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1. Introduction

Das (1956) presents a method of evaluating the integral

1:/ f £(x) o X o er s X)) dxjdx, coo dx)
a
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(where f(x1 v Xg 4ttt xn) is the joint multivariate normal density function
with zero means and nonsingular variance-covariance matrix L) through the
combining of n + k independent normal variables with zero means and unit
variances. Later Marsaglia (1963) shows that this is a special case of a
convolution formula. .The complexity of implementing the solution is highly
dependent upon the size of k and Marsaglia (1963) notes that k equal to

n minus the multiplicity of the smallest latent root of t can always be

achieved. This note investigates properties of § ~that will allow smaller

values of k

2. The equivalent expression

As a method for evaluating I , Das (1936) considers two row rectors
X' = (y1 v Yo 0 Tt yn) and z' = (z1 P2ttt zk) all of whose elements
are normally and independently distributed with zero means and unit variances.
The probliem is to choose a posi£ive constant ¢ and an n x k real matrix B

such that

= 2 o
f=c°1 +BB 1)



for then x' (x1 v X 4ottt xn) can be expressed as

X = ¢y - BE

I can now be expressed as
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where P[a] = Pr(y, > @) . It is evident that a small k is advantageous.
The slight change in 1)
f=c?+mB 3)

where C 1is a diagonal matrix with positive diagonal elements Ci results

in

x =Cy - Bz

~and 2) of the form
—k/2‘[m fm n ’ k k
I = (2D IR iI::Il P ay +Ebijzj)/ci]exp(- 2'2/2 jgl dz. . 4)
j=1

3. Latent vector properties

If § can be expressed in the form 3) and w, is a latent vector



of L then

Ay = By
) :
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where b, is the jth column of B . From expression 5)

k
- .2
AW = CiWi, +Z gj/(,bij 6)
j=1
i jth . = b! 2
where Wi, 1s the 1 element of ﬁ% and gJL Qjﬂ& . If the c; are

not all equal the n equations of 6) are parametric equations for a
k dimension variety in n space of order two, V]% ;: @ brief discussion
of this may be found in Kendall (1956), page 5. That is given a vector
We algebraic operations to eliminate )‘L and the 9j£ will result in
n~k second degree homogeneous equations in the Wip - If the °i2 are

all equal say to c¢ then 6) can be written as

k .
- 3¢
wi&"zgj/cbij ' &
J=1
where 93!& = p_.'iv_v&/()\& - 02) . which are the parametric equations of a

k dimension flat, Sk

Conversely if the latent vectors of f all fall in a VE of the form

of 6) with

? ? 2
Oj‘t%gj > 0 and Ay 2 c; >0 8)

then f can be written in the form 3) . If the latent vectors of £ all



fall in a Sk with

Ol Hihy 2 0

then it can be written in the form 1) .

9)

Thus the smallest value of k for evaluating I through form 4) is

determined by the smaller of the minimum dimension of the V% 's of the

form 6) satisfying conditions 8) and the minimum dimension of the Sk

satisfying the condition 9) that contain the latent vectors of ¥

Alternative conditions can be given for the special case of k =

6) becomes

2
AgWig = CiWip T 94by
2
1 1% Mg
or —_— - = = = =
Wit Oy by Oy by

which is the parametric expression of a plane, S

1.

10)

9 passing through the

origin. Thus if the s = (l/wl{ , 1/w2{ , e, l/wnL) all fall in a

plane with parametric conditions 10) satisfying

2 '

only one auxiliary variable is necessary. For the case of c? = 02

n-1 of the A equal 02 and their corresponding OL are zero.

is the minimum latent root of I has multiplicity k-1

4. Summary

for all i

That

In general the minimum number of auxiliary variables necessary to

evaluate a multivariate normal integral through the method of Das (1956)



can be determined by the dimensions of the second order varieties with para-
metric form 6) and the dimensions of the flats that contain the latent
vectérs of the variance-covariance matrix.

This problem could also be looked at as determining the diagonal
matrix D such that [)t D has maximum multiplicity of its smallest
latent root. Then Marsaglia's (1963) solution suffices. It is interesting
to note that the difficulty of the solution, the dimension of the integration

in I , is affected by change of scales of the normal variables.
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