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In this paper a slight, but important, extension of the
generalized jackknife is given. By showing that the error in
a numerical approximation is simply the degenerate case of ;
bias in an estimator, it is demonstrated that a large body of ;
theory of nuwerical analysis can be encompassed by the jack- X
knife theory. Numerous examples are given which include

parameter estimation, spectral approximation, spectral

estimation and the approximation of tail probabilities.

INTRODUCTION

In [2] the relationship between the so called e,—transformation or e-algorithm f
and the generalized jackknife statistic was discussed and many new results con— ;
cerning the latter were obtained. In this paper we expand that discussion

somewhat and establish a much more general relationship between the jackknife and

general numerical msethods. That is, by considering numerical approximations as

degenerate estimators it is pointed out that the error in a nuserical approxi-

mation is a special case of the concept of bias in an estimator. In this way it

is seen that a large body of the theory of numerical analysis can be considered

as just a speclal case of the generalized jackknife, i.e. the degenerate case.

From this point of view, it follows that the generalized jackknife can be con—

sidered as the natural extension of one of the more fundamental ideas in the

theory of numerical approximation.

Although for the most part this paper is expository and the tools employed are
not new, they are utilized in such a way as to suggest a more general applica-
bility of the bias reduction technique employed in the generalized jackknife. 1In
order to demonstrate the validity of this last remark, we first define the
generalized jackknife, and then a simple example is given which exemplifies it as
a bias reduction method. Following this example, it is shown that such well known
results as Simpson’s rule, Romberg quadrature, Weddle's rule, Newton's rule,
Newton—-Cotes, Lagrange interpolation, and the e ~transform are all simple
applications of the generalized jackknife and are in fact even more simple
applications of the generalized jackknife than the first, admittedly trivial,
exsmple. PFinally two somevhat wmore complicated examples are given, approximating
and estimating the spectral density and approximating tail probabilities.

The following definition is a rather simple, but significant, extension of the
one given in [6] for the generalized jackknife.

Definition ;. . .
Let 8;(n), 83(n),...,04,1(n) be k+l estimators (possibly degenerate) each of

vhich depend on n and let aj4 and Cji» i=1,2,...,k+l1, be real or complex numbers.
Then the generalired jackknife c(-;.“,cj) is defined by ‘

o ) uk+l(°j;.11)
G(OI’OZ"”'Ok"l;.iJ’cJ) - ui.'.l(cj;.ij) 1)
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z, z, e 2
vhere H (2 s, ) = n "1z " %L,
ox,1 e “k,k+1
and Hk+1(cj;.ij) $ 0.
Now let us define Bj(n,O) by
E[‘j(n)] = C,0 + B,(n,0) . (2)

We will only have need for two sets of Cj's in (1),namely {Cj ® 1} and the set
{c; =1, C;y = 0, jJ 2 2}. Hence we will restrict ourselves hereafter to those
sets of C5. In either event, Bj(n,0) is the bias in the estimator 0j(n). Ome
should note that if 6) is degenerate that

E[:l(n)] - ;l(n) - €0 + B (n,0) = ¢ + B (n,0) 3)

and hence

01 -9 = nl(n,o) . (8)

In this case (the degenerate one) Bj(n,8) is usually referred to as the error in
1- Thus the problem of reducing the error in an approximation can be looked at
as a special case of the problem of reducing the bias in an estimator. We will
therefore generally refer to the quantity in (4) as bias but it should be under-
stood that when the 84 are degenerate the word "error™ is more conventional.

Although the introduction of C; in Definition 1 adds some utility, it does not
effect the bilas reduction property of the generalized jackknife. That is, the
folloving theorem still obtains. )

Theorem 1. Let ;l' 62""'3k+l be k+1 estimators, such that

®
E[Oj - CjO] -1flaij(n)bi(0) . (5)

Then for every set of Cy and aj§ = ‘1j(“) such that (1) is defined,

we have
a A - ﬂk+1(°j“1j(“))
E[c(e.,0.,...,0, . .3a,.,C. 0] =0 + - ’ (6)
1*72 k+1*71§" "} "k+1‘cj"1j(“))
where
o«
ej -ifk*l.ij(n)bi(.) .

