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One-Sided Tolerance Limits for a Broad Class
of Lifetime Distributions with Applications to Data of Limited Accuracy
ABSTRACT

Addressed is the problem of determining a one-sided tolerance limit
for a population possessing a distribution belonging to a broad class of
lifetime distributions. A new implementation of existing general theory
is given and contrasted with an earlier utilization of that theory. Gen-
eral guidelines are given for deciding which implementation to use. A
method for adjusting for the accuracy of the measuring device is discussed

and illustrated with an actual example.
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Introduction

Sometimes a specification of a manufactured product must be stated
in terms of an upper or lower tolerance limit for the attribute of the
item produced. For example, a manufacturer might state the probability
that a certain portion of mechanical components will attain at least a
given lifetime. Or a company may claim with a certain confidence that
virtually all (stated as a proportion) of its safety devices will trigger
before a dangerous condition exists.

The specific theory that is applied to provide this information will
depend on what is known about the underlying lifetime density function.
Often, sample data is either scanty or else.indicates that it would be
unlikely that the assumptions necessary to employ parametric procedures
would be valid. In either of these situations it is necessary to turn to

distribution~free methods in order to determine the desired tolerance limits.

Research for this paper was partially supported by ONR Contract No.
NO0014-75-C-0439. W. A. Woodward is Assistant Professor of Statistics

and Manager of the Statistical Research Laboratory at Southern Methodist
University. W. H. Frawley is Supervisor of Analytic Services at E~Systems.
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However, for a given confidence level Y and content 1-P the traditional
non-parametric tolerance limit (see [5], pp. 491-492) obtained from
using one of the sample order statistics requires a minimum sample size;
and, for any of a multitude of reasons, it may not be possible to obtain
this minimum sample size.

Hanson and Koopmans [2] developed a technique for calculating one-
sided tolerance limtis for a broad class of lifetime distributions
(see Appendix A). They also implemented their theory by publishing
tables of factors which can be used to calculate tolerance limits using
two adjacent order statistics. In practice, even though the underlying
distribution is continuous, the measuring instruments yield observations
to only a certain degree of accuracy. This can prove troublesome when
the degree of imprecision is relatively large, especially when tie obser-
vations are likely. We investigate the problem of applying the Hanson
and Koopmans results in these cases. As a result of this investigation
another implementation of the theory in [2] which depends on the smallest

and largest order statistics is discussed.
The Hanson and Koopman& Method

The statistic L will be called a lower 1-P content tolerance limit
with confidence level Y if the probability is at least Y that at least
proportion 1-P of the population falls above L. Upper tolerance limits
are defined in the analogous manner. In the discussion to follow it will
be assumed that the underlying lifetime distribution is such that either
upper or lower tolerance limits may be found using the method of Hanson

and Koopmans see (Appendix A). Their lower tolerance limit is
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while their upper tolerance limit is

U=Y 45 % by _, - Yn_k_j) (2)

. h . s .
where Ym is the mt order statistic from a sample of size n., For a
discussion concerning the evaluation of the constant b see Appendix A and

and [2]. The tables presented by these authors were for the case j = 1
which corresponds to the use of consecutive order statisticé in the toler-
ance limits, usually the two smallest or two largest for lower and upper
limits, respectively. The lower tolerance limit using adjacent order sta-
tistics and k = 0 is

Ly = ¥y 7 By (¥pm¥y) )

whereas the corresponding upper tolerance limit is

)

U, =Y + bH(Yn-Yn_l (4)

H n-1
where bH is tabulated in [2].

We will investigate the application of these tolerance limits in
assessing the strength of steel pipe. The strength of steel pipe is measured
by the amount of pressure whigh must be exerted before the pipe collapses. The
pressure is increased by increments of 100 pounds until casing collapse
occurs. Government specifications have set a catalog minimum for each grade
of pipe. If a company is to advertise a pipe as being of a certain grade,
then it must be able to show that the pipe will withstand a pressure at
least as great as the catalog minimum. The procedure emplbyed is to take
a sample of the pipes, usually of size less than 100 from a particular
grade because of the expense of testing, and determine whether or not the
catalog minimum is above or below the lower tolerance limit with 1-P = .995
and Y = .95. Due to the measuring technique the data is collected only to

the nearest 100 pounds and as Table 1 indicates ties occur frequently.



