Selecting p and q

Ideally we would like to choose an estimator from the ARMA
class which satisfies some optimality criterion with respect to
f(*). A criterion which is common in the estimation of probability
density'functions is to seek an estimator which minimizes the MISE.

In ARMA density estimation this entails choosing (p,q) such that

. .
MISE(E ) = E[f £,

(x) - £(x))2dx]
2 Vpsa

3 ’

is minimized. This, however, is an impossible task since the
optimal value of (p,q) depends on f(*), the function which is to

be estimated. Therefore, given data XpseeesX , OUT approach will

be to choose as our estimate of f£(¢) that fp q(-) for which an

estimated MISE(fp q) is minimized. In the remainder of this

b
A

section we discuss the problem of estimating MISE (fp ).
b

Consider

T™,° 2 - ™2 _ T
{ﬂ(fp’q(x)—f(x)) dx {ﬂfp,q(x)dx Z{Wfp,q(x)f(x)dx

+ f“fz(x)dx.
-7
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From this expression it is clear that the value of (p,q) which

minimizes

~ ‘n.A
J(E_ ) =E[f £, q®dx - 2[ f (D E(x)dx]
Psq - - Psq

also minimizes MISE (fP q). It is therefore sufficient to con-

sider only the estimation of J(fp q). This observation greatly
b

simplifies our problem.

Recalling relationship (3.6) we have

p T2
J(fp’q) E[{ﬂfo’p (x)dx + 2f fo P+q(x)g (x)dx

+ f“éi J(Rdx - zf“%o’p+ (x) £(x)dx - 2" gp (x)f(x)dx]

- = -7 -1

A ~ ‘n,l\ A
J(f +J + 28[[ £ d
( 0,p+q) (gp,q) [Lr 0,p+q(x)gp,q(X) x]

Now J(fO P+q) has a particularly simple form in terms of ¢(1),...,
b

¢(p+q) for which there is an unbiased estimator. We have

- 1 ptq 2
I, paq) = E[—z-r(1+2v£1]¢(v)| )] zf £0,0+q (x) £(x)dx

(2 i 1)] - gl ).

v=1
Since E(;EI [¢(V)!2 - ;%i) = l¢(v)|2, it follows that an unbiased

estimate of J(EO,p+q) is
~ ptq .
2 _ 1 2y 1 n 1
I(Ey g = ——2“(1 + Zvill¢(V)l ) [1 + z z ( |¢( y|? 1)]

-1 v 2(n+l)
27 \1 + (n-1) v-l|¢( V| ) n(n 1) .

Interestingly, it is seen that the first term of .I(f0 P+q) decreases
b

as p+q increases, but that the second term penalizes an increase
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in p + q. Thus, J(fo +q) is sensitive to both the fidelity

and stability of f (*). 1In addition, it is easily verified

0, m+l)
- MISE(fO m) as that derived by Krommal and Tarter (1968). This

0 ptq

that J(f ) - J(f ) is the same estimate of MISE (f

0,m+1

fact points out a correspondence between the optimal stopping

rule of Kronmal and Tarter and J(f0 m).

’
A A

An unbiased estimator of the last term of J(fp q) is

- .
2 [" £ d
_{ 0,p+q(x)gp,q(x) *

which is zero whenever the estimate fp q(-) satisfies condition S.
b ]

This leaves us with the problem of estimating

- _ T2 _ N
J(gp,q) = E[{ngp,q(x)dx] ZE[{ﬂgp,q(X)dF(x)].

TrA
Since an unbiased estimator of E[f gp (x)dx] is f g (x)dx,
. -m P24 -T P»q
we focus our attention on E[fﬂgp q(x)dF(x)]. To estimate this
—'n' ’
quantity we propose the use of the bootstrap mechanism of Efron

(1979).
In order to illustrate the bootstrap in this setting, let

X = (Xl,...,Xn) denote a random sample from f(+*). Further, let

A

*) indicate that *) is based on the sample X, and
gp,q,X( ) gp,q( ) P ’
write

R(X,F) = I gp ERCOLI{COP

If (xl,...,xn) is a realization of X with corresponding empirical

cdf Fn(-), then the bootstrap estimate of E[R(X,F)] is

n

E[R(X*,F )] = EL— _lgp q,X*

(xj)],



where X* is a random sample from Fn(-). This estimate is seen
to be Fisher consistent, or in other words, the estimate is
equal to the parameter it estimates when Fn(-) = F(+).