The proof of the above theorem is the same as its counterpart in (4). It holds
for all C; but, as stated previously, we will restrict ourselves to the sets of

Cy already wmentioned.
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Corollary. If aij(n) % O when 1 =k + 1,..., then G(al,az,...,ak+l;aij,01) is an
unbliased estimator for 0, i.e.,

E [ G(ol,oz,...,0k+l;aij,cj)] -0 . (7

In order to actually make use of Theorem 1 it is necessary to obtain k+l esti-
mators and their bias expansionsa. There is fortunately a standard way to obtain
these estimators in the usual statistical setting. In the approximsation area,
their method of obtainment is on the surface more varied, but at the proper level
of understanding, no different. 1In the next section, we review the standard
approach for selecting the 31 when they are not degemerate. We then demonstrate
how this blas reduction technique extends to the degenerate case.

ARALYSIS

In general the problem of selecting k+l estimators in (1) is more a problem of
selecting one estimator, and "perturbing™ it properly to obtain the other k esti-
mators, than selecting k+1 distinct estimators. In the case of the jackknife,
for example, one usually selects the 64 as follows. Let @ be a given estimator

such that (5) holds when j = 1 and let Cy = 1. Then define

-~

6 = O(Xl,xz,...,Xh)

1

- =z - (8)

8y = & = 00X Xy Xy o Xy e o X))

- - 11,12 -

0, ~ 0 0 (X e yX, X, L aee X, X L ,eea,X),
3 1 1,-1"%1 41 1,-1"%1,41 n

etc., where the bar denotes the average over the indicated possible subsamplea.
Clearly if (5) holds for j = 1, then it holds for j = 2,3,...,k+l and because of
(8), in this case we can shorten the notation to

&)

) (§3a,(n-]+1))
x,~ ~ . s i
G (o,ai(n 1+1)) nk+1(l;.1(n-j+l))

i1i=1,2,c..,k, 1 =1,2,...,k + 1 or simply G(k)(a), vhich is the common notation
for the generalized jackkmnife.

The progedure ia the same in the degenerate case. That is, select an approxi-
mation 8(h) (here we have denoted n by h since in the degenerate case the
quantity perturbed is not the sample size) and obtain the other k approximations
by varying h. The following simple examples should clarify the preceeding
notions. One should keep in mind that in every example given, the "estimator™
obtained is a form of the generalized jackknife.

Example 1.

Let X3 be an estimator for p3 based on the random sample X;,X2,...,X; from a
distribution with wmean p and variance 062, Then

2
E[X]] = p+ }-E;:— + —15 E[(x-w)°) .
n
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Therefore from the corollary we use k = 2 and find

%3 h3 (x1+3)3
1 1 1
n n-1 n-2
1 1 1
5 n’ - (n-2)?
(2),=3 Hy (X7;a,.)
G (x ) -l -
B (1;3a,.)
4 1 1 1
1 1 1
n n-1 n-2
1 1 1
n2 (n-—l)2 (n—2)2
- n n
-x 1 L (x,-%)°>

=.2
n(n-1) ifl (xi—x) + n{n-1){(n-2) el i

and

E[G(Z)(ia) - “3.

Example 2. (Simpson’s Rule)
As possibly a more fundamental example we consider the problem of approximating
0 - Jof(x)dx (10)
by the trapezoidal rule, T(h), i.e.,
8(h) = T(h) = g{f(a)+2f(a+h) 4 ... + 2f(at(m-1)h) + £(at+mh)},  (11)

where a + mh = b, Now if f is analytic over [a,b] the bias in T(h) can be shown
to be given by

2 4 2m
r(h)—o-blh +b2h + ...+b-h +R-, (12)
vhere the by do not depend on h and Ry = 0(h2®+2) . Equation (12) is referred to
as the Fuler-Maclaurin summation formula. In light of Equation (12) and Theorem
1 there are a number of ways we could select a second approximation to reduce the
bias in T(h). One of the more natural choices is T(h/2). From (12)
" blhz bzh" b-hz-
1‘(5)-0-} I3 +~—i-6-'+...+ 4- '.'R-. (13)

and the first order generalired jackknife is then given by
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h
T(h) 1'(5)
1 1
c(r(h),r(g);z“21(3"’.l) - 4
1 .
1
1 3

