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ABSTRACT

The generalized partial autocorrelation (GPAC) array was introduced by
Woodward and Gray (1981) as a method of identifying the order of an ARMA(p,Q)
process. The GPAC identification technique is a generalization of the model iden-
tification method popularized by Box and Jenkins (1970). Davies and Petrucelli (1984)
provide simulation evidence to argue that in fact the GPAC is of limited usefulness
due to the fact that the sample GPAC array is unstable when applied to time series

of or_lly moderate length.

In this paper we address the findings of Davies and Petrucelli and show that
in general they are not wvalid. Essentially they have concentrated on examining
variability between GPAC arrays when the model identification capabilities of the
GPAC array depend on variability within an array. Through a simulation study it is
shown that GPAC patterns are more stable than Davies and Petrucelli suggest and
that the W-statistic provides model identification results comparable to those of
AIC in a fraction of the time. The W-statistic is defined for purposes of measuring
the patterns in a sample GPAC array automatically and providing a quantitative
means of assessing the model identification information in an array. We also examine
sample GPAC arrays based on the estimates of Tsay and Tiac (1984). These are
shown to perform better than the Yule-Walker based arrays examined previously,
particularly when near nonstationary components are in the model. In certain cases
the G?AC results using the Tsay and Tiao estimates are far superior to those of
AIC. We briefly examine the use of an overfitting procedure proposed by Gray and
Woodward (1986) to automatically perform model identification in the presence of

nonstationary components.
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1. Introduction

The generalized partial autocorrelation (GPAC) function was introduced by
Woodward and Gray (1981) for purposes of model identification in the ARMA(p,Q)
setting. The GPAC function is an extension of the partial autocorrelation function
used by Box and Jenkins (1975) in ARMA model identification. Woodward and Gray
(1981) used an array to present the information in the GPAC function, and this
array was shown to be related to the S-array of Gray, Kelley, and Mclntire (1978).
Woodward and Gray (1981) showed that the GPAC array uniquely determines p and
q@ when the true autocorrelation is known, a property it shares with the S-array.
Unique identification of p and @ when the true autocorrelation function is known is
only assured using the Box-Jenkins approach when either p=0 or @q=0. Woodward and
Gray (1981) discussed the use of the GPAC based on single, finite length real-
izations, and showed examples in which the model identifying pattern in the GPAC
was clearly discernible. Davies and Petruccelli (1984) presented simulation evidence
and real data examples to argue that the sample GPAC array is unstable when
applied to time series of only moderate length and that its use in detecting MA

components is limited.

In this paper we discuss the findings of Davies and Petrucelli (1984) and show
that their conclusions are unfounded, largely due to the fact that they are
essentially confusing wvariability between GPAC arrays with wvariability within an
array. In Section 2 we define the GPAC function and associated array. In Section 3
we discuss the estimation of the GPAC array from sample data and present

alternative estimation approaches. We also discuss an ad hoc quantification of the
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pattern in the GPAC as a means of assessing the model identification capabilities of
the GPAC. In that section we also briefly discuss model identification using GPAC
arrays in the nonstationary case. Finally, in Section 4 we re-examine the results of
Davies and Petrucelli (1984) and further explore the model identification capabilities
of the GPAC array by comparing it to the AIC method of Akaike (1974). Even
though we still believe that the GPAC is best applied when inspected visually by
the investigator, a statistic is introduced to measure the pattern in the GPAC array
so that the comparison with AIC is stricfly quantitative. Even in this automated
form, which may be able to be improved upon, GPAC compares very favorably with
the AIC and in fact in many circumstances it is much better. The automated form of

GPAC model identification requires far less computation time than AIC.

