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Short Title: Optimal Designs in Time Series

Summary. Earlier results on the uniqueness and eventual uniqueness of
optimal designs for certain time series models are extended to a wider
class of processes which includes those with covariance structures such
as that of multiple integrals of Brownian motion and Brownian bridge
processes. The relationship between the problems of regression design
for time series and piecewise polynomial approximation with free break-
points is discussed and, consequently, asymptotic results obtained by
Sacks and Ylvisaker (1970) are seen to hold under weaker assumptions

for these processes.

1. Introduction. Consider the linear regression model in which a

stochastic process, Y, is observed having the form
(1.1) Y(t) = BE(t) + X(t), t e [0,1] ,
where B is an unknown parameter, f is a known regression function and X
is a zero mean process with known covariance kernel R. The X process
is assumed to admit exactly k-1 quadratic mean derivatives.
When the Y process is observed, for instance, overall of [0,1], the re-
producing kernel Hilbert space (RKHS) techniques developed by Parzen (1961la,
1961b) , may be utilized to obtain a linear unbiased estimator of the unknown

parameter B. When, instead, the process is to be sampled at only a finite



number of points the regression desigﬁ problem has been considered by
Sacks and Ylvisaker (1966, 1968, 1970), Wahba (1971, 1974), and Eubank,
Smith and Smith (198la, 198lb). Under a variety of assumptions on the
covariance kernel R, and the amount of information available on the Y
process these authors consider the problem of selecting an element, T,
from the set of all n+l point designs

(1.2) D : = {(to,tl,...,tn)|0 =ty <t 1}

< ee. <
1 tn

(where := means " is defined as") so as to minimize the variance of the
. best linear unbiased estimator (BLUE) of B obtained by sampling according
to T.

Of particular importance for this paper is the case when the Y
process as well as its derivatives may be sampled at each of the design
points. Then, for a given T ¢ Dn' one may consider the estimation of
B from the observation set
(3)

Yy, :={vyV(w|teT, j=0,...,x-1} .

k,T

We denote by Bk T the BLUE of B based on the observations Y
r

K,T" The

regression design problem, in this setting, may be summarized as follows:
Find T* € Dn such that

"~

(1.3) var (8 ) = inf Var(8 ).
k,T* TeD k,T

n

In general such a T* may not be unique and for this and other reasons may
be quite difficult to construct. The computational difficulties
associated with optimal designs led Sacks and Ylvisaker (1970) and

Wahba (1971, 1974) to develop an asymptotic solution to problem (1.3)

for several types of covariance kernels.

In a previous paper [5] we addressed the question of uniqueness



for optimal designs. It was found that for covariance kernels of a
certain form and under certain conditions on the regression function,
f, problem (1.3) had a unique solution for each n. In addition, under
weaker assumptions on f, the regression de;ign problem was shown to
eventually (for all n greater than some finite no) have unique optimal
solutions. It is the objective of the present paper to extend these
uniqueness and eventual uniqueness results to a wider class of pro-
cesses., The class of processes considered includes those having co-
variance structures such as that of multiple integrals of Brownian
motion and Brownian bridge processes. It is of interest to note that
an algorithm for optimal design computation developed by Eubank, Smith
and Smith (1981b) will also now be applicable to this class of processes,
and, consequently, may be utilized along with the unicity results of this
paper to develop a computationally feasible scheme for optimal design
construction.

In Section 2 we discuss the class of processes to be considered
and present our principal results. The proofs of these findings are
provided in Section 3. The techniques utilized in>the proofs make it
possible to draw certain conclusions regarding the asymptotic equivalence
of variable breakpoint piecewise polynomial approximation and the regres-
sion design problem considered by Sacks and Ylvisaker (1970). This point
is discussed in Section 4.

2. Results and notation. It is well known (c.f. Parzen (196la, 1961b))

that the covariance kernel R generates a RKHS which is isometrically
isomorphic to the Hilbert space spanned by the X process. We denote this

RKHS by H(R) and its associated norm by |

‘]lR. Under the assumption

that £ € H(R), the regression design problem may be reformulated as a



minimum norm approximation problem. Let

_ L i+j
2.1 r%s,e = 2 _TR(sit)
3s ot”

and for T € Dn set

(0,3)

(2.2) R_ . := span {r (,£9]teT, 5=0,...,k-1}.

