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Short title: Asymptotically Optimal Designs

Summary. The limiting behaviour (as the sample size increases)
of the BLUE of the regression coefficieﬁts is investigated in the
case that derivative information is not available. Using the
results of Barrow and Smith (1979) on the asymptotic properties

of optimal quadrature formulas several results obtained by Eubank,
Smith and Smith (198l1) are extended to a multiparameter setting
and a wider class of proéesses which includes multiple integrals
of Brownian motion. The asymptotic behaviour of the variance of
the BLUE is characterized in terms of the density defining the
designs and densities which generate asymptotically optimal design

sequences are provided for several optimality criteria.

1. INTRODUCTION . Consider the linear regression model in

which a stochastic process, Y, is observed having the form
J

(1.1) Y(t) = I B.f.(t) + x(t)l t e [or]-] ’
j=1 33

'0
where B=(Bl,...,BJ) is a vector of unknown parameters, the fj are
known regression functions and X(°*) is a zero mean process with

known covariance kernel R. The X process is assumed to admit k - 1

quadratic mean derivatives at each point t ¢ [0,1].



If the Y process is sampled over all of [0,1], the
linear estimation of 8 may be accomplished through the use of the
reproducing kernel Hilbert space (RKHS) techniques developed by
Parzen (196la, 1961b). We denote this estimator by é and its
corresponding variance-covariance matrix by A—l. When observations
are taken at only a finite number of distinct design points on [0,1]
the best linear unbiased estimator (BLUE) of 8 can be constructed
through the use of generalized least squares. Various aspects of
the problem of optimal design selection for the BLUE have been
addressed by Sacks and Ylvisaker (1966, 1968, 1970), Wahba (1971,
1974) , and Eubank, Smith, and Smith (1981).

Denote the‘set of possible n+l1 point designs for model (1.1) by

(1.2) Dn : = {(to' +

1,...,tn)| 0=t <t <...<t =1},

1 n

where ":=" means "is defined as". 2also for T eDn let éq?represent

the BLUE of B based on the observation set YT = {Y(t)It €T} with
corresponding variance-covariance matrix denotea by A;l. When k = 1, i.e.,

the Y process does not admit derivatives, Sacks and Ylvisaker (1968)

considered the problem of selecting a T*c Dn so that

-1 -1
(1.3) ¢(a_) = inf (A ")
™ TeD T
n
or, alternately
(1.4) Y(AL,) = sup V(A)

TeD
n



where ¥ is some criterion function which measures the size of AT_l (e.qg.,

the trace or determinant function). A design which satisfies (1.3) is

termed yl-~optimum whereas a design satisfying (1.4) is termed y2-optimum.
As optimal designs are difficult to construct, Sacks and Ylvisaker

(1968) instead developed approximate solutions to the optimal design

problems (1.3) and (1.4) which entailed the use of design sequences.

The méthod they used for constructing such sequences was to choose the

elements of the nth design to be the n-tiles of a continuous

density funct;on, h, with support on [0,1]. A design sequence constructed

in this manner is called the regular sequence generated by h, This

relationship is abbreviated'{Tn} is RS (h).

. *
A design sequence, {Tn},is said to be asymptotically ¥l-optimum if

(1.5)  Limfinfv(a D) - v HIvan - va it =1
T
n-o TeDn n

and is asymptotically y2-optimum if

. -1
(1.6)  Lim [(A) - sup v(a)I[¥(A) - v(a_)1 " = 1.

n-® TeD
n

Sacks and Ylvisaker (1968) derived densities having the property that
the corresponding regular sequence is asymptotically Yl or yY2-optimum.
Then if h* is such a density and'{T;} is RS (h*), their approximate
solution to the optimal design problem is T:.

For k >2 it has not been possible to characterize the asymptotic
variance behavior or obtain asymptotically optimal design sequences fo;
é Instead, it has been necessary to use the less natural observation
(3

T°

set Yk T = {y (t)l j=0,...,k-1, t €T} and the corresponding best linear
r

~

unbiased estimator 8 Hence, for k >2, most of the available literature

k,T"

~

pertains to Bk T rather than BT (c.f. Sacks and Ylvisaker (1970) and
r

Wahba (1971, 1974)). This is unfortunate as derivative information on

the Y process will frequently not be available.