4, _ h 1
313 - z1(w]

- %{f(a) + 4f(a+;) + 2f(a+h) + 4f(a + 2‘%) + ... + f(a+mh)]. (14%)

Equation 14 is of course better known as Simpson's rule, a result familiar to
all students of elementary calculus. Numerous additional quadrature formulas
could be obtained in precisely the same way. For example Weddle’s rule,
Newton-Cotes method, Newton's rule, etc. could all be obtained by simply
Jackknifing T(h) using different partitions of the interval to produce the
required additional approximations. The next example demonstrates thias notion

more fully.
Fxample 3 (Romberg Quadrature)

Consider further the problem of reducing the bias in the trapezoidal approxi-
mation of the integral in (10). Example 2 established that Simpson’s rule, as
well as several common quadrature methods, are In fact first order jackknives of
~ the trapezold rule. The observation can be extended to the higher order jack-
knife. The k+1 approximations required couvld be obtained by again using (12)

and noting that

. bh’  bh* b h’"
T(—,) = 0 + + + ... + + R , (15)
3 23 .4 5283 =
4 =0,1,2,...,k.
Then the k-th order jackknife is given by
h o -24(3-1)
. - T (T 32005 2 )
G(9.,...,0 za, . ,1) = = -
1 k+1°%13 B, (132 21(3-D),
h h
T(h) !(5) cee !(_k)
2
1 272 ee. 27K
1 2—2k . 2—2&(k+1)
- . (16)
1 1 s 1
1 272 ... 27k
° -2k -2k(k+1)
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The approximation in (16) can be written in a recursive form and evaluated very
efficiently. Thus the step size, h, can be progressively reduced until
6(51,...,0k+l;ai ,1) gives the desired accuracy for 6. For these reasons it is a
very popular netgod of numerical quadrature and is more commonly referred to as

Romberg quadrature. ¢

The first few examples in numerical analysis we have given are numerical approxi-
mation of integrals. This was because of the Euler-Maclaurin formula and it was
not meant to suggest that the application of the jackknife principle is limited
to that arena. The key of course is the bias expansion. The remaining examples
are all sosewhat distinct.

P 2N

Example 4 (Lagrange Interpolation)

Consider the problem of approximating f(x) given several values of f in the
neighborhood of x, {.e., f(x1),f(x3),...,f(x}41)- Now suppose f has a Taylor
expansion about x, valid in an interval containing the xy. Then

(xl—x)k (x)
f(xl) = f(x) + (xl—x)f'(x) + ... + B f (x) + kk(x,xl)
(xz—x)k (x)
f(xz) = f(x) + (xz—x)f'(x) + ... 4+ T f (x) + Rk(x.xz)
: k
, ™ (o
f(’k+l) = f(x) + (’k+l—x)f (x) + ... + — 3 f (x) + R(x’xk+l)'

Thus we have for k-th order jackknife,

f(xl) - f(xz) .ve f(xk+l)
(xl—x) (xz-x) ces (xk;l—x)

(xl—x)k (xz-x)k . (xk+l—x)k

GLECx)) .- f(xy 5 )5(xyx),1] = i 1 - 1

(x,-x) (xz~x) oo (xk+l-x)

1

-
-
.

k

k k
(xl—x) (xz—x) cne (xk+l—x)
which, when expanded, is the well known Lagrange formula for interpolation.

Example 5 (ep~Irannfor-ution or £—algorithm)

This example was discussed in sowe detail in [2] regarding the relationship

between the }ackknife and the ep-ttansfor-. We repeat the example here with some
wmodification since the picture is now more clear. In the following we see that

the relationship between the e, —transform and the jackknife is a fundamental one, ,
but no wore so than the relation between jeckinifing and Lagrange interpolation '
or Romberg integration or even Simpson's rule.
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Consider the problem of approximating

0 =F a
k=C k

by the natural approximation

=
o(m) = [ a - (17)
k=C
Now suppose that the error im (17) eventually satisfies a p-th order homogeneous
linear difference equation with constant, but unknown, coefficients, i.e., for
m>M

AP(o(m)-0) + a. AP L(o(m)-0) + ... + a (8(m)-0) = 0 . (18)

1
Rewriting (18) we have (using a backward difference),

O(m) = 0 + ba + b,.a + ... +b (19)

1 m 2 w1 p mptl °

Of course, since the b; are unknown, 0 cannot be calculated directly from (19).