2. The Generalized Partial Autocorrelation Function

~ Consider the univariate ARMA(p,q) process given by
Xy =0 Xe g == PpXs = Qp =810y ~ - = BqQeg (2.1
for t = 0, &1, =2, ... where a, is assumed to be white noise, with the autoregressive
coefficients ¢., i=l,..,p and moving average coefficients 6,, i=1,..,q being real
constants. We often write (2.1) in the form #(B)X, = 8(B)a, where
¢(B) - 1 - ¢IB - = ¢po
(B =1-0,B-..-- 0487

.

and where for a function of ¢, f(f), the backshift operator B is defined by B“f(t) =

f(t-k). The generalized partial autocorrelation is.def ined to be
Sin = Pypyips  if k=1

= AU, PNBR, D if k>1 Q2




where B(s,t) is the sxs matrix defined by

Py Pt—1 R S, |
Pty Pt Tt Pr—st2
B(s,t) = . i ) ] (2.3)
Pr+s—1 Pt4s—2 D+
L -

and A(s,t) is the matrix composed of the first s-1 columns of B(s,t) with the sth
column given by (psyy, ..., Piis). The GPAC element o\) is thus the solution of the
extended Yule-Walker equations for the kth autoregressive coefficient of an
ARMAC(K,j). More generally, in this paper we will use the notation ¢§f;], to denote the
kth autoregressive coefficient corresponding to an ARMA(p,q) model. Woodward and
Gray (1981) suggest displaying the GPAC elements as an array whose (k,j)th element

is
Sun s (G=0, 1, ...; k=1,2, ... ) (2.4)

The model identification pattern in this array is based on the fact that if the

process is ARMA(p,q)

¢ =0, k>p ,6 =0 (2.5)

¢g;>='¢pa J >q

This pattern uniquely identifies the order of a stationary ARMA(p,q) process. The
form of the GPAC array wt:}eu X. is an ARMA(p,q) process is shown in Table 2.1. In
order to ide;itify p..and g given a GPAC array, one searches for a column p in which
constant behavior oocurs associated with a row g in which the elements are zero
for columns k > p. Woodward and Gray (1981) show that the GPAC elements can be
obtained as a ratio of elements of the S-array proposed by Gray, Kelley and
Mcintire (1978). The behavior exhibited by (2.5) derives from the fact that the

autocorrelation function from a stationary ARMA(p,q) process given in (2.1) satisfies



the difference equation

P = @1Px1 + -+ Pply—p s - k >qg+ 1 2.6)

Table 2.1 GPAC Array for an ARMA(p,g) Process

Autoregressive Order

1 e p-1 D p+1 D+2
0 ¢[1O1] Tt ¢(;?)—1,p—1 ¢$233 ¢[:-]+-1,p+1 ¢::-)1-2.p+2
Moving
Average q-1 ¢(1Q1—1) ¢f:_—11']p_1 ¢;;?p— Y ¢S’_:11';,+1 ¢;q+_21,;:+2
Order q ¢ﬁ] ¢§ll,p—l o 0 4]
ol I B s A S

x Y = undef'jned

Special care must be exercised when dealing with processes which are
nonstationary or very nearly so. Before considering this case we provide the

following definition.




Definition 2.1 The k complex numbers A, Ay ..., Ap will be said to approach the

o

unit circie uniformly if INJ = I\l = --- = I\ as IN] - L.
Findley (1978) and Quinn (1980) show that if:

(a) X, is an ARMA(s+d,Q) process where d roots of the
characteristic equation approach the unit circle

uniformly

(b) Of the d roots in (a)
(i) m are distinct

(ii) j of these have highest multiplicity h

(c) p» is the limiting value of p» as the d roots

approach the unit circle uniformly
then, on satisfies a linear homogeneous difference equation of order j, of the form
¥(B) p» =0 2.7

for all integer m, where »B) =1 - $¥.B - --- - ijj and [¥;=1. Actually, it can be
shown that ®(B) in (2.7) is that operator formed from the product of the
nonstationary factors of highest multiplicity in ¢(B). The following result is a

consequence of the above remarks.

Theorem An. ARMA(p,g) process is nonstationary if and only if for some k < p,

o0 = ® -1, i=1,2 ... .

