James

pub

Reé
fior

TESTING THE CORRELATION COEFFICIENT WITH

INCOMPLETE OBSERVATIONS
by
Beckett, William R. Schucany, N. J. Bosmia

Technical Report No. 153
Department of Statistics ONR Contract

November, 1981

Reseirch sponsored by the Office of Naval Research

Contract N00014-75-C-0439

sproduction in whole or in part is permitted
any purpose of the United States Government

The document has been approved for

liﬁ release and sale; its distribution is unlimited

DEPARTMENT OF STATISTICS
Southern Methodist University
Dallas, Texas 75275



TESTING THE CORRELATION COEFFICIENT WITH

INCOMPLETE OBSERVATIONS

by

James Beckett
Bowling Green State University

William R. Schucany and N. J. Bosmia
Southern Methodist University

ABSTRACT

Correlation is often investigated (and tested for significance)
in situations where some of the observations on one of the variables
are missing. Throwing away these unpaired observations may seem to
be a waste of information; a test based on all the data at hand would
seemingly be better than a test based on only some of the data avail-
able. An exact test using all the data, which is similar in form and
distribution to the usual t test based on the sample correlation
coefficient, is derived and examined. However, this exact test proves
to be a relatively inefficient way to incorporate the extra informa-
tion. This counterintuitive result provides an interesting lesson

concerning the relationship between power and degrees of freedom.

I. INTRODUCTION

Estimating or testing the correlation between two variables is

a common problem with applications reaching into virtually every



subject area which makes use of the science of statistics. In many
of these diverse applications, data on one or more of the variables
of interest may be lost, missing, or unobtainable for some of the
subjects. In a medical setting where physiological measurements are
to be obtained, subjects dying, instruments malfunctioning, and other
random miscellaneous situations (the occurrence of which should in
no way be related to any of the variables or treatments) do lead to

a missing data problem.

Practitioners of statistics since Wilks (1932) have realized
that there is additional information in the unpaired observations.

The question is how to properly and efficiently use this extra infor-
mation such that the resulting test would be more powerful than the
standard t test based exclusively on the paired observations. Herein,
a t test (with greater degrees of freedom) is derived, but in spite of
the similarity in form, the t test with more degrees.of freedom is in
fact inferior with respect to power for some alternatives.

We have found this result to be pedagogically valuable on several
counts. First, the beginning student can be led down the primrose
path for a greater impact of the point that one's intuition about a
reasonable way to do things may not be infallible. We consider it
an important general lesson that one must take care not to misuse
information thinking that this is in some way preferable to not
using it at all, Finally, this new statistic is an exception to the
rule that more degrees of freedom yields more power when comparing
two exact tests of similar form.

This new test is derived in much the same way as the usual t



test for correlation based only on the paired observations. Consider

(xi,yi), i=1,2,..., mn to be a random sample of size mtn from a

. . . . . 2 2
bivariate normal distribution with parameters Moo ox, uy, c~, and p.
Suppose m of the x values are missing (or that we have m "extra"

y values) and that we would like to test the null hypothesis Ho:p=0
versus le p > 0. Rearranging the indices for convenience we

obtain:

X sXgsXgseoosX
yl’y29}739 e ,Yn,}’n_,_l, v ,Yn+m .

The existence of an exact test based on the sample product

moment correlation coefficient is well known, using

i ™38

s 1(Xi‘xn)(yi‘yn)

n — .20 — .2
I Gy )T T (yymyy)
i=1 i=1

n

x,/nand y_ = I y./n if there are an equal number of
. 1 n . 1

i=1 i=1

x's and y's, that is, bivariate observatioms.

where x =
n

[ =

In the case at hand (n+m) paired observations are not available.
Hence one way to test Ho is to discard the additional unpaired observa-
tions. But to do so would be discarding some information. Since
the unpaired y's do give information about some of the parameters, it
would seem reasonable that we should use these y's in some fashion.

Three tests are investigated. The first one is an exact test.

The second one is based on the maximum likelihood estimate of p and
the third one is based on the generalized likelihood ratio. It will

be shown that the generalized likelihood ratio test does not depend



on the additional information.