As it is not possible to analytically evaluate E[R(X*,Fn)],
Efron suggests that numerous samples X* be generated from Fn(-)
in order to empirically evaluate the expectation to a close approxi-
mation.. In our application this procedure would be prohibitive
since-E[R(X*,Fn)] must be evaluated for numerous different candi-

A

date estimators, fp q(~). Fortunately, Efron also derives a second

b}
order approximation to E[R(X*,Fn)] by expanding R(P%*). = R(X*,Fn) in
a Taylor series about-%(l,l,...,l) where P* = (P*,,..,P:) and

P? —-%(number of X*j's which equal Xi)' (R(X*,Fn) depends on

X* only through P* since R is symmetric in the X;'s.)

Wong (1979) has derived an explicit expression for Efron's
approximation to E[R(X*,Fn)] which he shows, in fact, to be a
jackknife approximation to the bootstrap. We have

E[R(X*,F )] = gR(x

j=1 (j)’Fn) - (n-l)R(xan)9

where X(j) = (xl’""xj—l’xj+l""’xn)' In our problem this
implies that

n n .
E[R(RA,F )] = T (x} - 21 5 (

1P »QsK .y 1 n ._.°P,q,X Xi)'
j=1 "i=1 &) i=1

An even simpler approximation is possible by noting that (for n

reasonably lar o (t) = (t) except possibly for
n v & gE) gP:q,X(j) ) gP,QsX Pt P v

t in a neighborhood of xj. This observation gives

91
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P N 130 (x,)
EIR(X*F)l = Z{Zg __ (x)+ -Zg ‘%
3=1 P>q, (3) J i=1 P>q>
1° n-1 0"
St -l
n %p,q, x5 n o, 5pha,x%y)

Wong (1979) uses this second type of approximation to show that
the modified maximum likelihood method of choosing a smoothing

parameter is related to the bootstrap.

If we take
Jg J)=Jg° xdx-= I g (X.),
P»q _r P4 n j=1 P’st(j) J
then our estimator of J(f ) is
H]

~ ~ A A ~ ~ ﬂA ~
J(f = J(f +J + 2} f dx.

( Psq) ( 0,P+q) (gp,q) { 0’P+q(X)gP,q(X) x

m

Now, if A. is some subclass of the class of all ARMA estimates, then
we define fp, q,(°)to be the A ARMA estimate of f(+) if and only
b

A

if fp,’q,(-) e A and

I(E < J(F for all £ (*) cA.
(p',q')-(pq) or & pq()s

b b

The class A should be large enough to insure that an adequate
estimate of f£(+) is obtained, but not so large that the computing
time required to identify %p‘,q'(‘) is excessive. One method of
restricting the size of A is suggested in the previous section
through the use of the S-array. One might also consider the

class AM of all ARMA estimators fp q(')-satisfying ptq < M.

b



The considerations of Chapter IV indicate that, if M is chosen
to be a function of the sample size n, it would be reasonable

to have M = o(vn).

In the next chapter, we will investigate the A ARMA

estimator by means of simulated data.
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CHAPTER VI

ARMA DENSITY ESTIMATION IN PRACTICE, AND A SUMMARY

6.1 Introduction

In this final chapter the use of ARMA representations
in density estimation is exemplified with the aid of both real
and simulated data. In Sections 6.2 and 6.3 two data sets
which have appeared previously in the literature are considered.
The LRL data of Good and Gaskins (1980) and the Maguire data of
Maguire, Pearson, and Wynn (1952) are analyzed, and density
estimates are obtained using the results of Chapter V. The
effectiveness of the estimated MISE criterion for choosing p
and q is evaluated in Section 6.4 by means of simulated data.
The results of the simulation study show the criterion to be
quite effective in distinguishing between density estimates
which have important differences in ISE.