In this paper we examine the asymptotic behaviour of the variance
of éT where k is allowed to be any fixed finite positive integer. Using results
pertaining to the approximation of functions by splines subject to boundary
conditions it is possible to extend the asymptotic results of Eubank, Smith
and Smith (198l1) to a wider class of processes and multiparameter situations.
Thé class of processes considered includes the case when the error process
is a multiple integral of Brownian motion whose importance in terms of (1.1)
is well known (c.f. Sacks and Ylvisaker (1970)).

Our results stem from certain asymptotic properties of optimal
quadrature formula derived by Barrow and Smith (1979). The implications
of their work to the approximation of functions by splines under boundary
constraints are explored in Section 3. These results are related to the
optimal design problem in Section 4. As an illustration of the relation-
ship between these two problems consider the instance when X(°*) is a (k-1)-

fold multiple integral of Brownian motion. 1In this case optimal designs

for the one parameter case (J = 1) are obtained by minimizing

k
1 n 9 R(s t,) 2
i (¥(k)(s) -7 a r7i > ds
i

0 i=0 1 ask

with respect to(to,...,tn) and (ao,...,an). It will be seen that

k
k 9 R(s,t
ré %s) = ———%—L—L is a spline of order k with a knot at t and that both
os
f(k) and rék) will satisfy
£K*+3) 4y = r(tﬂ) (1) =0

for 3 =0,...,k -~ 1 (except for t = 1 when j = k-1). Consequently, for
this type of process, the optimal design problem is equivalent to a
variable knot spline approximation problem where both the function and

splines must satisfy boundary conditions.



We present asymptotic results in Section 2 for the special case
of J = 1 with proofs in Section 4. 1In Section 5 the case of J > 1
is examined. A theorem is given which allows for the proof of results
analogous to those of Sacks and Ylvisaker (1970) for the multiparameter
setting except without the need for derivative information.

2. The case of one parameter. For the purpose of this section

we will restrict our attention to the case of J = 1. Consequently,

model (l1l.1) can now be written as

(2.1) Y(t) = Bf(t) + X(t) , t € [0,1].

For model (2.1) an optimal n+l1 point design is a T* ¢ D which satisfies

(2.2) Var(BT*) = inf Var(BT)

TeD
n

and an asymptotically optimal design sequence,'{T;}, must satisfy

(2.3) lim Var(BT*) - Var (BR)
n*> « n — —- = 1
inf Var (B )-Var(R) )
TeD_ T

The optimal design problem can now be formulated as a nonlinear
minimum norm approximation problem for f£. Let H(R) denote the RKHS
generated by the covariance kernel R which is isometrically isomorphic
to the Hilbert space spanned by the Y process (c.f. Parzen (196la, 1961b))

and let ll-llR denote the norm in H(R). It has been shown by Sacks and

Ylvisaker (1966) that

- -2
(2.4) var(g,) = 'lRTfIIR



where RT denotes the H(R) orthogonal projector for the subspace
» 2 2 2,
Rp= span{R(-,t) [t eT}. Bas |IRTf||R = IlflIR - |lg - RTfIIR it follows

that T* is an optimal design if and only if

(2.5) |1£ - R £l = inf Hf-RTfHR .

TeD
n

Consequently, the optimal design problem is equivalent to the problem of
finding (when it exists) the best H(R) approximation to f from the nonlinear

manifold Rﬁ =0 RT . Although this latter problem is, in geheral,
TeD

n
guite difficult to solve, in certain instances, H(R) and Rn consist respec-

tively of functions and splines which satisfy certain boundary conditions.
In this event the problem becomes amenable to analysis as will be shown in

Section 4.

Now and in further discussions we will consider a specific class of Y
processes. Define the covariance kernel

1 1

k-1 k-
(2.6) K(s,t): = | (t-u)+ (;-u)+ au
0 (k-1)!

where xt = xk if x > 0 and is zero otherwise. Denote by W(t) the zero
mean, normal process corresponding to K, i.e., the (k-1)-st multiple

integral of Brownian motion, and let

we) - eww) [P (), 1= k-q,... k11, 12a<k

(2.7) Z(t): =
w(t) q

n
o

where g is some fixed but arbitrary integer between 0 and k. We

now take R to be

(2.8) R(s,t): = Cov(Z(s), Z2(t)).