IT. AN EXACT TEST

Let us now examine a test statistic which uses all of the data
and is similar in form and distribution to that of the familiar test
procedure for complete paired samples. The temptation is to accomodate

the extra observations of y in a straightforward manner by defining

n _ . n — 2 n+m _ 2.1/2
% = - - - -
r [.Z (xi xn)(yi yn+m)]/[.2 (xi xn) z (yi yn_m) ,
i=1 i=1 i=1
_ 1 0 . 1 n+m
where Xn = —r; z Xl and yn+m = —n?n' E yi.
i=1 i=1

We may consider r* as being derived from the following naive estimator

of p
- o n n n+m
- _xy _ 1 = 5 1 Zy2_ 1 < 32
P ~ o~ [ n ,Z (Xi Xn)(yi yn)]/[n,z (Xi xn) n+m .Z (yi yn&m) ]
o0 i=1 i=1 i=1

[n+m)/n]1/2r* .

We note that these individual estimators do not all coincide with the
maximum likelihood estimators which were given explicitly in this case
by Anderson (1957); in fact the maximum likelihood estimator of p is seen
to be something quite different from 0. However, the following theorem
concerning the exact null distribution of a test statistic based on r*

is quite similar to the result for r, the MLE in the complete sample
case.

Theorem

Under the hypothesis H.: p = 0, t* = r”f(n-lhm—Z)l/z/(1—r=’=2)1/2 is

0
distributed as Student t with nt+m-2 degrees of freedom.

1/2



Proof: Define two (n+m) x 1 vectors Zl and ZQ with elements

X,~X ifi=1, 2, ..., n

_ i“n
213 T
0 ifi=n+1,...,n+m
and
ZZi = Yi ~ Yotm for i =1,2,...,n + m.
Hence Zé ~ MVN (0, ci(I - E%E J)), where I is an (n+m) x (ntm) identity

matrix and J is an (n+m) x (ntm) matrix of ones. The conditional dis-

tribution of b = (glﬂgl)—¥§ 'Z, is normal with mean 0 and variance

1—2

(Zi'zi)_lci’ given the x's.

Further let

Z1Z

2,2
= — ' - = 1 _— .
Vo= (2ymbZy)(Z2)mb2y) = 2y [I Z1Z, ]52 .

Finally let W be the product of the matrix of the quadratic form, V,

and the covariance matrix of ZQ. Thus W has the form

25N\ o1 N o1, EE .
AR nm otm 77

The quadratic form V has a chi-square distribution if and only if W

is idempotent. The idempotence of W can be easily shown and by

2

. , , 2
inspection the rank (trace) of W is n + m 2. Thus V/Uy xn+m—2

(conditioned on Zq)' Now b and V are independent if

|
2

Ww=0 .
—1-1

Noting that Zq

immediately. Therefore t* = [b(gigl)l/z/oy]/[(V/oi)/(n+m—2)]1/2~ t

and J are orthogonal, the independence follows

ntm—2

conditional on Z,. Rewriting in terms of Z

1 and Z

yields

1 2



ek = px(ntm-2) 2/ (1-rxy /2

Since the conditional null distribution of the quantity, t*, in
no way depends on_gl(X's), it is the unconditional distribution as well.
Q.E.D.

This test is appealing inits simplicity and hence our next concern
is its efficiency. There is even some cause for optimism because of
the increased degrees of freedom. The theorem and proof above give
the null distribution of t*; however the derivation of the non-null
distribution of t* is not a simple task. For any simple alternative
hypothesis that p = po # 0, the distribution of t* is not a non~-
central t except in the special case where m = =; and hence the
exact power can be calculated in this case. The analytical calculation
of the power function in cases other than m=«» is difficult. However, é
small scale sampling experiment is sufficient to demonstrate the bad
news...that we would be better off to throw the extra y's away rather

than to use them as in t*.

ITT. Power Comparison

The power functions of these two competing procedures (t*n+m_2
and tn—2) are compared using a small Monte Carlo study. David (1954)
has tabulated the distribution of r for different values of n and op.
Using her tables the true power of the test based on r is given in
Table 1 both for comparison with the empirical power of t* and as a
validation of the simulation by their close agreement with the
empirical power of t.