(Table 1 here)

Direct application of (3) yields LH = 6000 - bH(6000-6000) = 6000.
In fact if Y1 = Y2, then LH = Y2 regardless of n, P, or Y which is, of
course, disturbing. Actually we know only that 5950 < Yl < Y2 < 6050.

A conservative approach would be to consider the worst case situation,

=
o
o]
"

1 5950 and Y2 = 6050. In this case the limit is given as

[
1

6050 - bH(6050—5950)

6050 - 28.38 (100)

3212.

Upon inspection of the data we see that the 72 test values ranged
only from 6000 to 6900 which makes the lower tolerance limit of 3212 seem
excessively low. Another approach would be to consider the two pipe
pressures which were rounded to 6000 to be uniformly spaced on the inter-

val (5950,6050), i.e. Y1 = 5983.33 and Y2 = 6016.67. Using this approach

6016.67 - 28,38(6016.67 - 5983.33)

L
H

5071

a more intuitively appealing result. However, one might be concerned that
the limits obtained using this method would not actually 5e true 1-P content
tolerance limits with at least confidence y. We will address this problem
in the next section.

When’using the tabled results of Hanson and Koopmans, the dispersion
and location of the distribution is assessed by means of two adjacent order
statistics. Intuitively, when the measurements are crude, the information
given by successive order statistics concerning the dispersion, is greatly
diminished and can be misleading. More appealing limits would deal with
non-adjacent order statistics in order to provide a more accurate measure

of variability.



In light of these considerations, an intuitively appealing limit would
be that for which Xk = 0 and j = n -1, i.e. when the tolerance limit

depends on the range. The lower and upper tolerance limits are then

respectively

LR = Yn - bR(Yn-Yl) (5)
and

U = Yl + bR (Yn—Yl). (6)

(Table 2 here)

Table 2 presents values of bR for various values of n, P, and Y.

For a discussion of the computations involved in evaluating bR see
Appendix A.

It should be noted that for a given P and Yy, the tolerance limits
given in (5) and (6) as well as (3) and (4) collapse to the corresponding
traditional nonparametric tolerance limits whenever n is greater than or
equal to the minimum sample size required for the nonparametric limits
to exist. This minimum sample size for each set of parameters in Table 2
is given in parentheses following the last tolerance factor.

Applying (5) to the data of Table 1 and assuming the worst case
situation, i.e. Y. = 5950 and Y = 6950, we cbtain

1

L 6950 - bR(6950 - 5950)

R

6950 - 1.658(1000)

5292

whereas assuming a uniform spacing yields

Lé 6900 - 1.658(6900-5983,33)

5380.
In this example the limits based on the range gave lower tolerance limits
which were greater than those based on the adjacent order statistics for

both methods of dealing with rounded data. In Table 3 tolerance limits



calculated by the methods of this section are presented for eleven grades

of pipe which were tested. Of the eleven grades of pipe, the Lé limits
(Table 3 here)

were greater than the Lé limits eight times, and the Lg were greater

than the Lﬁ ten times. Indeed some of the LH limits are very poor, e.g.

grades 3 and 1ll. These limits are poor whether the worst case method or

the uniform spacing method for handling ties is used. Also of interest

is the fact that for the limits based on the range, the choice of method

made less difference than it 4id for limits based on adjacent order statis-

tics. It should be noted that for 1 - P = ,995 and Y = .95, the standard

nonparametric limits do not exist for n < 598 and thus are not applicable

here.

Monte Carlo Comparison of Tolerance Limits

In this section Monte Carlo comparisons of the tolerance limits
based on the range and on adjacent order statistics will be discussed,
As a first comparison these tolerance limits are compared using "exact"
data. In Table 4 the results of these comparisons for the normal, exponen-
tial, and chi-square distributions are given. These comparisons were made
for various values of P and a. 2ll runs were at the nominal Y = .95 level
and the ? given in the table is the estimate of Yy based on 1000 repetitions.
The quantities ﬁ and 8 are estimates of the mean and variance of the toler-
ance limits. The order statistics were generated using the method of
Schucany [4].

(Table 4 here)



In order to compare the tolerance limits discussed in this section,

a method of comparison needs to be specified. Goodman and Madansky [1]
have suggested that one-sided lower (upper) limit Al is better than A2 if
E[Al_AZ] >0 (<0). We will employ this criterion to our situation also.