Section 6.5 is devoted to summarizing the density estima-
tion results obtained in this work. In addition, some areas for

future research in ARMA density estimation are indicated.

6.2 The LRL Data

Good and Gaskins (1980) have analyzed a data set, which
they call the LRL (Lawrence Radiation Laboratory) data, con-
sisting of "n = 25,752 events from a scattering reaction'. The

data are recorded in the paper of Good and Gaskins in the form



of a frequency table made up 172 bins of width 10 MeV each.
The ith bin includes n events, and the bins are centered at

i
“ the values (in MeV)

y, = 285 + 10(i-1), i =1,2,...,172,

In the analysis to follow we consider the transformed

data

. W .
Xi == 1—7—26(2}71 - 2280) ’ 1 = 1,2,..-,172-

The Fourier coefficients ¢(v), v = 1,2,..., associated with the

density £(+) of the transformed data are estimated by
172

Zlnje"ivxj , v=1,2,... . (6.1)
j=

=R

&(V) =

The aim of Good and Gaskins in analyzing the LRL data was
to obtain an estimate of the underlying probability density by
using their maximum penalized-likelihood method (see Good and
Gaskins (1971)), and to then describe a procedure for assessing
the likelihood that a bump found in the estimate is also ﬁresént
in the underlying density. Our purpose in analyzing the LRL
data is to

(i) illustrate the cogent information contained in the
S-array about the type of ARMA estimate which should
be fit, and

(ii) to obtain an estimate comparable to that of Good

and Gaskins.

In this example, the estimated MISE criterionm for choosing (p,q)

95
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is considered only for estimates with p = 0, as some modifi-
cation of the jackknife approximation to the bootstrap is needed
for grouped data.

Table 6.1 shows a portion of the S-array for the sequence
{(—l)m$(m)}, where the $(m) are as defined in (6.1). The array
based on'{(-l)m$(m)} has‘been tabled since it shows a much clearer
constancy pattern than does the array based on'{$(m)}. This
behavior is caused by the fact that,
as will be seen shortly, estimates of the density f(+) have
considerably more "power" near x = 0 than near x = T,

The constancy apparent in the first two columns of the
array in Table 6.1 gives clear preference to ARMA estimates with
Pp=lorp=2, However, a fuller understanding of the informa-
tion contained in Table 6.1 can be gained by initially consi-

~

dering the estimates fl’o(-) and %2’0(~), which are plotted in
Figures 6.1 and 6.2 respectively. From these two figures it

is clear that the constancy in the first column of the S-arra§
corresponds to a bﬁmp (in the terminology of Good and Gaskins)
at about x = -1,40, and the constancy in the second column
corfesponds to this same bump and another smaller bump at about
x = ,55. Interestingly, %2’0(~) is virtually the same estimate
as that obtained by Good and Gaskins except for the presence of
11 additional, very small btmps in their estimate.

An area for future research is establishing a method of

transforming the original sequence of estimated Fourier coeffi-
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cients in such a way that the dominating effect of major peaks
is filtered out. In the current example, such a method would
allow us to remove the effect of the two major peaks (seen in
Fig. 6.2) éo that the possible presence of smaller peaks could
be carefully investigated.

In the absence of a suitable filtering technique, we
arrive aﬁ a final estimate of f£(*) by choosing a Fourier series
estimate %O,m(.) which satisfies m ¢ {1,2,...,50} and

Iy ) < I

O,k)’ for k=1,2,...,50.

Note that 50 is certainly not too large a truncation point to
consider in this case because of the extremely large size of
the sample. _

The minimum value of 3(%0,k) (for k = 1,2,...,50) occurs
at k = 42, The estimate %0’42(~) is plotted in Figure 6.3 and
nine of the thirteen bumps of Good and Gaskins are identified
(using their numbering scheme). Our much simpler analysis se?ms
to have arrived at essentially the same results as those of Good
and Gaskins, although collaboration with a subject matter expert
would be essential to correctly interpret differences in the esti-
mates.