More specifically, let

i+j
.o 3 K(s,t)
k13 (5 ). = L
as” at? .
Then, for g > 1
v o-1
(2.9) R(s,t) = K(s,t) = v(s)B “v(t)
where v(s) = (K(o’k_q)(s,l),..., K(O’k-l)(s,l))' and the ijth element

k31,1, 1, 5 = x-q,..., k-1. One consequence

of the matrix B is
of this choice for R is that the class of processes to be considered
includes those which have covariance structures like that of (k-~1)-fold
integrated Brownian motion (g = 0) and (k-1)-fold integrated Brownian
bridge (q = 1) processes.

We now state two theorems regarding the behaviour of BT for which

the proofs will be presented in Section 4.

Theorem 2.1 Let feH(R)f\Czk[O,l]. If h is a continuous density

on [0,1] and'{Tn} is RS(h) then

1 _(2k) 2
(2.100  limnX||e-R g2 = 2| L&D 4
T 'R k 2k
e o h°(x)
2 _ B, . .
where C; = '"2k'/2k! and B, is the 2k -th Bernoulli number.

In view of (2.4) and (2.5) it is clear that equation (2.10)

~

characterizes the asymptotic behaviour of the variance of BT in terms
of the density defining the designs. The next theorem concerns the

limiting behaviour of inf Var (BT) and provides a density which generates
TeD
n

an asymptotically optimal design sequence.



Theorem 2.1. Let £ sCzk[O,llf\H(R) and define

2/2k+1
If(Zk)(x)|

(2.11) h{x):= 2/2k+1 .

1
f 1£(2%) (] at
0

Then, if'{Tn} is RS (h)

(2.12) limxlzk{Var(éT )-Var(é)}:lim nZk{inf Var(BT) - Var(B) } =

n>® n n->e TeDn
1l 2/2k+1\2k+1
2 {2k) ~
x (f (f (x)) dx ) var?(g) .
0

It is important to note that when k > 2 the bound inf Var(BT) may
TeD

n
not be obtainable without the use of derivative information. This point
will arise as a result of the proof of Theorem 2.2 and has been discussed
by sacks and Ylvisaker (1966). However, by sampling according to the
density (2.11) an approximate solution, Tn’ to the optimal design problem
can be obtained which, for large n, will behave like an optimal design
with regards to the corresponding variance of the BLUE. It is also of
interest to note that the limit in (2.12) was not previously known to

exist although certain results given by Sacks and Ylvisaker (1970)

had the consequence of bounding lim nzk{Var(BT ) - Var(B)} between two
n>w n

numbers. The case of g = k was considered in Eubank, Smith and Smith (1978).

3. Variable knot spline approximation with boundary conditions. 1In

this section we develop certain mathematical preliminaries which will be

k -
used in latter sections. For TsDn let ST dencte the linear manifold of piece-
wise polynomials of order k (degree < k) on [0,1] in Ck-2 with breakpoints at

k . .
t ,...,tn_ . ST is usuatly called the set of splines of order k with knots

1 1

at T. Also define the nonlinear manifold of all splines with n - 1



k k
distinct knots by Sn =U. ST . Since the results which follow involve
TeD
n

approximation in the L2 [0,1] norﬁ we adopt the notation
Hel]: = (f:f2<t)dt)l/2 )

Given f ¢ L2 [0,1] and a fixed set of knots, T, the best L2[0,1]
approximation to f by the corresponding splines of order k is the
projection of £ onto S;, denoted ng. If the knots are allowed to vary
the best approximation problem becomes nonlinear as one is attempting
to find the best approximation to f from Si . Thus, in this latter case,
one is attempting to find s: £ Si so that
(3.1)  ||e-sx|| = inf {||£-s]] |s e st} .

s
Finding s; in (3.1) is a variable knot spline approximation problem
and is, in general, quite difficult to solve. However, when f ¢ Ck[O,ll,
Barrow and Smith (1978) have been able to describe the asymptotic behaviour
of Ilf - s;|| and suggest a scheme for knot selection which is asymptotically
optimal.

