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SUMMARY 

Seber (1986) suggested an approach to population density estimation using kernel estimates of the 

probability density of detection distances in line transect sampling. Chen (1996) and others have employed cross 

validation to choose a global bandwidth for the kernel estimator or suggested adaptive kernel estimation (Chen 

1997). Since estimation of the density is required at only a single point, we propose a local bandwidth selection 

procedure that is a modification of the method of Schucany (1995) for nonparametric regression. We report on 

simulation results comparing the proposed method with cross validation and adaptive estimation. The local 

bandwidths produce estimates with mean squares that are half the size of the others. Consistency results are also 

provided. 
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1. Introduction 

Sampling to estimate population density is a common practice among biologists. For 

example, the populations of a large number of species of mussels are declining (Williams et al. 

1993) which has lead to efforts to quantify and monitor the population densities of the involved 

species. One of the more frequently employed sampling techniques is line transect sampling 

(Burnham et al. 1980, Buckland et al. 1993). In line transect sampling, the distances &om the 

objects of interest to randomly selected transect lines are used. The result is to estimate 

A 

population density by D = - , where n is the number of objects seen, L is the length of line 
2L 

traversed, and j(0) is an estimate of the underlying probability density function of perpendicular 

sighting distances evaluated on the transect line (i.e. distance = 0). 

Numerous authors have suggested parametric estimates off(0) (Polluck 1978, Buckland 

1985), while Burnham et al. (1980) suggested using Fourier series methods. Seber (1986) seems 

to be the first to suggest using kernel density estimation (see Silverman 1986) techniques to 

obtain a nonparametric estimate off(0). Kernel density estimates require the specification of a 

smoothing parameter or bandwidth that governs the smoothness of the resulting estimator. 

Figure 1 depicts a kernel estimate of the probability density of the sighting distances of mussels 

using a arbitrary global bandwidth of 20 cm. The estimated density at zero is used in the formula 

above to estimate population density. The goal in bandwidth selection is to select a bandwidth 

that balances bias and variance. The typical approach minimizes some estimate of mean squared 

error (MSE). 

[ Insert Figure 1 here ] 



Figure I .  Estimated Kernel Density of Sighting Distances of Mussel Line Transect Sightings 

Using a Global Bandwidth of 20 cm. 

distance (cm) 



One method of bandwidth selection in line transect sampling suggested by Chen (1996), 

is least squares cross validation (LSCV). It is a global estimate, using the same bandwidth at 

each point of estimation. Because it is global in nature, it does not allow for different amounts of 

smoothing at different estimation points. Specifically, in line transect sampling where an 

estimate of the probability density of distances is only required at a single point, the bandwidth is 

influenced by the shape of the density at other locations. 

Another method of bandwidth estimation, suggested to overcome some of the difficulties 

of LSCV, is adaptive bandwidth estimation. A form of the adaptive method is advocated by 

Chen (1997) in line transect sampling. Adaptive bandwidth selection allows a different 

bandwidth for each observation, thus allowing different amounts of smoothing at different points 

of estimation. Implementation typically requires both the use of a pilot estimate of the density 

and cross validation. 

Yet another method of bandwidth selection that is especially pertinent to line transect 

sampling is local bandwidth selection. In local bandwidth selection, a different bandwidth is 

used at each point of estimation. Hence, in line transect sampling, only one bandwidth for 

estimation at zero needs to be specified. However, consistent estimates of unknown quantities 

are required to plug into an expression for the bandwidth that minimizes local asymptotic MSE. 

In Section 3, we present a local bandwidth estimator similar to the one developed for 

kernel regression by Schucany (1995). This modification is particularly useful in line transect 

sampling. We show by simulation results in Section 4 that the MSE of the resulting population 

density estimates are smaller than those of LSCV and adaptive bandwidth estimation by a factor 

of two or more. We also apply each method in the estimation of the population density of a 



common species of mussel (Actinonaias ligametina). Consistency results for the local bandwidth 

selection estimators are provided in a technical appendix. 

2. Kernel Estimation of Population Density 

To estimate the probability density,f(t), of a random variable without specifying the form 

of the underlying density Silverman (1986) and Wand and Jones (1995) describe the kernel 

estimator 

where x,,. . .,x,, are a random sample, K(.) is a weight function, and h is a smoothing parameter. 

Typically, K(') is taken to be a symmetric, univariate probability density function, like the normal 

density or the quadratic density, ~ ( u )  =.75(1- u2) l (u )  , which has been shown to have 

good asymptotic properties (Epanechnikov 1969). Choice of the kernel function has been shown 

to be less critical than selection of the smoothing parameter ( Silverman 1986 ). A large 

bandwidth will result in a more biased but less variable estimate and a small bandwidth will 

result in a more variable but less biased estimate. Hence, a reasonable goal is the selection of a 

bandwidth that minimizes MSE. 