With this in mind the following observations concerning Table 4 are
made:

(a) LR and UR are superior for the normal distribution while qz is

superior for the right tails of the distributions skewed to the right

as would be éxpected. For distributions strongly skewed to the right
such as the exponential or chi-square with small degrees of freedom,
the LH limits tended to be superior.

(b) The superiority of LR and UR for the normal distribution and

right tails of the skewed distributions is greater for the smaller

sample sizes, i.e. when bH is quite large.

(c) LR and UR are in general less variable than LH and UH'

(d) Although LR and UR in general show to be more conservative in

the sense that their ?'s are larger, this conservatism is often

accompanied by superior limits using the Goodman and Madansky cri-

terion. Of course this apparent contradiction occurs because of

the lower variability of the LR and UR limits.

It should be noted that neither type of tolerance limit performed well
for distributions such as the beta and uniform with known and finite support.
In fact for these distributions, sample sizes, and parameters employed in
Table 4, G fell outside the support in most cases.

The results of Table 4 indicate that the limits based on the range which
were developed to deal with data of limited accuracy are superior in some

cases to the limits based on successive order statistics even when data is

"exact."



A second Monte Carlo comparison was performed to compare the toler-
ance limits based on the range and those based on adjacent order statistics
when data is of limited accuracy. In Appendix B a formulation of the
uniform spacing method of dealing with rounded data is given.

In Table 5 results of the Monte Carlo examination of this method of
dealing with rounded data are given. From the table we see that there is
close agreement between limits of Table 5 and corresponding limits of
Table 4. In addition there were no cases of confidence Y being small
enough for us to reject the null hypothesis that Y > .95 at the .05 level.
For these reasons we feel that the uniform spacing method for handling
rounded data is a good one and thus that the worst case method is unnec-
essarily conservative.

(Table 5 here)
Summary

In obtaining tolerance limits, the engineer might use, for example,
the procedures outlined in MIL-HDBK-5C (see [3]); and there he is presented
with the alternative of using the standard nonparametric procedure if
"near normality" cannot be demonstrated. As discussed previously, sample
size can be a problem when using the standard nonparametric techniques. For
example, an A-basis (P = .01, Y = .95) distribution free tolerance limit
requires a sample of size 296. When such a sample size cannot be obtained
due to practical considerations, the normality assumption may be invoked
out of necessity. In this paper we have applied theory due to Hanson and
and Koopmans [2], which is not well known, to present an alterative course

of action.



Whereas Hanson and Koopmans applied their theory using adjacent
order statistics, we have considered another utilization of that theory
which involves the range. Results presented in this paper show that these
limits involving the range do have merit. We have compared the two tech-
niques in this paper and have outlined recommendations for their use. The
decision between the two utilizations of the Hanson and Koopmans theory
may also involve nonstatistical considerations. For example if a lower
tolerance limit is desired when items are placed on simultaneous test, then
a savings in time will be obtained by forming the limit using the first
two order statistics.

When computing the limits, onevmay also be faced with the problem
of tied observations such as those given in Table 1 concerning collapse
pressure. A procedure (the uniform spacing method) for handling this sit-
uvation is presented.

As equations (1) and (2) indicate, the tolerance limits may be based
on any combination of order statistics. The main problem is in solving
equation (A2). For example, lower tolerance limits based on the first and

+ c s . : . . : .
[Eilﬂ order statistics might prove effective if the parent distribution

is skewed to the right.



Appendix A
Summary of Hanson and Koopmans Results
In [2], Hanson and Koopmans developed the theory which provides the
basis for calculation of tolerance limits, for any sample size, in the
following two situations:
(a) If F is the distribution function, then when log F is concave
it is possible to obtain lower tolerance limits. In this case the
lower tolerance limit is given by
L

- b{( Y ) (al)

= Yeg41 Yetg+1 ~ Tkl
where Ym denotes the mth order statistic and the value of b is such

that
l/bv(b-l)/b

v . .
: k j-1 n-k-j-1
T(b) = ~——rm n' ] -Z-L. "'ff w (v-w) (1-v) dw dv
(n-k~-j-1) ! (5-1) ik { o Jo (A2)

Y, whenever n(l) < vy.