However, the generalired jackknife of 6(m) can be computed by noting that

o(m—3j) = 0 + bl’-—j + bza-—j-l + ..+ bpan—j—pu . (20)
J=0,1,...,p -
Then from (1) and (20), adopting the notatiom of (9), we have
o(m) o(m-1) ... 6(mp)
a a ees @
n w1 »p
(o) 8 ptl ces a-—2p+l
G (0(-);8-_1_j+2.1) - ’ (21)
1 1 ese 1
a a Y
n w1 »p
‘mptl “mp T m2p+l
and for m—p+l > M it follows from (7) and Theorem 1 that
6P (o(m);a 1 mo=t (22)
PTa-1-342° koG % -

In the form (21), the generalired jackknife is known as the e, ~transformation.
The transformation has been used extensively in numerical anaYyain for increasing
the rate of convergence of a sequence. It can be evaluated very efficiently by
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the so called ¢-algorithm. In the numerical example which follows we make use of
the assumption of Equation (19). However, it should be stressed that the major
application of the e, ,-transformation is to sequences for which (19) is only

"approximately” true, see {5].

Let
-
o(u - % EcoszGcD)
k=1 2

a cosn(m-1)

2-—1

difference equation with constant coefficients then it follows that
0(m)-0 satisfies (19) for p = 2 and m > 3. Thus we obtain

If one notes that for all =, is a solution of a second order

1 3
A 3 0
1 3
-3 s 1
3
r -1 1
I kcoa;i:-l) - G(Z)(o(‘);akj’l) - g .
k=1 2
1 1 1
1 3
"2 s !
3
- -1 1

The sum of the infinite series has therefore been obtained by jackknifing 0(4),

where

4
0(4) = L 59331§§T11 .
k=1 2

In this example the ay were real. Although not widely known, if the a, are
complex, the ~transform, as defined by (19), is still valid and enjoys many of
the same properties,see [4]. This observation will be used in the next example.

Example 6 (Spectral Density of an ARMA process)
Let X, be ARMA(p,q) with autocorrelation o, i.e.,
Xe ~ X~ T e T % T M%a T q"t—q

where a is zero mean white noise. Then for m > q

p(m) - ¢,p(m-1) - ... — ¢pp(-rp) -0 . (23)
Moreover for |f| £ .5 the spectral density of xt. S(f) , is by definition
®  <2xifk
S(f) =L e " p(k)

-an
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[ ]
=142Re5X o 2™k, (24)

k=1

since p(k) = p(-k) . Now let

s (£:1) = PR SN (25)
k=-}
and
®  2wifk
S(£;9) =L e " (k) . (26)
k=—}
From (24) for } > O
S(£) = 1 + 2 Re(S(£31) - Sy(£:1)) . 27

A natural approximation for S(f) is then given by the partial sum

s_(f) =-14+2 Re(s-(f;J) - So(f;j)) - | (28)

But from (23) it is easy to show that for m > g

S-(f:j) = S(£31) + bya_(f) + bz“-—l(f) + ... bp -.p+1(f)- (29)

where

o (£) = e 2Mitm ) .

But (29) is exactly the same form as (19), and as in (21), for md>g+p—1l, we obtain

(P (o_sa 1) = S(£39) » (30)

m-1-3+1°

where

=-S (f:j)

and J 18 chosen positive and sufficlently latge that 6(P) is defined, 1.e., for m
=q+p, }=p-gq. Then

S(f) =1 + 2 xs(c(")(o_-c__1 ~ja2° 1) - so(f;j)) . (31)
Thus the spectral density of an ARMA(p,q) process has been obtained by jack-
knifing the finite sum in (28). It should be noted that we could have takem j=1
in (27) and avolded what might seem as needless confusion introduced by the
notation of (27). The astute reader may have noticed however that introducing j}
in (27) and using the fact that p(m) = p(-m) allows us to compute the jackknife
from fewer values of p(m). This is important when p(m) must be estimated. In
that event, it can be shown that if p is estimated by the sample autocorrelation,
then (31) yields the wethod of moments ARMA spectral estimator. On the other
hand 1f q = 0 and the estimates of p that arise from (23) using the Burg (Marple)
estimates for the ¢; are used, then the resulting spectral estimator is the Burg
(Marple) spectral estimator. This shows that ARMA spectral estimation method is
a bias reduction method and in that sense suggests that it is more closely

related to tapering than windowing.
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Example 7 (Tail Probabilities)

In this example we will show how the jackknife can be used to obtain an approxima-
tion to a tail probability.