When estimating population density using distances from transect lines, the estimate D , 

is 

where n is the realized number of objects sighted, L is the length of the transect line, and j (0 ;h)  

is the kernel estimate of the density of sighting distances from the transect line. 



One feature of kernel estimates is their increased bias near bounds on the domain of the 

data. It has been suggested by Silverman (1 986) that one way to account for this boundary bias 

is to adjust the estimator near the edges resulting in 

This adjusted estimator has little or no effect away from the edge of the data. For estimation at 

zero, as with distance data, 

because K(.) is symmetric about zero. 

Chen (1 996) suggested least squares cross validation (LSCV) to determine h. Essentially, 

LSCV minimizes an estimate of mean integrated squared error, i ( j ( x )  - ( ~ ) ) ~ d x ,  by finding 

the value of h that minimizes 

where j+(xi;h) is a kernel estimate as in (2.1) without the i' data value. Obviously, LSCV 

yields an estimate of bandwidth that satisfies a global criteria even though estimation at only one 

point is required for line transect data. Furthermore, LSCV is quite variable and converges 

slowly to the asymptotically optimal value (Hall and Marron 1987, Park and Marron 1990 ). We 

will include this j(0;  &, ) for (2.2) in our simulation study. 

Chen (1997) also suggested, in a somewhat different setting, that adaptive bandwidth 

selection be used. An adaptive density estimate, j, (t; h) , analogous to (2.1) is 



It should be noted that a different bandwidth is used for each data value. The theory for this 

method of bandwidth estimation suggests that reducing the order of the bias is possible 

(Abramson 1982). Chen suggested the implementation of Silverman (1986) which requires a 

pilot bandwidth, usually taken fkom a reference parametric family of distributions. For the 

normal distribution using the quadratic kernel, this pilot bandwidth is h, = 2.345n-1/5sx, where 

s, is the usual sample standard deviation of the sighting distances. The adaptive bandwidths are 

then hi=h,hi, where & = ["xi hr )') " , f uses (2.1) employing the reference bandwidth, and 

g is the geometric mean of those density estimates. The value of h, is chosen using cross 

validation and hence inherits some of the problems inherent with cross validation. In principle, 

the adaptive bandwidths allow for differential smoothing depending on how much the density is 

changing at each observation. The estimator 7, (0; h) also appears in Section 4. 

In the next section we propose a local bandwidth selection procedure that allows a 

different bandwidth to be specified at each point of estimation. Therefore in the present 

application, only one bandwidth needs to be estimated. 

3. Local Bandwidth Selection 

Local bandwidths allow one to change the amount of smoothing based on the degree that 

the underlying density is changing. Hence a local density estimate is 



Therefore, the localized version of (2.2) is 

Since in this line transect application it is clear that only a bandwidth at zero is required, the 

dependence of the bandwidth on the point of estimation will be suppressed. The necessary 

assumptions for consistency of this estimator are that, even though it is not fixed in advance, 

n+m and h+O such that nh+m and continuity off "(0). In the line transect setting it is also 

typically assumed that f '(0)=0 as well. Under these assumptions, the expected value and 

variance at the boundary of the positive distances are 

~ ( f ~ ( 0 ; h ) l n )  = f ( ~ ) + k ;  f "(0)h2 +o(h2)  

and 

a3 CO 

where k; = [u2 ~ ( u ) d u  and Q* = I ~ ~ ( u ) d u .  Hence the asymptotic MSE is 
0 0 

The bandwidth that minimizes (3.1) is found by differentiation to be 

where A = 
f @)a* 

and B = (k;  ~ ( 0 ) ) ~ .  To obtain a data driven bandwidth, estimation of A 
n 

and B is required because each contains unknown quantities. If consistent estimates of both can 



be obtained, then they can be plugged into (3.2) to estimate h,,. We will modify the local 

bandwidth proposal of Schucany (1995) for nonparametric regression here in the density 

estimation setting. Estimation of B is motivated by the form of the asymptotic squared bias, 

bias2 = ~ h ~ .  