]

When w(1l) > vy, the value of b is taken to be unity, i.e. L = Yk+l’
(b) When log (1-F) is concave, then upper tolerance limits can be
calculated. BAn equivalent condition is that the density function
have an increasing hazard rate. In this case the upper tolerance limit

is given by

U=Y .+ b{(

_— ) (A3)

-Y .
Yn-k n-k-J
where b is as in (A2). As before when m(l) > y, the value of b is taken

to be unity, i.e. U =Y

n-k

Of course if the underlying lifetime distribution is such that both
log F and log (1-F) are concave then either lower or upper tolerance limits
may be obtained using the method of Hanson and Koopmans. Indeed those
authors pointed out that there is an important class of distributions for

which both log F and log (1-F) are concave., Examples of members of this
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class are the normal, gamma, beta and Weibull distributions --- either in
truncated or original form. Thus the class includes distributions possess-
ing density functions which are quite often employed to describe lifetime
situations.

Hanson and Koopmans [2] have tabled the constant b for various values of
Y, P, and sample size n for the case in which j = 1 in (Al) and (A3). 1In
this case they were able to reduce the double integral in (A2) to a sum of
two one~dimensional integrals. In fact they were able to show that in this
case,n(b) could be expressed in terms of the gamma function and the incomplete
beta distribution function which enabled existing computer routines to be

used in the evaluation of b.

In the present paper we investigate the evaluation of w(b) when j = n - 1.

In this case (A2) reduces to the one dimensional integral

n-1

1/b
w(b) = 1 - nj v l[l - (%) ] dv. (a4)
p
The integration involved in evaluating
g(b) = 7(b) -~ v (a5)

in this case was performed with 20 point Gauss-Legendre quadrature and
roots of (AS5) were approximated by the method of false position. Checks
were made for various values of the parameters using a series solution to
the integral in (A4) in lieu of employing Gaussian quadrature. At least
five decimal place agreement was observed in all cases checked. All cal-
culations were performed on the CDC Cyber 72 computer. Values of b in this

case with j = n - 1 are presented in Table 2 for various values of vy, p, and n.
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Appendix B

Uniform Spacing Method of Calculating Tolerance
Limits when Data is of Limited Accuracy

Suppose that lower tolerance limits are desired for a continuous
theoretical lifetime distribution for which the limited accuracy of the
measuring device has resulted in the observed order statistics Zyr eees
zn, whereas had the measurements been "perfect" the order statistics

would have been yl, ceer Yoo respectively. Assuming that the only measure-

ment errors made are those due to round-off, then if the measuring device

. . . r
is accurate to the nearest r, it is known only that for any m, zm -3
a r .
< ym < zm + > Of course r is always present to some degree when measure-

ments are being made on continuous variables. Application of the Hanson

and Koopmans method would yield as the lower tolerance limit

L = By T b(zk+j+1 - zk+1)' (B1)

The theoretical limit is given by

L= Yeege1 b(yk+j+l - Yk+1) ®2)
which may vary from Lz in ®B1l) by as much at = (b-.5)r.

Assume that the order statistics zl,...,znhave been observed, and

let wl = zl. Suppose further that because of the imprecision of the

measuring device, the only possible observable values for Zyr z3, cesr Zo

are wl, wl +r = Wor W, + r =w,_, etc. Now suppose that n, of the zi‘s

3 1

.eey and nk equal to w = zn. We have

are equal to w X

1’ n2 equal to Wor

two cases for approximating yl and Yyt

(1) Suppose z, = wl, i.e. nl 2 2. Then our approximations of the

unknown yl and y2 are given by §l and ?2, the expected values of

the first two ordered uniform variables over (zl - %y zl + %) in
a sample size of n, i.e. ¥, = z. - L . X and §. = §. + r
P 17N TR 7Y Thd 27717 AT

12



(2) Suppose n, = 1 (assume n

1 2> 0). Then following the same reason-

ing, 91 is the expected value of the first ordered uniform over

T r . ) . . A - . . ~ .
(zi-z, zi+2) in a sample of size 1, i.e. ¥, z Likewise, y2 is the

1

first ordered uniform over (zé—§3z2+§) in a sample of size n,, i.e.

$ =4 X 4 X

Y= %72 7F n,+1 °

Approximations of Y, and Yn—l are obtained in a similar manner. Using
these approximations, observed values of the tolerance limits Ly Ué, Lél
and Uy corresponding to (3)A4),(5),and (6) respectively are obtained by substi-
tuting Yl' y2, Yn—l' and Yn for Yl' Yz, Yn—l’ and Yn respectively.