In the next section results will be needed regarding variable knot
spline approximation when both £ and s; are required to satisfy certain
boundary conditions. For 0 < g < k let

&% o,1) = {£e X 10,1189 M) =0, §=q,...,k-1}

and given TeDn define a corresponding spline space

k ki j
sT'q = {ses |s7(1) =0, j = q,...,k-1} .
T
When g=k we make the identification Ck'k[O,l] = Ck[O,l] and Sg'k = S;.

A variable knot spline approximation problem in this setting would entail

finding a best approximation to f from U Sk'q . As it is not clear that

TeD T
n



10

such a best approximation exists we circumvent this difficulty by instead

considering the best approximation to f from the closure of this set

k k
s+ 2 U sk*? | 5o the objective, in this case, is to find g* € S rd
n T g,n n

TEDn .

so that

(3.2) llf-s;,nl\ igf{"f'sll ‘ s e si,q} )

The spline s* n may have knot multiplicities and, consequently, may hot have

q.
the maximum number of continuity constraints.

We now present certain results regarding the asymptotic behaviour of
sa'n and Si’qf, where S;'q is the orthogonal projector for S;'q. The proofs
of the following theorems are a consequence of results pertaining to the

asymptotic properties of optimal quadrature formulas given by Barrow and

Smith (1979) and are therefore omitted.

Theorem 3.1. Let £ e ¢*"%o,11. Then,if'{Tn} is RS(h)
1 (k) 2
(3.3) 1lim n¥| |f-$J,;’qu =c {f -(—%k——(-’i’— ax}/?
n-o n 0 h(x)

1/2
where C, = (]szl/zk!) and B is the 2k~th Bernoulli number.

k 2k

Theorem 3.1 characterizes the asymptotic behaviour of the error in
approximating £ from Q;'q in terms of the density defining the knot
sequence.{Tn}. The next theorem is concerned with the free knot case
and provides an optimal density for knot selection.

Theorem 3.2. Let £ sck’q[O,l] and define the density
k 2/2k+
[f( )(x)l /2k+1

(3.4) h(x) = /3% 1 .

fl If(k) t) | at



11

Then,if Tn is Rs(h)

X, X, 1
(3.5) 1im n*||£-Sq 2¢l | =1im n® ine ||£ - Sp' 7| =ck<f £ | gy
0

e n n>o TeD

2/2k+1 | 2k+1/2
n )

Theorem 3.2 has the implication that the sequence of fixed knot
. . Squ} .
approximations to f,{ T f}, generated by h in (3.4) works as well,
asymptotically, as the corresponding sequence of best free knot approxi-
mations. This suggests the use of S;'qf as an approximate solution to
n

problem (3.2). It is worthwhile to note that both Theorems 3.1 and 3.2
deal exclusively with boundary constraints which arise as a result of

the particular design problem being considered and are readily extended

to other situations.

4, Proof of theorems. In this section we explore the connection

between the results of Section 3 and the optimal design problem
discussed in Section 2. 1In particular,proofs are given for Theorems 2.1
and 2.2.

Fix k and g and let R have the form (2.8). It is readily shown that

(—1)kR(s,t) is the Green's function for the boundary value problem

p?y - p
4.1 j
(4.1) g0y =0 3 =0,...,k-1
(3) _ -
g3’ =o0 § = k=q,...,k-1,k+q,...2k-1.

Thus it follows from this property (or directly from (2.9)) that rt(S):=R(S,t)
when considered as a function of s for fixed t is a spline of order 2k and
continuity class Czk-2 with a knot at t. Consequently,Rn is, in this case,

a nonlinear spline manifold and the optimal design problem (2,5) is in
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fact a variable knot spline approximation problem.

The RKHS generated by R is seen to consist of functions with k-1

absolutely continuous dérivatives and is given by

tel£3 01=0 3=0,...,%-1,£7 (1)=0,3=k-q, .. .k-1,£ ® e’ 0,11}, 1qx

(4.2) H(R) =
(3) (k)

i£]£9 0y=0, 5 = 0,...,x-1, £F¢e 210,11} , q=o0.