As a final observation concerning the LRL data we point
out the similarity of %2’0(_-) and §0,42(-), which is striking when
one cpnsiders that %2’0(~) is based only on £(1) and &(2). The
paucity of parameters required for %2’0(-) to correctly describe
the major features of the LRL data becomes important in smaller

samples. This fact will be illustrated in Section 6.4.
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6.3 The Maguire Data

The data set to be analyzed in this section appears in
Carmichael (1976) and has been.studied by Maguire, Pearson
and Wynn (1952), Boneva, Kendall and Stefanov (1971), and, in
a density estimation context, by Carmichael (1976). The data,
which we shall refer to as the Maguire data, consists of 109
"time intervals in days between explosions in mines involving
more than ten men killed, from December 6, 1875 to May 29, 1951."
For our purposes, the 109 values will be regarded as independent
realizations of a random variable whose density function we wish
to estimate. |

An initial look at a histogram of the Maguire data indi-
cates the possibility of an underlying exponential type density.
Therefore, since Fourier series approximation methods work.best
for functions whose tails are similar, we have employed what
Carmichael refers to as symmetrization. Symmetrization entails
transforming the original data to the interval [0,m], and théﬁ
estimating the density f*(+) of the transformed data by first

estimating

f(x) = %f*(lx‘), xe[ -m,m].

The evenness of £(+) implies that

o (v)

fﬂ(coxvx - isinvx) f(x)dx

™
2 f cosvx f(x)dx
0

[Tcoxvx £%(x)dx, |v| = 0,1,2,... .
0



Given the previous expression for ¢(v), we form estimates

1 109

;(V) = —— I cos Vx

159 j=l 5 lv] = 0,1,2,... ,

of ¢(v), where Xj’ j=1,...,109, is the Maguire data rescaled

) 2 —— 1r
to the interval [0,m]. (The transformation Xj = 18630 yj was

used since 1630 was the longest number of days between explo-

sions.) Estimates
f;’q(x) = pr,q(x) ,» xel0,7],

of the density f*(-) may then be constructed, where
~ 1 , N ~
fp’q(x) = 5 1+ ZReal{ep(Fq(x)) - Fo(x)}]
and
2 i ivx
F.(x) =2 ¢(We ",
J v=k

A portion of the S-array for {(-1)'4¢(v)} is given in

Table 6.2. Note that, since in this case ¢(V) is real-valued,

A

the S-array is also real-valued. Based on Table 6.2, f1 0(-)

and f1 2(-) seem to be the best supported estimates of f£(¢), -
’

and certainly no estimate fp q(-) for p > 1 is supported. For
’

purposes of the MISE critierion of Chapter V, this pattern-in

the S-array suggests that, among estimates fp q(-) (p>0), we

limit consideration to estimates with p = 1.
In order to objectively choose an estimate of f¥*(-),

we shall calculate J(f; q) for each estimate 'in the class

b

Lk
A= {fp q(-): p = 0,1 and p + q < 20}.

Since ¢(v) is estimated differently here than in previous chapters,

the estimate J(fp q) derived in Chapter V must be modified

b

103



MAGUIRE DATA S-ARRAY FOR {(—1)":; ()}

TABLE 6.2

m/n 1 2 3 4 5 6
-6 -2.3442 4.1873 7.6413 .6243  31.5796 .5846
-5 -2.6173 2.2878 -1.1070 -24.0702 25.8274 -3.2688
-4 -2.5935 -1.9669 54.7387 -27.1260 82.1131 -4.2798
-3 -2.6195 -57.7808 106.6615 -13.2873 -1.5643 6.9471
-2 -2.2463 2.3738 1.9639 -4.6324  -6.4719  4.8715
-1 -2.2317 81.9580 3.3973 -9.9555 -8.5664 50.7821
0 -1.8119 1.8528 -1.1989 1.0701 -1.2228 1.2530
1 -1.8024 30.1227 - .7049 2.6439 -1.0416 -1.3733
2 -1.6175 1.5569 -1.5230 1.7872 - .4512 6.5955
3 -1.6275 .6980 12.5592 4.2834 -5.1103 3.7425
4 -1.6183 -12.1080 4.3602 3.4221 68.0605 2.8217
5 -1.7439 4.6512 -3.5795 -4.6306 19.4732 -.4310
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slightly. We have