For the comparison of tn__2 with t*n+m—2’ 2000 samples were

generated with n x's and ntm y's. In each case, n = 10 while m



TABLE 1

Power of tests of Ho: p =0 vs. Hl: p >0 (a = .05)

Monte Carlo Estimates Based on 2000 Samples

True Power Empirical Power
e t(10,10) t(10,10) t*(10,20) t*(10,50) t*(10,=)
0 .050 .054 .047 .050 .052
.10 .085 .096 .082 .086 .082
.20 .138 146 .136 142 .135
.30 .215 .228 .211 .213 .210
.45 .390 .393 .374 .367 - .357
.60 .623 .620 .587 .560 .536
.75 .867 .860 .792 . 764 .739
.90 .993 .994 .946 .921 .897

Maximum Standard Error of Table Entries is .011.



varied over the values 0, 10, 40 and « (limiting case of known u
and Oy). Across columns the samples consist of the same random
samples of 10 paired observations plus possibly some additional
unpaired y's to stabilize the comparison of procedures. The
computations were done on the Univac 1100 computer at BGSU. The
random normal deviates were generated using the IMSL library
subroutine GGNOR with one of their recommended seeds.

There is no evidence that t* is more powerful than t for any
value of m for any alternative value of p. On the other hand, t
is in fact significantly more powerful than t* for the larger
(p > .60) alternatives. Thus t* cannot be recommended over the usual
t-test which is based upon only the paired observations.

As m + », we get the smallest power for values of p > .45, which
may be surprising considering that as m -+ «» we say we "know" uy and
Oy. More and more power is lost (relative to the standard paired
procedure) as the true value of p departs from the null., The misuse
of the extra y's in r* is more and more evident as the underlying
true correlation increases and as the amount of unpaired data begins
to dominate the paired data. It should be noted that in this limiting
case of "known" 1 and ¢ , t* becomes

n n
thn,=) = [ 2 G () /o 11 T (e 112

i=1 i=1

which is distributed normally with mean zero and variance one under
the null hypothesis.

The poor performance of even the limiting case of r* is in line
with Wilks' (1932) estimation results of five decades ago. Thus, in

spite of the fact that r* provides an exact test for p = 0, it repre-



sents a less efficient use of the extra y values than discarding them.

IV. A TEST BASED ON THE MLE

The simplification available in the case of uy and cy known
lends itself to further examination. We focus attention on this
case because the power function has been calculated for the exact
test, t*.

The ML estimate, ;, is given by Anderson (1957) for unknown

Hs U, 0O, 0 and p. From this, the ML estimate for known u_ and
Xy X y y

cy is easily deduced. Using the following notation

2 n — -
S" = I (x,-x)(y.-y.) ,
Xy j=1 1 m i“n
n
s?= 51 (x, -%)2
X . 1 n
i=1
and 0
2 2
S = z (Y. - Y) .
y j=1 1 n

Solution of the likelihood equations yields

- 1/2
~ S Si Si 2 82
p =0 ;y + 4y (9 - —)L) .
y g n g y n
y y
It can be shown that
~ 2
0% 2 Sy
3 ~— 0 2,22 2
1-p Y s7(8%s“-s“ )
y Xy Xy
2
S 2 2 Sx
Letting r = X7 yields r“/1-r~ = — .
S S 2.2 2
X'y S_S_-S
Xy Xy
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and hence
~2 n02 2
A A UL S
l—p2 82 l—r2
y

This implies that a statistic with some similarity to t is

"2 2
-2 2
z = 22 ) Ez) = |2 [F5))isi/el

1-0 1-r vy

Now letting

V = (n-2)

1-r

and U = Syzlci yields Z = V/U.

Note first that under H 2 is independent of MR LYEEEEY

0o’ ¥

2
[see the derivation of the conditional distribution of r” given y

n

in Hogg and Craig (1970) or Johnson and Kotz (1970)]. Therefore
2

(n-2) L3 5 is independent of S;/c; , that is, V is independent of
1-r .
U. Also note that V ~ F(1,n-2) and Si/ci v Xz(n—l). Therefore the

p.d.f. of the random variable 'Z is [see Mood, Graybill and Boes (1974),

p. 187]
fz(z) = fwlulfu(u)fv(zu)du
. BLom2
_ 1 1y 2 2 -u/2
= £u F%_l_)(z) u
r (%) L M2 oy /2
EEO Y R R e T
2 l%E ( _2)—1/2z—1/2 - E%E —u/2




The integral does not have a closed form expression. It was evaluated
using 15-point Laguerre integration and verified using Whittaker
functions.