This "dropping back” in the order of the difference equation being satisfiéd by pm
holds approximately for pm’ whenever some of the roots of ¢(B) are close to the unit
circle. When this occurs a column of the GPAC array prior to the pth column will
be ”nearly constant” with these wvalues being real numbers near 1 or -1. The

implications of these results when modeling a realization from a nonstationary or



nearly nonstationary ARMA process will be discussed in Section 3.

3. Using the GPAC Array with Data

"(a) Estimation Techniques

Obviously, the fact that the GPAC pattern uniquely identifies the order of a
stationary process is only useful in practice if the patterns can be identified when
GPAC elements have been estimated. Woodward and Gray (1981) suggest estimating
the GPAC elements by replacing the autocorrelations in A(s,t) and B(s,t) with their

corresponding sample estimates, i.e. o, is estimated by

n—& - _ T — .

rk = Z(Xt-X)(Xt-‘}-k-X)/Z(Xt-X)Z ,kZO- (3'1)
t=1 t=1

In other words, the GPAC array elements are estimated by &lj}c, the extended Yule

Walker estimate of ¢, , if the process is assumed to be ARMAC(k,j). Woodward and

Gray (1981) show that these estimates can be obtained as simple ratios of elements

in the sample S-array. However, Yule-Walker estimates can be poor, especially in

the presence of roots near the unit circle.

Clearly, any technique for estimating the autoregressive coefficients of an
ARMA(p,q) will yield a sample GPAC array. We will investigate the use of the
estimates of Tsay and Tiao (1984) as alternatives to the Yule-Walker approach
suggested originally by Woodward and Gray (1981). Tsay and Tiao (1984) introduced
estimates of the autoregressive parameters of an ARMA(p,q) process based on
iterated AR(k) regressions. Their estimates are least squares estimates obtained from
recursively adding MA type terms to an AR(k). These estimates can be obtained

recursively using the formula

~(4—1) =(-1)
~(5) _ ~-1) Pr—1x Prtirtl 3.2)
¢mk T Vmk+1 T ~(J—1) *
Drx




where m =1, ... , k;k > 1 and j >1 where

~(5—1)
¢047< = -1

5[.,?,1 = ordinary least squares estimate for AR(p)

and for an ARMA(p,g) process-

~q ,
mp — Om

We will refer to estimates using this approach as TT estimates. Tsay and Tiao
(1984) showed that their estimates are consistent for the autoregressive parameters
when initialized by the ordinary least squares estimates, whether or not the model
contains nonstationary components and that TT estimates are asymptotically
equivalent to YW estimates when X. is stationary. On the other hand, Findley
(1980) has reportedly shown that when the process is nonstationary, the sample
autodorrelation approaches p* so that the Yule-Walker estimates approach the %, in
Equation 2.7. In this paper we will use the implementation of the TT estimation
procedure utilized by Gray and Woodward (1986) and initialize with Burg (1975)

estimates.
Example 3.1 Consider a realization of length 300 from the ARMA(3,2) process
Xt - l'SX‘C—l + 1-21X1;_2 - -46Xt_~3 = at + ;2&1‘-_1 + .9(1.5_2 (3.3)

where a, is normal white noise with zero mean and unit variance. It can be easily
seen that this ARMA(3,2) model is stationary with none of its roots close to the
unit circle. In Table 3.1 we display the GPAC arrays for this realization using TT
and YW estimates. Notice that there is very little difference in the arrays of Table

3.1, and that for each array the identification as an ARMA(3,2) is clear since ¢{3j§ ~

.52forj22and¢f;lz0fork>3.