The form of this relationship is that of a regression equation through the origin with 

squared bias as the dependent variable, B as the unknown regression coefficient, and h4 as the 

independent variable. If the bias were known for a grid of bandwidths, then B could be 

approximated using least squares. Because the bias is not known, it must be estimated. A 

reasonable estimate is 

A * A 2 bi6sj = bj = k2 f "(0)h - 
J '  (3.3) 

where f"(0) is a fourth-ordbr kernel estimator for the second derivative, for example 

~4 (u) = E(- 1 + 6u2 - 5u4)1(u) {-1,11 . The resulting estimator is 
16 

with the factor of two required for bias correction of edge effects analogous to (2.2). If we form 

a grid of trial bandwidths, h,,. . .,h,, such that hj = Cjn-P , with IC,l<m and p>O, then the 

resulting least squares estimate of B is 

where y is the Lipschitz constant off "c). Details are provided in Theorem 1 in the Appendix. 



A 
Similarly estimation of A follows fiom var = -. If the variance were known for a grid 

h 

of bandwidths, then A could be estimated by least squares. As before these variances can be 

estimated. One estimate of A involves a simple plug-in estimate of variance, 

where f(O;hj) is the kernel estimate (2.2). Hence, for a grid of bandwidths, h,,,. . .,h,,, such that 

-6 
hlj = Din , IL!j<co and 6>0, the least squares solution is 

Details are provided in Theorem 2 in the Appendix. 

An alternative estimate of A follows by noting that 

where yi = K - . A natural estimate of variance is suggested the fact that for each fixed h (7) 
4 

var( f(0; h)) = v~(i Yi] = V U ( Y ~  ) 
n2h2 i=l nh 

The yi are independent and identically distributed because the xi are. Thus var0,;) can be 

estimated by the usual sample variance of the yi's, 6. The resulting unbiased estimate of the 



4 
variance is C2 = - Once again, using least squares for a grid of bandwidths, 2 S ~ '  " A j  

9 E .n- , for j=l  , . . . ,q , I , !$~<co,  and 8>0, the resulting estimate is h2j = j 

Details are provided in Theorem 3 in the Appendix. In each case, the resulting bandwidth 

estimate is of the form [i] 'I5. 

It should be noted that p<115 is required for consistency of B . This parallels the results 

of Schucany (1 995). Additionally, S<3 is required for consistency of A1 , and W312 for 

consistency of 2,. In the simulation study reported in the next section, different grids are used 

for the three methods. 

4. A Monte Carlo Comparison of Density Estimators 

To evaluate the performance of the four estimators proposed in the previous section, a 

simulation study analogous to that of Chen (1996) was conducted. A constant population density 

o f .  15 was maintained in all of the simulation runs. The effective width of the transect area was 

10 and N=200,300, and 400 objects were randomly generated at distances uniformly distributed 

in the interval [0,10]. The exponential power series detection function, g(x) = exp(- ( b ~ ) ~ ) ,  

was used with b=0.5 and a=1.5, 2.0, and 2.5. For each simulation run, 5000 independent 

replications were generated. 



For each replication, estimators of population density were calculated with the kernel 

method employing LSCV and the adaptive method described in Section 2. Additionally, two 

local bandwidth estimators were employed, one using AI and the other 22 ,  both with h as 

described in Section 3. 

The grid values used in the simulation study for Al , i 2 ,  and h were developed fiom the 

asymptotic properties of the estimators as well as previous experience with nonparametric 

regression (Schucany 1995, Gerard and Schucany 1997) in which seven equally spaced grid 

values produce satisfactory results. The grid values for 6 correspond to y=l which results in 

p=1/7 as an optimal rate; hence the grid values are set to be (j/7)n-I/7 x (range of data) for 

1 , . . 7 Similarly, the grid for dl is (j/7)n -'I5 x (range of data) for j=1,. . .,7 and for is 

(j/7)n-'I2 x (range of data) for j=1,. . .,7. The quadratic kernel fiom Section 2 was used for K 

in all four estimators. 

The results of the simulation study are summarized in Table 1. The number of objects 

sighted, n, was averaged over all replications of each run. The averages range fiom 35 for 

N=200 to 72 for N=400. The average population density and MSE are calculated for each 

method. The two local estimation methods, though slightly more biased in some cases, have 

MSE9s that are significantly smaller, by a factor of two or more, compared to the adaptive and 

LSCV estimators. Additionally, local estimation has using variance estimator dl has 

significantly smaller MSE than using dz , based on s;. However, the differences seen were 

typically less than 10%. To examine these comparisons, we calculated the efficiencies of the 

LSCV method relative to the adaptive method (the average MSE for the adaptive method divided 

by the average MSE for the LSCV method) and the local method with variance estimate 



iI relative to the adaptive method (the average MSE for the adaptive method divided by the 

average MSE for the local method) . These relative efficiencies are plotted in Figure 2. The 

maximum standard error of the points are estimated to be .I84 for the dotted lines and .046 for 

the solid lines, using standard approximation techniques for ratios of dependent averages. In the 

next section, each of these methods is used to estimate the population density of a common 

species of mussels (Actinonaias ligamentina). 