~ _ ™, % _ 2
MISE(fg’q) = E[(f) (f;’q(x) f*(x)) “dx]
and
) _ 1TA 2 '“.A
J(f;’q) = E{(j;[f;,q(x)] dx - zé f;’q(x)dF*(x)}.

Proceeding as in Chapter V', it may be verified that the

appropriate estimate of J(f; q) is
b4

S ) = - pp 4 2(L)PT g PH
T =T T ')+ oy = (1+¢(ZV)),1> 0,
and
. oy (o
= * _4
R N AT
+ 3f"; (X)ép q(X)dx, p>0.

0 O0,ptq ?

Table 6.3 contains the value of J(f; q) for each of the

estimates in A, and shows the minimum of J(f; q) to occur at

b
A

£8 12(’). This estimate is plotted in Figure 6.4, and, for
’

the sake of comparison, the estimate f* ( <) (at which J(f

1, k)
is minimized) is plotted in Figure¢.5., The estimate fl 10( )
is seen to be smoother in the tail than is fs 12(-), a feature

b

which we noted to be a characteristic of ARMA approximators.
Whether or not the extra smoothing done by %f,lo(') is warranted
might best be judged by someone knowledgeable with the physical
situation which generated this data.

An interesting aspect of Table 6.3 is the magnitude of

A A

'J(f{ ) relative to the minimum value of J(f; ). A comparison
’ ’

of these two numbers confirms that a low frequency component is



VALUES OF J(f; q) FOR THE MAGUIRE DATA
’

~

oUW NHE

TABLE 6.3

J(f%
(£% )
-.7360
-1.0037
-1.1021
-1.1363
-1.1449
-1.1468
-1.1502
-1.1695
-1.1805
-~1.2075
-1.2179
-1.2291
-1.2250
-1.2205
-1.2141
-1.2085
-1.2039
-1.2057
-1.2091
-1.2106

-1.1907
-1.1939
-1.1807
-1.1762
-1.1687
-1.1828
- .9564
-1.1538
-1.2262
-1.1659
-1.2266

.2571
-1.2215
-1.1965
-1.2155
-1.2176
-1.2222
-1.2138
-1.1927
-1.1490

%
1,k-1

DRSS L A
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the dominant feature of the Maguire data, a fact which was
predicted by the first column of the S-array.
A final comment about this data set concerns the ability

of J(f; q) to distinguish between differing estimates. Figure

b4

6.6 shows a plot of the estimate fi 6(-), which has the third

b

largest value of J(f; q) in Table 6.3. Note that ff 6(-) does
b b

not have its maximum at zero, which is true of only one of the

other estimates considered. The other estimate of which this

i % . ims %* 5 % =

is true, fl,ll( ), maximizes J(fp,q) and is such that f1,11(°)

-11.87. This is evidence that the criterion J(f* q) is able to
b

identify the poorer estimates of f*(-).

6.4 A Simulation Study

The purpose of this section is to investigate
(i) the effectiveness of the MISE criterion for
selecting (p,q) in distinguishing between
estimates which have important differences
in ISE, and
(ii) the possible savings in ISE which may be
attained by using ARMA,rather than Fourier

series, density estimation.

In order to accomplish the above, simulations (which will here-
after be referred to as Simulations 1, 2, and 3) involving
three different density functions have been carried out. A
_description of these simulations follows.