Then, Sacks and Ylvisaker (1970) hawve shown that

A -2
Var(B, .) = |IRk,Tf”R

where Rk,T denotes thi H(R) orthogonal projector for the subspace Rk,T'
As ‘le,Tflli = ||f||R - 1lg - Rk’Tf||;, it follows that the optimal

design problem is equivalent to finding a T*%. ¢ Dn such that

QJ)Hf-&£JHR=Mfo—&Jﬂh
TED
n

In general, vefy little is known about the properties of T* for finite
n. However, for the type of processes studied in this paper several
positive statements can be made.

We now restrict our attention to a specific class of processes

and their corresponding covariance kernels. Let

1
(2.4)  K(s,t) = f,

(s—u)E-l(t—u)E_l

(k-1) 12

du

and let Z(+) denote the corresponding normal process, i.e., a (k-1)-

fold multiple integral of Brownian motion. Define a new process, W, by

z(t) - E-[Z(t)lz'j)(l), j=k-q,...,k-1], 0< g < k,
(2.5) W(t) =

Z(t)



Unless noted to the contrary, it will be assumed in subsequent dis-
cussions that R is given by

(2.6) R(s,t) = Cov(W (s) W(t)) .

More specifically, for 0< g< k, R can be shown to have the form
(2.7) R(s,t) = K(5,t) - v(s)'B lv(t)

where V(s) is a vector whose ith component is

1
du' i=O' co e ,q"l,

. k-1 g-i-
. _ (0,k-g+i) (1 (s~u)+ (1-u)
(2.8) v, (s): =K (s,1) fo T T

and B is a gxq matrix with ijth element

(2.9) b, .:= g ¥t k-a+])

(1,1)
ij

0 (g-i-1)! (g-4-1)!
When g = 0, R is the covariance kernel corresponding to a (k-1)-fold
multiple integral of Brownian motion whereas the case g=1 corresponds
to a multiple integral of the Brownian bridge process. The case q = k
was considered by Eubank, Smith and Smith (198la, 1981b).

For processes with covariance kernels of the form (2.7), it is
possible to prove the following theorem regarding the unicity and

eventual unicity of optimal designs for the linear estimation of B.

Theorem 2.1 . ILet k be a fixed positive integer and let f € H(R)f\czk[o,l]

(2k)> C on [0,1] and log f(zk) concave on (0,1). ‘Then, for each

with £

positive integer n there exists a unique optimal solution to the regression

design problem (2.3). If, instead, we assume that f € H(R) with both f(Zk)> 0
(2k+3) . ; . .

and f continuous on [0,1] then there is a positive integer n, such that

for all n larger than n0 problem (2.3) has a unique solution.

In addition, it is possible to prove, for general k, a finite sample
analog of an asymptotic result given by Sacks and Ylvisaker (1970) for the

special ecase of k = 2.



Theorem 2.2. If k is even and £ € H(R) with f(Zk) > 0 then if T* ¢ Dn

~

is an optimal design Var(B ) = var(B

k-1,T* k,T*)'

Theorem 2.2 has the consequence that through the use of optimal
designs one can obtain equivalent resolution using (k-1)(n+l) rather
than k(n+l) observations for k even. A result similar to Theorem 2.2
has been given by Wahba (1971) for a certain class of covariance kernels
and specific types.of regression functions.

The principal difficulties associated with the use of optimal
designs have been their possible duplicity and computational infeasi-
bility. However, in some cases it is possible to use an algorithm
developed by Chow (1978) and adapted to the regression design problem
by Eubank, Smith, and Smith (1981b) for optimal design computation.

As a result of our proofs in the next section it follows that this
algorithm is applicable for covariaﬂce kernels of the form (2.7). Con-
sequently, through use of this algorithm in conjunction with Theorem
2.1 the utilization of optimal regression designs may now be considered
as a viable estimation technique for the type of processes studied in
this paper. In addition, this entails that Theorem 2.2 has both prac-

tical and theoretical implications for these processes.

3. Proofs of theorems. In this section we analyze the structure

of the optimal design problem for covariance kernels of the form (2.7).
In particular, we prove Theorems 2.1 and 2.2. First, however, it will
be useful to consider certain recent results regarding piecewise poly-

nomial approximation which will be required in the proofs.



