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ABSTRACT

The general approach to generating random variates through
transformations with multiple roots is discussed. Multinomial prob-
abilities are determined for the selection of the different roots. An
application of the general result yields a new and simple technique
for the generation of variates from the inverse Gaussian distribu-
tion.

1. Introduction

Occasionally it is possible to generate variates, x,
from a distribution of interest by a simple application
of the inverse probability integral transformation. If
the cumulative distribution function, F, has a closed
form expression for its inverse, F~!, then it is often
efficient to use x = F~'(u), where u« is a variate from
an acceptable uniform (0, 1) generator. When this is
not the case, it is sometimes possible to produce a
transformation to the variable of interest from an-
other variable for which a random number generator
already exists. For example, Box and Muller {1] have
shown how normal variates can be produced from
uniform variates using a direct transformation.

In some other instances a known relationship may
be of the form

v = gx), 1

and a value of x is sought for each value of v that is
generated. When a single-valued inverse does not
exist, more than one value of x satisfies (1).

For a specific observation, v,, suppose that there
are k distinct roots of (1) denoted x,, x,, - . ., X.
(Note that ¥ may depend upon v,.) The problem is
how to determine the multinomial probabilities for
choosing each of the k roots.

If X and V are discrete random variables then
probabilities can be associated with each of the &
roots. The conditional probability with which the ith
root should be chosen, p,(v,), is easily seen to be
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For the continuous case, a similar expression will be
developed for an interval about v,. Then the limit will
be taken as the interval shrinks to the point v,. The
result is not generally a simple ratio of the likelihood
of the ith root to the sum of the likelihoods of the k
roots.

2. Main Result

Suppose X and V are absolutely continuous random
variables. Let f(x) and F(x) denote the density func-
tion and the cumulative distribution function of X,
respectively. Let g be such that the first derivative of
g, g, exists, is continuous, and is nonzero, except on
a closed set of values for X with probability zero.
Consider the interval (v, — &, v, + h), where h > 0.
According to the inverse function theorem, for A
sufficiently small, the inverse image of (v, — h, v, +
h) is comprised of k disjoint intervals about the k
distinct roots. Let the interval containing the ith root,
x;, be denoted (y,, y.). If pMv,) is the probability
with which an observation should be chosen from the
ith interval given that V is in the interval (v, — A, v, +
h), then, similar to (2),
pt(v) = kP[)’u <X <yl _ . F(ye) — Flya)

JE Plyy <X <ys X [FOp) — Fiyl

=1

Since selection is to be made among the k points x,,
X, . . ., x (having observed the point v;), and these
points are the limits limy_.o [(¥;, ¥2)1 = x; and
limy_,, [(vy, — h, vy + A)] = v,, then p(v,) = lim,_,
[pM(v,)] will yield the conditional probability with
which the ith root should be selected. Hence

pi(v) = 'lll_T) ph(v,)

_ : . F()’Jz) - F()’Jl) }_'
B {l * J=§#t 'lll-T) [F()’tz) - F()’u)]
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3. Applications
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a. Symmetric Distributions

Consider first the case in which the random varia-
ble of interest, X, with mean u and variance o?, has a
symmetric distribution and satisfies the requirements
at the beginning of Section 2. Suppose that random
observations of V are easily generated, where V =
g(X) = {(X = p)/o]. It is now desired to produce
random observations of X. For each variate, v,, we
must choose between the two roots x;, = (u + ov,)
and x, = (4 — ov,). According to (3), since f(x,) =
f(x), and [g’(x,)| = [g’(x;)|, then p;(vy) = pa(v)) = {.
The obvious solution is to choose the roots with
equal probabilities. We have now justified generating
Laplace (double exponential) variates from simple
exponential variates or even normal variates from x,
observations. Without the symmetry of f and g
above, the correct probabilities may not be so ob-
vious, but (3) can still simplify nicely as the next
example demonstrates.

b. Inverse Gaussian Distribution

The standard form for the density of the inverse
Gaussian distribution [3] is given by

fGesp, N = \/;;ex [—A(x - u)z]

2u’x
x>0, u>0A>0.
The cumulative distribution function as given by
Chhikara and Folks [2] is expressed in terms of
cumulatives of the standard normal and is not easily
inverted.
Following Shuster {4] we may write
—_ 2
Mﬁﬁﬂ ~ X )
Observations from x%, are easily generated as the
squares of standard normals. For each chi-square
variate, v,, we must solve (4) for x to obtain a
corresponding observation from the inverse Gaussian
distribution. For any v, > 0 there are exactly two
roots of the associated quadratic equation which can
always be expressed as

Ko  u
=p+ 520 - By, + piy?
X [ 2N 2N HAYy T 1Y

V=gX) =

and
X, = p2/x &)

since the relationship which exists between the roots
of any quadratic equation implies here that x;x, = u®.

The difficulty in generating observations with the
desired distribution now lies in choosing between the
two roots. From the previous section it has already
been argued that x, should be chosen with probability

g'(x,) f_(_xﬁ}
g'e)l fin)) -
Using (5) it can be shown that f(x,)/f(x;) = (x;/up

and g'(x)/g'(x) = —(u/x,)*. Hence the smaller root,
x,, should be chosen with probability

Plv) =1 — pylyy) = {l +

n
mtx

pi(vy) = (6)
So for each random observation from a chi-square
distribution with one degree-of-freedom, v,, the
smaller root is calculated. An auxillary Bernoulli trial
is then performed with p,(v,) = /(s + x,). If the trial
results in a ‘‘success’’, x, is chosen; otherwise, the
larger root, x, = u?/x,, is chosen.

A typical FORTRAN subroutine for generating
the observation might contain code similar to the
following:

C V HAS A CHISQUARE())
C DISTRIBUTION
W = MU*V
C C = MU/(2.*LAMBDA) NEED NOT
C BE COMPUTED FOR EACH LOOP
X1 = MU + C*(W -
SQRT(W*(4.*LAMBDA + W)))
Pl = MU/(MU + X1)
Y HAS A UNIFORM(0, 1)
DISTRIBUTION
X=Xl
IF (Y .GE. P1) X = MU*MU/X1
C THE DESIRED VARIATE IS
C RETURNED IN X

The subroutine which we actually implemented re-
turns independent pairs of inverse Gaussian variates
since the Box-Muller routine returns pairs of standard
normal variates, which are squared to obtain pairs of
independent chi-square variates.

In testing the above procedure several large sam-
ples were generated with various combinations of the
parameters 4 and A. The Kolmogorov-Smirnov good-
ness-of-fit test was applied to each sample. There was
no evidence to indicate that the generated observa-
tions did not come from the inverse Gaussian distri-
bution.

When we first encountered the problem of generat-
ing random observations from the inverse Gaussian
distribution, several other methods were proposed for
determining the probability with which the smaller
root should be chosen. Each method had some intui-
tive appeal, but contained a subtle error which could
have been avoided by adhering to the procedure
developed in Section 2. The correct probability, given
by (6), is a simple expression, but quite difficult to
produce intuitively.

An alternative general method which has been used
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successfully for other distributions is that of poly-
nomial approximation to the inverse cumulative. The
difficulty in this instance is that u is not a location
parameter and hence a different polynomial would be
required for each value of . On the other hand, the
method of Section 2 is more efficient as well as being
exact.
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