Simulation 1. In this study, 25 independent randonm

samples, each of size 100, were generated from the Beta (12,3)

distribution using the IMSL subroutine GGBTR. The data
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Yyo i=1,2,...,100, in each sample was transformed to X =
1r(2yi -1,4i=1,2,...,100 (so that the estimated density,
£(+), is the Beta (12,3) density shifted and rescaled to fill

[-w,7]). Then, for each sample, J(f; q) was calculated for *

each estimate in the class

A —'{%‘ *): p+ q < 10};
11 p’q( ): p+q < 10}
and All’ A12’ and A13 ARMA estimates were identified, where

A

'{%' (*): q

12 0,q 1,2,...,10}, and

A13 = {f;,o(-): P 1’2"f"10}'

Finally, for each of these three estimates, f{ . (*) say,

~ LN .
ISECE! ) = [ (E! .(x) - £'(x))2dx
P»q" _p  P»q

b

was evaluated.

Simulation 2. In this simulation, 25 independent random

samples of size 50 were generated from the density function

2e_4|xl

f"(%) = ——— 1
(l_e-4w) [-m,m

](X),

a truncated Laplace density. This was done by first generating
samples from the U(0,1) distribution (using IMSL subroutine
GGUBS), and then employing the probability integral transforma-
tion. For each sample, S(E;,q) was calculated for each estimate
in

A = A" «) =
21 {fp,q( ): p=20,1and p + qfi 10},

and A21, A22’ and A23 ARMA estimates were identified, where
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p
[

{EY ()i q=1,2,...,10
2 = B (D a =1, )

and

A23 = Azz U {f;,q(-): q=0,1,...,4} .

For each of these three estimates, ISE(f; q) was evaluated.
. b

Simulation 3. In this final simulation, 15 indepen-
dent random samples of size 100 were generated from the density

(pictured in Figure 6.7)

E"(x) = oIl + 2Realle,(F,GDN T, 4G,

where
4 s ivx P
Fé(x) =2 ¢(v)e and {¢(v)}
v=1

is the sequence of estimated Fourier coefficients from the LRL
data. The samples were generated as in Simulation 2, although
in this case values of the inverse cdf had to be evaluated
numerically. TFor each sample, J(f;'q) was calculated for each

b

estimate in

= A"' o) =
A31 {fp,q( ): p=0,1,2 and p + q < 10},

and the A3l and A32 ARMA estimates were ‘identified, where
= A"' * ) =
A32 {fO,q( Y: ¢ =1,2,...,10} .

(Reasons for considering the classes of estimates defined in this
and the previous simulation are discussed below.) Finally,
ISE(f;'q) was calculated for these two estimates.

b

The results of Simulations 1,2, and 3 are summarized in

Tables 6.4 — 6.6. In order to define some descriptive measures
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which appear in Table 6.4, let f_ . (+) be the Aij ARMA estimate

ijk
in the kth repetition of Simulation i. Then
o, = — £t IsECE, )
I By 13k
and
mmmmﬁﬁ= E%Ié?““%ﬁ)‘ﬁaﬂ{

where m; = m, = 25 and my = 15. The quantity Fij is the

proportion of repetitions in the ith simulation for which

fijk(-) = fiZk(-), i.e., Fij is the proportion of cases in

which the Aij ARMA estimate is a Fourier series estimate.

Finally, for j # 2, let

ISE(f..k)
= , ke §..,,

) +

V... =4n =
ijk
ISE(fiZk

where Sij is the set of mi(l—Fij) repetition indices k for

which ISE(fijk) # ISE(fiZk)' Then, based on the Wilcoxon signed-

rank statistic for the yijk’ the Hodges-Lehmann estimate of the

median of the yijk distribution is denoted by eij' Hence, the
quantity Rij==eeij is an estimate of the median, Rij’ of the

conditional distribution of

ISE(E. ..)

ijk

ISE(fi2k)

given that ISE(fi'k) # 1.