Let
F(®5t) = f:f(u)du . (32)

Then a natural approximation to F(w;t) ia ‘
F(xit) = [, £(v)du (33)

and the error, E(x), is given by

E(x) = F(xjt) ~ F(®;t) = -j:f(u)du . (38)
Suppose that for some n and some set of constants, {a;}, that

E@ + a2V s sk -0, (35)
i.e. that the error satisfies a linear differential equation with constant

coefficients of order n. Then, substituting F(x;t) — F(®:;t) in (35) and
rearranging we have (analogous to (20))

F(x;t) = F(=;t) + b £(x) + bzf(l)(x) PR bnf(n_l)(x) ., (36)

wvhere

b = y m=1,2,...,n-1, b = - 1 .

"But now we have a bias expansion for our approximation and it can be used in a
variety of ways to determine a generalized jackknife. For example, from (36),
form=1,2,..., we can wvrite

Dy = blf(-)(x) PO bnf"*“‘l’(x) ] (37)

From (36) and (37) the n~th order jackknife is then (shortening the notation)

F(x;t) £(x) . £ Dy
f(x) f(l)(x) oo f(n)(x)
™ ir(x;t)] = . (38)
1 0 .. 0
£(x) Ve ... £™ (x)
f(n—l)(x) f(n)(x) coe f(zn-l)(x)

Note that this is the first example of the jackknife which mskes use of our
extended definition, i.e. in this cese Cj; = 1 and cJ -0, § 2 2.

-

]
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From Theorem 1 it then follows that
G(")[P(x;t)] = I:f(u)du

for every t. In fact we can take x = t to obtain

0 £(x) e £ D
fx) fx ... £
gDy L. 20Dy
f:f(u)du - G(n)[F(x;x)] - . (39)
f(l)(x) cee f(n)(x)
£ - (20D

The result of (39) can be shown to be of value for a much larger class of
functions than those satisfying (35) since the jackknife need not eliminate all
of the bias to be of value. It can be shown under rather gemeral conditions that
the generalized jackknife of (39) converges to the tail probability with n, i.e.,

11m ¢ [r(x,0)] = JTE(w)d, - (40)

i
see (3). Thus the generalized jackknife of the rather natural approximation of .
the tail probability produces an approxismating function to that probability that
converges to the tail probability as the order of the jackknife increases.

In order to exemplify (39) and (40), let

1 a -x/8
g X °©
f(x3a,8) = Ir'(a+l)s » x 20
0 . x <0

and consider
F(=3t) = [(f(x;a,p)dx .

Table 1 tabulates G(“)[P(x;x)] as a function of n when $ = 2 and o = (n/2) -1, m
an integer, i.e. in the chi-square case. However the table is representative of
the behavior of the jackknife approximation for a variety of distributions. The
convergence wvith n can clearly be seen in the table. If one notes that for m
even, f satisfies a homogeneous linear differential equation with constant
coefficients, then that behavior is also clear in the table. For exasple
G(“)(F(x;x)) is exact for m = 4 and n 2 2. If m = 6, the approximation is no
longer exact at n = 2, but is exact for n 2 3. In any event the approximation
improves as n increases and as t increases. The latter behavior is due to the
fact that we took x = t. That is, taking x = t will limit the usefulness of the

approximation to the tails of the distribution.
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CONCLUDING REMARKS

We have demonstrated that if we consider the error in a numerical approximation
as a degenerate random varisble then numerical error is simply a special case of
statistical bias. With this connection made, general methods for bias
reduction should translate into general methods for error reduction and vice-
versa. We have shown this to be the case and demonstrated the value of the
observation in both arenas. Although the extension of the generalized jackknife
given here is a simple one, it is an important one, as the final example shows.
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