Of course distributions other than the uniform could be considered over

the intervals (zi-ngi+§) but the authors feel that this additional sophisti-

cation in the technique would add no meaningful improvement.
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Table 1 Collapse Pressures for a Sample of

Pipes--Grade 1

Pressure Frequency
6000 2
6100 6
6200 i8
6300 7
6400 12
6500 6
6600 9
6700 5
6800 6
6900 1

72
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TABLE 2

Tolerance Factors bR for Tolerance Limits Depending on the Range

15

Y Y
. T 55 n 95 .99
P = .10 o ' P.=.95
> a5, 17691  179:79060 2 48,6315 248.39916
1 7.75870 18.92396 2 106657547. PS.6alna
4 4.50521 Re55170 4 6000391  11.38610
5 3.,30616 - S5¢58036 s 443R315 739237
6 2.69502 4423786 & 3.56125 5.89617
7 2.32317 348252 - ; -
A 2.071706 2.99948 Z ;;SSi:? 2enuh7I
Q 1.3p932 2e606374 9 2.4;43&.6 2. 045094
10 1.75034 2641636 V6 ?.209852 3rea9en
1] ] e64066 2722610 11 2.15243 3:&1%93
12 145511G.. 2e074R8 ]
13 1.67677 1495154 }; f:&EEZZ 271965
14 1.4138] 1 +54883 T4 1.k5174 o aaene
15 1.35066 1.76180 18 1.78005 t3ha0e
16 T.31251 1458700 16 1671767 5132322
V7 127100 162193 17 ée ;
18 1423412 156472 1R }:6?532 g‘éil:g
19 le20108 1451397 19 1.57n4:e 1_.973
20 lel7128 1446859 2n 1.52]08 1'9 9i6
21 le14423 1642773 o1 1449535 1:gé568
>? 1.11954 1.39071 27 T le4p283 1.815689
>3 1.09688  1+3569H >3 1+63298R 1477251
54 1407601 1432610 >4 14 0G4R 1.7319
% 1.05670 129770 >5 1e3B004 1.63452
56 103877 127148 e 136663 1 66009
27 172207 1424717 27 1e33446 162815
sq 1.00645 1.22456 oh Ye313R9 1.59845
:?\ (29) le20367 - 29 1479464 1.57075
qi l1el8374 20 1e27655 1eS448R4
: 116523 3] 1e25952 152054
:i _Je1a4783 X 1.2643456 1.49770
23 1.}314; %) 1.27824 1e475617
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(44)



TABLE 2--Continued

16

'Y Y
n . 95. .99 n .95 =99
P = .05 P=-01
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52 103946 121540 11 3034227 4,53274
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&6 1011394 1412108 13 3.00033 3.96268
58 140022R lel1K548 la 2.86924 3,75016
A0 _ 1.15077 1s 275672 357038
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Ab ' 1412375 17 257290 3.28198
ab lel1129 la 2049660 3016423
AR 109946 19 242833 3+05988
7N 1088820 20 2¢36683 2°96666
4 1ai 7747 21 2*31106 2+°88279
74 1e76723 22 2026020 2°R0687
76 1.05744 23 2021359 273775
7R le04807 24 217067 267451
R0 103909 25 2¢13100 2+61638
=] 103047 26 209419 256274
R4 102220 27 205991 2051305
ak 1601426 2R 2002790 246687
aR 14 0n65R 29 1099791 2+42380
_ (90) 30 196978 2.3835%3
31 194324 2.34576
32 191822 2,31029
33 189457 2,27683
36 1-87215% 2.,24525
35 1+R5088 2,2183g
36 1283065 2,1q707
37 1eR1139 2,14019
38 179301 2.,13462
39 1477546 2.11029
40 1¢75R68 2,0g704
41 10764260 2.06685