For 1< g £ k denote the set of polynomials of order g (degree < q)

by Pq and for a given T = (to,t ,...,tn) € Dn let P represent the set

1 k,T
of piecewise polynomials on [0,1] with breakpoints at tl"';'tn-l' Also,
denote by Pk = U Pk . the set of all piecewise polynomials of orxder k
’ ’

TeD
) n
with n-1 distinct breakpoints in [0,1]. As most of the work which follows

will involve approximation in the LZ[O'l] norm we -make the identifications

for £, g ¢ LZ[O,l],

<?,§>= fl f(x)g(x)dx
0]

and

Hell = /Y £m02ax}? .
()

2
Given f € L' [0,1] it is frequently of interest to consider finding
a best approximation to f from Pk n’ Thus, one attempts to find a T; € Dn
’

such that

(3.1) ||le-"P £l =inf||f-—Pk

k,T*
n TED
n

Ll

. Several

where P denotes the L,[0,1] orthogonal projector for Pl
’

k,T
recent results due to Barrow, et al. (1978), Barrow and Smith'(l978) and
Chow (1978) are available regarding the properties of T;. These results
were discussed in Eubank, Smith and Smith (1981) and are stated again here

for completeness.

(k) (k)

Theorem 3.1. Iet £ € Ck[O,l] with £ > 0 on [0,1] and log £  'concave

on (0,1). Then, for each positive integer n, T; in (3.1) is unique. If,

k+3 (k)

instead, it is assumed that f € C [0,1] with £

> 0 on [0,1] then there

*
is a particular integer, Dy such that for alln>nO Tn is unique.



Proposition. ILet f(k) > 0 and let p* be a best L2[0,1] approximation to £

from Pk 0 Then, if k is even, p* e C[0,1].
I

We now consider the structure of the optimal design problem for co-
variance kernels of the form (2.7). For fixed values of k and q, H(R) is

seen to consist of functions with k-1 absolutely continuous derivatives and
is given by
te1£3? (0)=0,5=0,...,%-1,£3) (1)=0,3=k-q, ... ,x-1,£% el, [0,1]},1<q2k,

(

(3.2) H(R) = .
{flf(J) (0)=OI j = Or---lk'llf k) € 142[011]}1

a=0.
where the norm for £ € H(R) is

k
.o el = 1™

Now let r. ,(s) = r<:F)
t,]

(L2[O,1])subspace

(s,t), 3 = 0,...,k-1, and define the corresponding

(k,3)

(3.4) Ri = span{R (-,t)lteT,j =0,...,k-1}

= span{r .It eT, j=0,...,k-1} .
t,3

Then, in view of (3.3}, we have
k k k k
.9 [le-R el = He®-® 0] = [[e®- & ®

k . . - k
where Rk,T is the L2[0,1] orthogonal projector for Rk,T' Consequently,
the optimal design problem is equivalent to finding the best L2[O,1]

(k)

. . . . k
approximation to f from the functions in Rk e
14

The preceding discussion serves to motivate further study of the

form of Rt o Therefore, let K (s,t), vi(s).and bij be as given in Section 2
~r

and for 0 < j <k let

3.6)  vIks) = (véj’(s),...,véfi(s))'.



Then, the elements of Rt T are
14

(3.7) rt j(s) - K(k'j%s,t) _ \fk%s)'B—lv(J)
Now set

i (t }él

i - -s)+ .
(3.8) pt(s) (i-1)! ’ i 1,...,k ,
with

(-1

i, _ i, (st

(3.9) p (s):= pl(s) = D)t

and note that this implies that

(k,3) -5
(3.10) g Ils,t) pt Yy , 3=0,...,k1,
and

. K i

(3.11) éi%s) = pq l(s) , i=0,00.,9°1 .
Upon observing that

(3) k-3 -i . .
(3.12) v = <pt L, ¥ >, i=0,.00a0, 5= 0,000,k
and

-i -3 .

(3.13) bij = <:Pq ’ Pq J:> r 1,3 =0,...,9-1,

it is readily seen that r, j
14

LZ[O,l] approximation of pt-J from Pq'

(), 0<j <k-1.

is the error function resulting from the

Using Pq to denote the orthogonal

. . k . . R
projector for Pq, the basis elements for Rk T are succinctly summarized in
14

_the following array.

top = 0 tl . ee tn-1 tn=l
k k k k k k
r 0 p, - P ) -P p - P
t.,0
. t, at € Tty <
r o q+l_ g+l g+l g+l g+l g+l
(3.14) tyjek=a-l) 0 Py~ PPy R M S =P
1 1 n-1 n-1
q q q q
r 0 p. - P R - - P 0
k-
tyrk-a t) Ty the1 T el
1 1 1 1
r 0 p -P P p ..p 0
t. k-1
if £, T dey g Tt




10

The zeros in (3.14) which occur at t5 = 0 and tn = 1 arise from the fact
that pg(s) vanishes identically and that pk—j € Pq for j = k-q,...,k-1.
This may be interpreted as indicating that observations taken on the
corresponding derivatives of the Y process at these points will provide
no information about B. This, of course, is otherwise clear from the
boundary conditions that functions in H(R) must satisfy.