The inner product for f ang g in H(R) is given by

1
4.3 <fg> = | £ ™) (x)ax
0

2
For T‘eDn define the L [0,1] subspace

(4.4) R: : = 'spah{;ék)lrt € RT} .

In view of (4.3) we have

_ (k) k), (k) k _ (k)
@5 |leRel] = 1™ - ®a | = [1£% - & %y

where Ri is the L2[0,1] orthogonal projector for R;. Consequently, the

optimal design problem is equivalent to finding fwhen it exists) the best

(k)

’ . . k
L2[0,1] approximation to f from the splines in U RT .

TeD
n
To prove Theorems 2.1 and 2.2 we will show that the optimal design

problem is nearly the equivalent of a variable knot spline approximation

problem for St'q . This might be expected as it is apparent from the
(k)

boundary conditions (4.1) that r,

€ S;'q for t € T™\{0,1}, i.e., for

t e {tl,...,tn_l}. Hence, we are in a situation similar to that consi-

dered in Section 3. The problem preventing the immediate proof of Theorems

2.1 and 2.2 is the disparity between the dimensions and elements of the

k,q

k . . . .
sets ST and RT. It is readily seen that S;’q has dimension n + g - 1
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(k)

k : k,
and it will be shown subsequently that RT has dimension n w:Lth‘r1 £ ST d

(for g <k). To clarify and resolve these difficulties it will be helpful to
further analyze the properties of rék).

Now consider the form of R given in (2.9). For 9 > 0 let

V(s)

(vo(s) ,...,vq_l(s))'

where

K(0,k—q+i)

vi(S) = (s,1)

for i = 0,...,9-1. Using (2.6) we have that

(4.6) TS T (s - S B
sk (k-1)! t
and
_yg-i-l
(4.7) vi(k) (s) = —A=s) S
(gq-i-1)? .

(k : : . :
In view of (4.3), r(t)(s) is now recognized as the error function resulting

from the L2[0,l] approximation of K(t)(s) from the subspace
q-1
1l-s
Pq:=span{l, (l-s),...,%E:I%: } .

This fact has several consequences which are of interest. First it is seen

(k)
1

A k . 2 .
that RT.J...PGI (in L” norm). It also follows that, for g <k, r (s) is a

polynomial of degree k-1 which satisfies rl(Zk-l)(s) = 1 and, therefore, r{k)
: . . k,q (k) (k) : :
is not contained in ST . When q = k, Kl (s) € Pk SO rl(s) will vanish

(k)

identically. Finally, as K0 (k)

(s) is zero on [0,1], ro must vanish as well

which implies that, for g < k, the dimension of R; is n (the vanishing

k X . . . .
of ré ) entails that observations taken at zero provide no information about

B a fact deduced more directly from (2.1) and (4.2)).
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For T € Dn define the "design" T'by deleting the point tn =1 from T.

k,q
T

k,q

. k
For designs of this form we have R, Cs T

. Approximations from R:, and S

are related by the following lemma.

(k)

k : ‘ .
Iemma. If f € H(R) and T € D then RT,f is the best Lz[O,l] approximation

(k) k.q

t 1,
o f from ST

Proof. For 0 < g £ k the dimension of R;, is n-1. Since, for q > 0, R;, _L_Pq

. 2 k k

in L" norm) and R, C ST'q, we have
k,q _ k
St = Pq()'&r, .

In addition, through use of the boundary conditions in (4.2) and integration

by parts, it is seen that if g € H(R) and p € Pq then

1
g(k)

0 (x)p(x)dx = 0 .

k
as £ - RT,f is in H(R) it follows that f(k) - RT,f(k) is orthogonal to Pq and
Rg,. Consequently, f(k) - R;,f(k) is orthogonal to S;'q for 0 < g < k. For
k
g = 0 the lemma is verified through noting that in this case RTl = S;,O‘

To complete the proof of Theorems 2.1 and 2.2 the difficulty associated

with an observation taken at 1 must be resolved. This is accomplished through

noting that

k k, k k) k_(k k) ok.(k
(a.8) |lg - Ryellp = |1 - sp® e @) > 1@ rEe @) > (1£5-sE W)

Theorems 2.1 and 2.2 now follow, through use of the lemma and equation (4.8),
from Theorems 3.1 and 3.2 respectively. It is important to note that in the

free knot case our results necessarily pertain to the best H(R) approxiﬁ;tion
to £ from the closed set §£ rather than Rn and, hence, derivative information

may be required to obtain the bound inf Var(BT) for any particular n. However,

TED
n
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when it is not possible to sample derivatives of the Y process an
approximate solution may be obtained through sampling according to the

density (2.11).