TABLE 2--Continued

v

n .95 .99
P = .01

= 42 172718 2,04363
43 1¢71239 2,02331
“4 1.69817 2,003g2
45 1.68449 1,95512
46 l,67132 l.96715
“7 lenspe2 l1,94986
48 l.e4e3g 1,03322
49 1,63456 l,9171¢
50 1,62313 1,90172
52 1,60139 1,87238
24 1.53101 l.saaqs
56 l,56l84 l.8192¢
58 1,54377 l,79509
60 1,52670 1,77233
67 1.51053  1,750g4
o4 1.49520 ].73051
66 1,45063 1,71124
én 1,46675 l.60293
70 l,45352 1,67552
12 l.460g9  1l,65892
74 1,47888 1.64309
76 l,4172¢4 1,62795
78 1,40¢l4 1,61347
80 1,3q54q 1,5995¢
82 1,38525 | 1,5g627
g4 1037541 1.57348
86 1,36592 l,56llg
88 1,35678 1,5493¢
90 1,34796 1,53796
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94 1,33120 1,51¢35
96 1,3232¢4 1,50611
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1lo 1,29392 1l.44297
llg 1,25859 1,4234¢
120 1,24425 1,4052¢
125 1,230g0 1,3gp2?
130 1,21gl4 1,37223
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n .95 .99
- P e .0l
135 1,20620  1,35714
140 1,106491 1.34298
lé4g 1,1g421 1,32955
150 1,1740¢ 1,31¢82
155 1,16440 1,30473
160 l,15519 1,29324
les 1,14640 1,2g22g
170 1,13g01 1,271g3
175 1,12997 1,2¢1g4
180 1,1222¢ 1,25224
las 1,1148¢ 1,24311
190 1,10776 1,2343)
lgg 1,10092 1,22586
290 1,09434 1,21776
2Vs 1,08799 1,20991
2lo 1,0g1g7 1,20237
2ls 1,07595 1.19509
220 1,09024 l,1gg07
225 1,06471 l,1g12g
230 1,05435 1,1747]
23s 1,05417 l.16836
240 1,04914 1,16220
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325 1.08014
350 1006179
375 1,0452¢
«90 1,0302g
425 1,01653
450 1000392
(459)



TABLE 2--Continued
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Y Y
.95 .99 n .95 .99
P = .005 _ P & .005

5 93.52083" 477.40577 42 l.98847 2.3527¢
3 19464593 47.2)468 43 l,07140 2.32933
4 11.00178°  20.84466 44 1,95500 2,30686
s Te97155  13,43315 45 1,93923 2,2g530
6 6244564 j0,12)47 “6 1,9249¢ - 2 26454

7. 552508 He?7225% 47 1.,90940 2,26466

5 4090656 7.09637 “q l.89528 2,22548
9 4446029 he2RP66 “9 l,aal65 2.20699
lo 4,12166 5.68528 50 l.86848 2,1g9ly
1 3,.85491 522720 52 1,84362" 2.15534
12 3.63862 b BEGES 54 l.g1991 2.12373
13 3,45920 4.56852 56 l.79781 2,0941¢
lg 3,30757  4.32288 Sg 1,77699 2.06626
lg 3.17765  4.11513 60 1,75731 2.04003
le 3.06435  3.93684 62 1,73868 2,01527
i, 2,96495 3.78l94 64 1,72100 1,99l84
lg 2.87676 3.64594 66 1,70421 1.96963
18 2,7978 3,52543 68 1,68822 1.94854
2 2.7268 3.,41779 70 l.67297 l,92g847
21 2.66239 3,32096 72 1,658641 1,90935
22 2,60365 3,23331 T4 1.64449 l.89110
23 2.54982  3,15353 76 1,63115 1.a7366
24 2,5002¢  3.0g054 78 l.6l837 . A5695
25 2.45446  3,01346 80 1.,60610 1.8400c
2¢ 2.41196 2.95155 82 1,59430 1,82565
2y 2,371239  2,gg422 84 1,58295 1,51092
a 2.335643 2,402 86 1,57203 1270675
gqg 2,30082 2,ygl23 CT) l,56149 1,7g312
30 2.26832  2.74477 90 1,55133 1,76999
31 2.237172  2,90121 92 l,54151 1,75732
32 2,20886 2.6602¢ 9 1,53203 1,74510
33 2,1815%6 2.62169 96 1,5228% 1,23330
34 2,15570  2.58527 9g l,51307 1,721gg
3¢ 2.,1311% 2.55082 100 1,50537 1,710gg
36 2.10782 2.51817 )05 1.“8498> 1.68475
37 2,08559  2.48706 110 letge606 . 1,660958
3g 2,06440  2,45768 lig ) ,44838 1,63gll
39 2.04415  2,42960 120 1,43187 l,61715
40 2,02479 2,402g2 12g 1,41637 1,59753
«1 2,00625  2,37723 130 1,40179 l.s7q11