ISE(fiZk)

Table 6.5 contains the results of three tests of

hypothesis which address the question of whether or not a

114



115

*I9ITINO UE SeM oumeﬁumw.ﬂw<o:u Jo

4STI 943l YoTyM 103 uor3rladei auo SUFISTEp 1931J POIBINOTEO 2I9M s9soyjuaied UT sIsqunu 9YJ

- 01 SLTTO® 1£870° (soTaes aoTamog) ¢Fy
€ UoTIBTRUTS
19895 Lz 92600 80020 (vwav) Tty
6£89S " 9€° ¥%250° ¥6990° (VWIV P930T13sal) mN<
~— 0'1 | 06L€0° 685L0° (SoTaes xeTanog) ¢Cy g uorieTnuTg
cT6YL ze © 65050° €150 (vwav) Ty
96°6T 0°0 (ELY0T") S6%0T* (££092°) Tzs9z"  (oaFsseadoxomne)tly

- 0°T (8SETO") 8SETO" (88ST0°) %%¥910° (sotaes uwﬁh=0thH< T UOTFIBTNUWT S
HH<

9TL9L" 4% (LITTO") 60220° (1T9210°) S%910° (VIRiV )

! d (ds1)ds 481 . 93eWL]Sy JO odAy

€ GNV ¢ ‘T SNOILVINWIS ¥0d SOILSILVLIS HAILJI¥DSHEA

9 H19VL



116

88" >

€6L" >

%.0°T >

Hmm > 99¢°

mNm > y1%°

HHm > 9%¢°

*I*D %56

00 > €a €Ty o €04

0o > ¥4 TTy gn 20y

050" > 'ta > LSO 2z Ty vsa 10y

onTea g 9z1S ordues sTseyzodiy
€2T=7 ''Hosa Oy

SHSAHLOJAH HHI A0 SISHL 40 SLINSHTY

S°9 HIAVL



savings in ISE results from using ARMA density estimation rather
than Fourier series density estimation. The three hypotheses

tested are

HOI: Rll =1 vs. Hll: R11 <1,

HOZ' R23 =1 wvs. le: R23 <1,
and

H03: R31 =1 vs. H13: R31 < 1.

The test statistic for H 1 vs H

0 i is the Wilcoxon signed-rank

statistic

w,, = L

L DI )
] kssijr(llek]) (0,“)(Y1Jk)

where r(+) denotes rank. The reason for the use of the log
transformation is that, since typically the distribution of ISE

is skewed,

ISE(%i. ) A -
n ————174L— = Zn[ISE(fijk)] - Kn[ISE(fiZk)]
ISE(fiZk)

is more nearly symmetrically distributed about zero under HOi

than is ISE(%
consideration since the Wilcoxon test is based on an assumption
of symmetry. The results of the above tests are indicated in
Table 6.5 by P values which are defined by Pij = P(W+.§ W 5
where W+ is a random variable having the distribution of a
Wilcoxon signed-rank statistic. In addition, 95% confidence

intervals for the parameters Rij are given.

The results in Table 6.5 address the second of the two

ijk) - ISE(fiZk) about its mean. This is an important

117
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considerations which were the intent 6f our investigation at
the beginning of this section. These results are strong evi-
dence that a savings in ISE is realized if the MISE criterion

q > 0) estimates rather than a class containing only Fourier
series estimates. It is important to note, though, that the
results obtained are conditional on the particular densities
considered, the sample sizes used, and the clésses of ARMA
estimates chosen for consideration. Perhaps the most important
of these three points is the choice of a class of estimates.

The estimates R21 and §23 in Table 6.4 indicate that the number
of ARMA estimates in the chosen class can be an important con-
sideration. Further, it is not clear how the results of Tables
6.4 and 6.5 would have been affected if the classes Ayps Aggs
and A3l had included estimates with larger values of p. The
restriction of the size of—A21 and A23 was motivated by the
fact that, in some initial repetitions of Simulation 2 (pre- ©
vious to those upon which Tables6.4 and 6.5 are based), the
S-array for'{(—l)v;(v)} showed a good constancy pattern in
column 1. A similar statement is true regarding A31 and Simula-
tion 3, in which case constancy was apparent in the first two
columns of a typical S-array.