To find the critical point we seek ¢ such that for a one-sided
a = 0.05 test

P[Z > ¢] = 0.10

and then by symmetry we have
P[vVn-2 o > vnc] = P[Z

Ao T

Using a numerical search routine, c¢ was found to be 0.47717

1> Vnc] = 0.05.

and hence for the statisticlzl the critical value is 2.1844 for
n = 10 and o« = .05 (one sided test). A Monte Carlo study with one
thousand samples of size n = 10 with p = 0 exhibited an empirical
type I error rate of exactly 0.05.

A Monte Carlo power study to estimate the power of this test

based on Z along with the empirical powers of the other two

1°
competing tests based on t and t* is reported in Table 2. The

table also presents the true powers of t (10,10) and t* (10,x).

There is no evidence that the test based on Zl is more powerful than
the one based on t or t* for all alternative values of p. In fact,

Zl has significantly less power for 0.1 < p < 0.5. Figure 1 displays
the power curves of the three tests. The fact that the test based on
t* is the most powerful of the three near p = 0 is not discernible; yet
even though we noted in Section IIT that t* was inferior to t for

large p, it can be shown that t* is a locally most powerful

invariant test [Ahmad and Giri (1979)]. It is also clear that this

local optimality is rather inconsequential in light of the price

11



Power of tests of HO: o}

Monte Carlo Estimates Based on 2500 samples

TABLE 2

= 0 vs. H,:

1

p >0 (o = 0.05)

True Power Empirical Power True Power
0 t(10,10) t(10,10) Zl(lo,w) t*(10,) t*(10,®)
.00 .050 .054 .055 .053 .050
.10 .085 .089 .079 .096 .0874
.20 .138 147 116 .153 .1418
.30 .215 .224 .188 .218 .2153
.40 .321 .312 .277 .307 .3087
.45 .390 .381 .325 .368 .3624
.50 .459 441 .387 .415 .4202
.60 .623 .618 .584 .536 .5450
.75 .867 .867 .874 .739 .7385
.90 .993 .994 .999 .905 .9033
Maximum Standard Error of Table Entries: 0.010
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that is paid at the larger values of p. Finally, it seems apparent
from Figure 1 that the usual t-test is preferable to either t* (LMP)

or Zl(MLE).

V. The Generalized Likelihood Ratio Test
For completeness it is interesting to obtain the generalized
likelihood ratio statistic as a final competitor to the three tests
of the previous section. Consider again the situation in which we
have m additional observations on Y.
Following Anderson (1957), we let

v=u =B u

X Xy 'y
Bxy = ooxlcy
2 2 2
Tgey™ Tx{17P)

and the likelihood function may be written

o 2 2 1 2
L= T oG,y fusus0,00000 o6y, Ju,00)
i=1 j=1
n [ 9 n+m l 2
= T é(x.[v+B vy.5 0 )T ey fu,o0) .
=1 1L xy i’ x°y =1 iy oy
To maximize L the second product above is maximized whether HO
is true or not at
-y
y n+m =1 i
and
~9 1 n';‘m( ,\)2
o~ = — y.-u .
y wimo,, 73y

Thus the likelihood ratio will depend only upon the two maxima of

the products of the conditional densities of the X, .



Under the null hypothesis p = 0 ,which implies that B = 0
and that the MLEs are

v = X
n

and
~2 = SZ/n .
c X
Xy

The unconstrained maximization yields the usual estimates of regression

parameters,

>
wn
]

Xy’ n
and
02 =l(s2 - B sz)
Xy n x Xy 'y
= (s%s% = 5% y/ns?.
X'y Xy y

It follows algebraically that

L(HO)
A= L(Hb) = (1-

r2 n/2

)

Notice that this does not depend upon the additional observations and

offers still further support for the use of the familiar t statistic.

V. Summary

An exact test on the correlation coefficient which uses all the
available data has been derived. 1In spite of the increase in degrees
of freedom, the test cannot be recommended over the usual t test based

only on the paired observations. The exact test is actually locally

15
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most powerful invariant but this advantage quickly disappears for
moderately large alternative values of p. The test based on the
MLE of p also uses all of the data but is not better than the t

test based only on the paired observations. Finally, the genera-
lized likelihood ratio test is seen to be equivalent to the familiar
t test; the unpaired observations are ignored. Thus in spite of the
fact that t* 1) provides an exact test, 2) has greater degrees of
freedom, 3) uses all the data and 4) is locally most powerful
invariant -- all of which are desirable qualities -- it is inferior
(practically speaking) to the familiar t test, which is based only

on the paired observations.
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