5. The case of many parameters. We now consider the general case of

‘model (1.1) with J > 1. Assume that Y, the criterion function, is a

continuous real-valued function on the non-negative matrices which satisfies

¥(0) = 0 and ¥(B) > Y(C) if B-C is a non-negative matrix. Given a
particular criterion Y we wish to construct asymptotically V1 or
Y2 optimum design sequences. To do so it will suffice to prove an

analog of Sacks' and Ylvisaker's (1968) Theorem 3.2 for covariance

kernels of the form (2.8)

Theorem 5.1. Let fjsczk[0,11r1H(R),vj=1,...,J, and let a;

a set of positive constants. Then,for any design sequence'{Tn}

reesrdy be

J : 1,3
(5.1) lim inf n°*% a.||£.-R_ £.[]%2> ¢ ? j’-( z a)(fka)(x))z)dx
=y 33 T IRT kg j=1 N3

ny>oso J=

1/2k+1)2k+1

= X (say).

1/2k+1
"’S(fj (2k) (x))z
1

If {Tn} is RS (h) where

J
(5.2) L

z
- j=1
h(x) = 5
I{=
o\j=

1/2k+1

2 fE, (2k) (s))2> ds

then

> J
(5.3) lim n T



16

Proof. First note that since (5.3) is an immediate consequence of
Theorem 2.1 it will suffice to prove (5.1). The latter result can be
obtained through modification of work by Barrow and Smith (1978). We
highlight the differences here and refer the reader to their paper for
more details.

Through use of the lemma in Section 4 and the f;ct that,vfor
g e 1’ [0,1] . ||g-3$'qg|| z_llg—sggll it is seen that (5.1) will be
proven when it can be shown that for 94 erkIO,l], j=1,....,3,

(x)

R (x))

J 5 1 J
5.4) I a.l|g.-S c l.a, (g,
(5.4) I a;llay r 95117 2 ¢ Uy 212595

2.1/2k+1, 2k+1
Y ax ) .

The proof of (5.4) now proceeds in a step-wise manner similar to the

proof of Theorem 2 of Barrow and Smith (1978). The inequality (5.4) is

first shown to hold when gi(t) = Citk/k! . where Ci is a constant, and
J
then when g, € ck[0,1] with I ajgj(k)(t)2 > § > 0 before finally consi-

j=1 . ,
dering the general case of g; € Ck[O,l]. The details involved in the

vertification of each of these cases may be deduced from Barrow and
Smith (1978).

Theorem 5.1 provides the.crucial result for obtaining asymptotically
optiﬁal design sequences in the multi-parameter case. It is now possible
to obtain analogs of the theorems given in Section 4 of Sacks and Ylvisaker
(1968) using similar methods of proof. Examples of these results are
provided by the foliowing two theorems which deal with the trace (tr)
and determinant (det) criteria.

Theorem 5.2 Let Y(B) = tr(BM) where M is a non-negative J x J matrix
and define the density

(5:5) L. o 1000 Mol
) * 1/2k+1
fl
0

[d(e)'Mb(t)] at



where

R (2k)
(5.6) JC T C o CO PRIPIP

(2k)(x))'.

Then the design sequence {Tn} which is RS(h) is asymptotically

Y2-optimum.

Theorem 5.3. Let Y(B) = det(B) and define the density
[¢'(x)A—l¢(t)]l/2k+l

(5.7) h(x): = 0 » T7o%e1 .
J [o(e)a "o (1)) at
0 .

Then the design sequence'{Tn} which is RS(h) is asymptotically

Y2-optimum.
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