It follows from (3.14) that, for T ¢ D 'Ri,T(:Pk,T' Thus, in view
of (3.5), it is now apparent that the problem of optimal design unicity
is similar to the problem addressed by Theorem 3.1. The only obstacle

preventing the immediate proof of Theorem 2.1 is that Ri T is properly
14

contained in P . To resolve this difficulty we prove the following

k,T
lemma.
Lemma . et £ € H(R) and T ¢ Dn. Then the best L2[0,l] approximation to
(k) . k (k)
£ from Pk,T is Rk,Tf .
Proof. From (3.14), we may write

k

Pt = Fq @ R, -

Using the boundary conditions in (3.2) and integration by parts it can also
be shown that for any g € H(R) and p ¢ Pq '

1
] g(k)(x)p(x)dx =0 .
0

In particular, as £f - R f is in H(R), this entails that f(k) - Ri Tf(k)
. 14

k,T
(k) ok (k)

is orthogonal in L Rk.Tf is orthogonal
14

k
5 to both Rk,T and Pq' Hence £

t and the lemma is proved.

o] Pk,T
Theorem 2.1 now follows directly, through use of the lemma, from

Theorem 3.1 upon replacing f by f(k). To obtain Theorem 2.2 we use the

Proposition to see that when k is even and T* is an optimal design



k (k) k : .
Rk'T*f € R e nclo,1 1= {rt'jlt € T*, j = 0,...,k=2} .

4. Piecewise polynomials and regression design. Sacks and Ylvisaker

(1970) have considered the asymptotic behaviour of optimal regression
designs for a particular class of covariance kernels. Under the assump-
tion that Q is a covariance kernel satisfying certain assumptions (see

Assumptions A, B and C in Section 2 of Sacks and Ylvisaker (1968)) R is

assumed to have the form

k-1 k-1
(4.1) R(s,t) = flfl (s—uiz_I;?EV)+ Q(u,v)dudv .
00 )

It is then shown that for this type of covariance kernel when f admits

the representation

1
(4.2)  £(t) = [ o(s)R(s,t) ds
for some ¢ € C[0,1] then

2k+1

im 0> § (k1) 2/2k+1
(4.3)  lim ™" inf ||f - £l] = ¢ ax }
ne TeD_ Rer g (@R (21T /s

The technique utilized in the proof of this result was to first show that
(4.3) held in the special case when Q has the form Qo(s,t) = min(s,t) and
then extend this outcome to general Q through the use of a mapping from

H(Q) onto H(Qo).

Results similar to (4.3) have been obtained by several authors for
the asymptotic behaviour of the error from the best L2[0,l] approximation
of a function from P]cxf For instance, Burchard and Hale (1975) have

14 .

.shown that if f ¢ ﬁﬁﬁo,ll, where

k : j 1, (k
(4.4) Ll[O,l] = {flf(J)absolutelycontinuous, j=0,...,k-l,f 'f( %xﬂ|dx<m},
0
then



12

2/2k+1 | 2k+1

1
2. k! ' (k)
ell” = (2K) ! (2k+1) ! fo(f (x)) dx

(4.5) Lim n”"inf|[£ - P,

n>o TeD T
n

We now indicate the connection between these two bodies of theory.

The case of Q(s,t) = min(s,t) corresponds to the event when R is

given by (2.4) and ¢ = (-1)kf(2k). As this entails qv= 0 in our work it

now follows from (3.14) that in this case Ri T and, therefore, in
14

Pk,T
this instance, the optimal design problem corresponds precisely to the

problem of best approximating f(k) from Pk,n' This clearly indicates the
reasons underlying the similarity between the asymptotic behaviour of best
piecewise polynomial approximations and optimal designs (for other remarks
on this relationship see, e.g. McClure (1975)). We now utilize the duality
between these two areas of study and note that, for the processes considered
in this paper, the work of Burchard and Hale (1975) has the consequence

(k)

that (4.3) still holds under the weaker assumption that £ ‘¢ Lﬁ[o,l].

Randall L. Eubank Patricia L. Smith and Philip W. Smith
Department of Statistics Department of Mathematical Sciences
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Dallas, Texas 75275 Norfolk, Virginia 23508
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