The first of the two points wﬁich were to be investigated
in this section concerned the ability of the MISE criterion to

distinguish between estimates having important differences in

ISE. Evidence of this ability is given in Table 6.6 . In



(1)

(2)

(3)

(4)

(5)

(6)
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The class of Fourier series and autoregressive density
estimators is a subclass of the class of ARMA estimators.
The ARMA estimator fp q(-) estimates an approximator

td

fp q(-) which was shown to be related to the en-transform.

b

This relationship implies that fp q(x) is often a better

b}

approximation to £(x) than is fO,p+q(X)’ a Fourier series
approximator.

The estimator %p,q(i) may be expressed in terms of a
quantity which was shown to be an adaptive, generalized
jackknife statistic.

The mixture of densities having autoregressive represen-
tations is, in general, a density which has an ARMA repre-
sentation. This result implies that ARMA representations
often require fewer parameters to adequately fit a density
than do autoregressive representations.

In a probability sense, the estimator £ q(-) possesses

1,
(under certain conditions) a more rapid convergence
property analogous to that possessed by ey in the deter-
ministic setting. ‘

Two solutiops were proposed to the problem of selecting
an appropriate estimate from the class of ARMA estimates.
One solution utilizes the S-array, and in the other solu-
tion an estimator is sougﬁt which will minimize MISE(EP,q).
Simulation studies indicate that (for the densities consi-
dered) a savings in ISE results from allowing the MISE
criterion to choose from a class of ARMA (p>0, q>0)

estimates rather than from a class of only Fourier series

estimates.
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TABLE 6.6
THE ABILITY OF THE MISE CRITERION TO DISTINGUISH

ESTIMATES WITH DIFFERENT VALUES OF ISE

Type of Estimate P' P"

A

11 88.00 63.64
A

13 100.00 100.00
A21 68.00 58.82
A

23 64.00 81.25
A

31 73.33 90.91

Notes:

1. P' is the percentage of cases in which
I(Eg ) #IE )
. . ol .l " .
2. Among the cases satisfying J(fijk) # J(fiZk), P" is the

percentage of cases in which the sign of J(fijk) - J(fizi)

and ISE(f,..) - ISE(f..,) are the same,
i i2k

jk
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addition, it is noted that for all three simulations the esti-

mates which had the larger values of 3(% ) were consistently
s

among the poorer (in terms of ISE) estimates.

The final remarks to be made in this section concern
Simulation 3. In Section 6.2 it was observed that the first
two estimated Fourier coefficients of the LRL data contained
essentially all the information about the main features of
that data set, a fact that is not detected by Fourier series

A

estimates, fo’q('). With this in mind, one of the aims of
Simulation 3 was to illustrate that, if moderate sized samples
were generated from a density like that of the LRL data, a
parsimonious ARMA estimate would be preferred to a Fourier
series estimate. That this is the case is evidenced by
Table‘6z5 and the average number of Fourier coefficients,
N(A3j), used by the A3j ARMA estimates of Simulation 3. We

have

N(ABl) =4 and N(A32) = 5,47,

and thus -the econsiderable savings in ISE obtained using the A31
ARMA estimate occurred even though the ARMA estimates were, on
the average, based on fewer fitted parameters than the Fourier

series estimates.

6.5 A Sqmmarz

A new class of estimators of a probability density func-
tion, referred to as the class of ARMA estimators, has been
introduced in this work. The principal results obtained con~

cerning this class of estimators may be summarized as follows.
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Although some important resultsuhave been obtained in
this work, there remain numerous topics for future research
in ARMA density estimation. Some of these topiés, such as the
establishment of more general large sample properties, the
routine choice of a class of estimates, and further investi-
gation of the problem of selecting p and q, have been alluded
to previously. However, perhaps the most important area for
future research is a large-scale combarison of ARMA density
estimation to other common methods of density estimation.
Even though new, different methods of viewing an old problem
are of value, it is probably desirable to be somewhat economic
with regard to the number of new methods proposed. For this
reason, before being recommended for widespread use each new
" method should be validated against existing methods. A part
of this validafion for ARMA density estimation has been accom-
plished in this work, gnd the results thus far obtained indicate

the possibility of a wvaluable new method.
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