TABLE 2--Continued

v
n .95 .99
P = .005
135 1,3q804 1,561
140 1137504 1lce5es
145 1,36272 1.52996
150 1,35102 1,51530
155 1,33990 11,5013
160 1,3293¢0 l,4g815
165 1.,319lg  1,47554¢
170 1.30951 1.46350
175 1,3002g 1,45200
lg0 1,2913pg 1,44009q
185 l,28286 1,43043
190 1,27468 },4203)
195 1,26681 1,4105g
2v0 1,25923  1,40122
2ls l.25192  1,3422)
210 1 .24487 1,38353
2ls 1,23g0¢ 1,3751%
220 1,2314g  1,36706
225 1,22511 1.35925
230 1,21g95 135169
235 1,21298 1034437
240 1,2071g 133728
245 1,20157 1033041
250 1,1g61l 1.32375
275 1,17103 1e29318
30 114902 1426646
325 1.12940  1.24282
‘go 3008177 118540
"4€5 1,06858 1¢16961
450 1,056464  1.15519
415 1,045260 lel4170
50 1,03476 112927
5¢5 ].0?501 1¢11769
550 1,058  1.10687
. 575 1,00733 109672
600 (598) 1-08718
625 107818
650 106967
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n .95 .99
P .005
675 1s06161
o0 105395
7eS 1004666
750  1e03972
17s 1403309
auo l1e02675
825 leg2068
850 Je01486
875 1e00927
900 1.00389
(919)



Table 3 Comparison of Lower Tolerance Limits with 1~P = .995 and ¥y = .95

for Various Grades of Pipe

GRADE n Ly Ly Ly Lr % Z, s
1 72 5071 5380 3212 5292 6000 6000 6900
2 83 6035 7324 3094 7225 8100 8200 9400
3 54 -6770 7404 -9994 7272 9700 10200 12500
4 79 4932 6398 2314 6287 7500 7600 9300
5 58 8903 7795 6810 7697 10000 10000 12800
6 51 11256 8346 8969 8241 12400 12400 17100
7 54 9252 12028 5928 11896 15600 16000 20400
8 57 3782 3768 1378 3684 4600 4600 5600
9 99 4179 5239 1428 5138 5800 5900 6900

10 84 5353 6526 2438 6417 7400 7500 8900
11 51  -3743 4859 -7174 4724 6400 6700 8200
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Table 4 - Monte Carlo Results

Normal (0,1), ¥

.95 , 1000 repetitions

A v A A Lr ) ) . ) Ur i
1-p , n ] o v u ag Y U g Y. U g XY
.99 so| -10.85 .264 .962 | -5.06 .026 1.000 ]10.40 .254 .946 5.04 .026 1.000
.99 100. - 4.15 .059 .908 | -4.02 .017 1.000 4.28 .064 .918 4.05 .018 1.000
.95 10l -12.37 .323 .951 | -5.55 .047 1.000 |1l2.61 .313  .957 5.56 .047 1.000
.95 25| - 4.85 094 .950 | -3.45 .023 .999 4,91 .092 .960 3.46 .022 1.000
.95 50| - 2.54 ,021 .947 | -2.50 .016 .976 2.54 .022 .951 2.50 .016 .973
.90 10| - 6.59 ,151 .961 | -3.89 .034 .998 6.35 .138 .950 3.85 .034 997
.90 25| - 2.22 021 .957 |-2.20 .ol6  .981 2.24 .022 .955 2.21 .017 .974

rm Exponential AHW Y .95, 1000 repetitions cw

1-»  n ' s Y & ' oy o Y
.99 so] - .42 .014 .98 |-2.78 .025 1.000 |25.75 .694 . 955 7.32 .066 -948
99 100! - .04 .002 .942 |-1.58 .012 1.000 {10.15 .184 .926 6.75 .051 .957
.95 10! - 2.15 .069 .965 | -3.60 .053 1.000 |23.07 .700 .931 6.64 .093 .950
.95 25! - 0.23 .009 .967 |-1.41 .015 1,000 |10.86  .249 .952 5.31 .055 .961
.95 50 0.06 .00l .959 |-0.22 .002 1.000 5.14 .057 .955 4.69 .040 .953
.90 10| - 0.94 .035 .976 |-2.03 .029 1.000 |11.92 .313° .945 5.06 .067 .955
.90 25 0.16 .00l .955 |-0.18 .003  ..999 4.44 .058 .955 4.09 .045 .956
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Table 4 - Continued