[ Insert Table 1 here ] 

[ Insert Figure 2 here ] 

5. Application to a Population of Mussels 

The population density of many species of mussels has been declining the past 30 years 

(Williams et al. 1993), which has motivated close monitoring of population trends. As part of 

that effort, line transect sampling was used to estimate the density of a common mussel 

(Actinonaisa ligamentina) in French Creek, which is located in the Allegheny River Basin in 

Pennsylvania. Distances from a line 42 meters in length were recorded for 53 mussels. The four 

methods evaluated in the simulation study were used to estimate the underlying probability 

density of sighting distances. These are displayed in Figure 3. The bandwidths estimated at 0 

were used for the entire curves for the local estimators. For this data set, all of the methods 

yielded similar results. The resulting population density estimates are 1.81 and 1.71 mussels/m2 

for the local methods, 1.77 mussels/m2 for LSCV, and 1.76 mussels/m2 for the adaptive method. 

[ Insert Figure 3 here ] 

6. Summary and Discussion 

Using the kernel method to estimate population density requires that a bandwidth be 

specified for estinating the probability density of sighting distances. Because estimation is only 



Table 1. Summary of Simulation Study Averages (Standard Errors) Based on 5000 Replications 

LSCV Adaptive local ( dl ) local ( d2 ) 

a N n h bias' MSE2 bias MSE h bias MSE h bias MSE 

'bias x 1 O2 
2~~~ x 1 o4 



Figure 2. Relative Efficiency of LSCV to adaptive (solid) and adaptive to local (dashed) using 

variance estimate iI for the values of a and N in Table 1. 



Figure 3. Kernel Density Estimates of Sighting Distances for Mussel Line Transect Data. 

 andw width Selection is done locally using j1 (locall) and & (IocaU), globally using Least 

Squares Cross Validation (lscv), and Adaptively (adaptive). 

distance (cm) 



required at a single point, excessive influence of data far from the point of estimation should be 

avoided. With that in mind, two new methods of estimating a local bandwidth are described and 

found in a simulation to have smaller MSE than methods previously advocated. It also appears 

that the method of variance estimation involving the simple plug-in principle outperforms 

regression on unbiased variance estimators. One drawback to local estimation is that it does not 

necessarily integrate to one. This problem is obviated by the fact that estimation of the entire 

density is not required. 

Another benefit of these local methods is their computational efficiency. Unless one 

resorts to complicated binning routines, the number of operations required for LSCV and the 

adaptive methods is 0 (n2) ,  but is ~ ( n )  for the local methods proposed here. 
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Appendix 

Theorem I 

Suppose that f" is Lipschitz continuous of order y and f '(0)=0. Conditionally on n, as 

n+a  and h+O such that nh+a, then for a kernel function K supported on [-1,1] 



if hj=C,n+' forj=l,. . .,q with p>O and IC,l<oo. 

Proof 

From (3.3), 

6, = (k;fu(0))h? , 

where / "(0) = 2i K4 [3) fbr K.0 a fourth-order kernel ivnction for estimating second 
nh: i=l hi 

derivatives. From standard Taylor series arguments, 

with 0<5<uhj and u=x/hi' This yields 

= f "(o)+o(h;). 

Again using standard arguments, 

Hence, / " (o)  = f "(0)  + O(hY ) + O p  ((nh5)-'I2) . Therefore, substituting hj=C,ng yields 



Theorem 2 

If the conditions of Theorem 1 hold except that h,j=~jnd, for j=l ,. . .,q with 6>0 and 

(D,l<co, then 

The result follows from Gl = i ( o ) ~ *  , with j(0) from (2.3). Again using standard 
nhl 

arguments, j(0) = f (0) + O(h6) + Op ((nhl j )  -'I2) . Using h ,,=Lljnd yields 



Theorem 3 

If the conditions of Theorem 1 hold except hV=4n-', for j=l,.  . .,q with 0>0 and IE, I<m, 

then 

Proof: 

Because 

4 
where s; is the sample variance of the y's. If follows An unbiased estimate is then E2 = 7 s y ,  

nh 

that (Serfling 1980) 

because var(s;) = ~ ( n - I ) .  Hence, 

- A 
var(f(0)) + op (n-312h-2) = + o($) + op (n-3 /2h-2 )  . Therefore, using nh2 S~ = 

least squares with hV=JE,(n-' yields 
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