Chi-Square (5), Y

.95, 1000 repetitions

U
Ly vw H Y

1-P{ n U g Y U g Y u g Y u ) ¥

.99 s0}-5.89 .175 .964 | - 8,21 .064 1.000 | 70.89 1.767 .955}] 23.81 .161 .992
.99 | 100} - 0.62 .033 .931 | - 4.43 .031 1.000 | 28.78 .471 .924 | 21.40 .128 ,990
.95 10} -14.10 .420 .978 | -10.76 .,135 1.000 | 63.22 1.610 .946 | 22.93 .226  .987
.95 251-1.96 .084 .91 | - 3.68 .042 1.000 | 30.29 .625 .954 | 17.65 .138 .973
.95 50 0.48 .013 .941 | - 0.64 .02 .998 | 16.57 .155  ,942 | 15.55 .109  .953
.90 10}/-5.54 .190 .94 | - 5.55 .080 1.000 | 33.80 .768 .950 | 17.62 .173  .978
.90 25 0.67 .017 .958 0.21 .0l6 .993 | 14.70 .143  .943 | 13.94 .110 .954
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Table 3 - Tolerance Limits with Rounded Data T =

STD DEV

)

2
Normal (0,1) , y = .95, 1000 repetitions
L ’ c- ]
Ly Ly H UR
I-P n H Y u Y H Y u Y
.99 ! 50 | -10.8 1.00 | +5.1 1.00}10.9 1.00| 5.2 1.00
.99 100 | - 4.5 .98 | -4.2 1.00] 4.3  .97| 4.1 1.00
.95 10 { -13.1  1.00 | 5.7 1.00{12.7 1.00| 5.7 1.00
.95 . 25 | -51 1.00 | -3.5 1.,00{ 5.0 .99 | 3.5 1.00
.95 50 | - 2.6 .97 | -2.5 .98 | 2.6 .97 | 2.5 .98
.90 ;10 | - 6.8 .99 | -3.9 1.00! 6.4 1.00| 3.9 1.00
.90 | 25 |- 2.2 99 | -2.2 .99 ] 2.3 .99 2.3 .99
Exponential (1) , y = .95, 1000 repetitions
L] L L] c-
Ly by Yx R
1-p n u Y u Y u Y u Y
.99 15 |-0.5 1.00 |-2.8 1.00|26.2 1.00| 7.3 .95
{
.99 100 |- 0.0 1.00 |-1.6 1.00 |10.4 .95 | 6.9 .95
.95 {10 |-2.3 1.00 {-3.6 1.00 |23.3 .99 | 6.6 .94
.95 {25 |-0.3 1.00 {-1.4 1.00 {10.5 .98 | 5.2 .97
.95 | 50 0.0 1.00 |-0.2 1.00 { 5.5 .94 | 4.9 .95
,90 ] 10 |-1.0 1.00 |-2.0 1.00 [12.3 .99 | 5.2 .94
90 | 25 0.0 1.00 |-0.2 1.00 | 4.4 .97 | 4.0 .97
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.

Table 5 -

chi-Square (5)

Y

.95,

Continued

1000 repetitions

L} ] c- ]
Ly Lr H Ur
1-p n u Y u Y u Y M Y
.99| 50| - 6.0 1.00| - 8.6 1.00[67.0 1.00{23.9 .99
.99| 100| - 0.9 1.00| - 4.8 1.00[29.0 .94}/21.8 .99
.95} 10| -15.8 1.00| -11.1 1.00[66.7 1.00{23.0 .99
.95/ 25| - 2.6 1.00| - 4.0 1.00(29.7  .99]17.8 .99
.95 50 0.2 1.00| - 0.4 1.00]16.6  .99]15.7 .97
.90/ 10| - 6.4 1.00| - 6.0 1.00|35.1  .99(18.2 .99
.901 25 0.4 .97 0.0 .9914.4  .98{13.7 .98
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