A parametric procedure for estimating coefficients is to wuse maximum

likelihood (ML). These estimates are obtained using an iterative scheme which is
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Table 3.1 GPAC Arrays Based on a Realization of Length 300
From the ARMA(3,2) Model of Exampie 3.1

o~ O

(5 I N ¥V}

hnh b W N = O

851
624
433
450
1.295
1.492

.851
623
433
.449
1.298
1.493

(a) Using TT Estimates

Autoregressive Order

394

-.705
-.444
.024
-9.586
-.136
4.881

(b) Using YW Estimates

430
902
512
509
536
.538

353
72
123
.281
-.179
-.192

Autoregressive Order

=702
-.445
022
-10.393
-.134
4.896

417
911
514
512
527
532

355
.687
111
.186
-.641
.159

5
-.347
-.459
-.046
-.199
-.003

23.770

-.323
-.465
-.019
-.449

219
-.730

6
-.125
-.809
-.063
-.042
-.343
-.343

-.144
-.688
-.078
-.073
-.218
-.117



sometimes very slow to converge, especially if some of the model components are
nonstationary or nearly nonstationary. Thus, a GPAC technique based on ML
estimates may require substantially more computation time than YW or TT,
especially when roots of the characteristic equation are near the unit circle. This is
the reason the ML estimates were not used by Gray and Woodward (1981) where the
GPAC was introduced and will not be considered any further now. Akaike’s
Information Criterion (AIC), see Akaike (1974), is theoretically based on ML
estimation and consequently also requires much more computation time than either

the YW or TT GPAC. This will be discussed more in Section 4.

(b) Nonstationary Components

The results of Gray, Kelley and Mcintire (1978), Findley (1978) and Quinn
(1980) suggest that the sample autocorrelation function of an ARMA(p,q) process
with stationary and “nearly nonstationary” components will approximately satisfy a
difference equation of order less than p. In essence, these nearly nonstationary
components tend to dominate other components. For this reason, Box and Jenkins
(1975) recommend differencing a series whose sample autocorrelation damps slowly,
i.e. which approximately satisfies the first order difference equation o, - ¥,0,_, =0
where ¥, is near 1. Box and Jenkins (1975) defined the ARIMA(p,d,q) model to
accomodate these unit roots. Gray and Woodward (1981) further discuss the problem
of model identification in the nonstationary case, taking into consideration any roots
near the unit circle (41 and complex roots), and they showed that these
nonstationary components can be detected using the S-array and GPAC array.
Nonstationary components manifest themselves in the GPAC array as a nearly
constant column whose values are “near” 1 or -1. The important point here is that
when such a pattern is detected, this should serve as a warning that other
stationary components may be present in the model which may not be detectable
until the data is transformed by the nonstationary factors. Tsay and Tiao (1984)
show that TT estimates are consistent whether. or not the model has nonstationary
components, and that convergence to the components of nonstationary factors is like
1/n instead of 1/{n as in the stationary case. They claim that use of the TT
estimates removes the need for preliminary transformation. This is true to an

extent. That is, TT estimates vastly improve the estimates in the near



nonstationary case, but there can be problems with their use also (see Gray and
Woodward 1986).

Example 3.2 Consider a realization of length 300 from the ARMA(4,1) process
X, - 18X, , +229X, , - 1.292X, ; + 495X, _, = a, - .Ta,_,

where again a, is normal white noise with zero mean and unit variance. We display

the AR factors of this model in Table 3.2.

Table 3.2 Factor Table for the ARMA(4,1) Model of Example 3.2

Factor Roots Absolute System
Reciprocal Frequency
1- B+ .998°2 S5 -+ .87 .995 17
1-.8B + .5B° 8 + 1.173 707 .15

From Table 3.2 it can be easily seen that this model contains two roots close to the
unit circle and two roots relatively far removed from it. The GKM-Findley-Quinn
result suggests that the GPAC arrays, based on YW estimates will tend to show a
second order behavior where the second column is nearly constant with |¢‘2"2]I ~ 1,
Jj=0, 1, .... However, the preceding discussion indicates that the GPAC arrays based
on TT estimates may indicate the proper ARMA(4,1) model due to the Tsay-Tiao
consistency .result. In Table 3.3 we display the GPAC arrays for this realization
using TT and YW estimates. Inspection of th:ese two arrays indicates that the
second ox:der behavior due to the nearly nons€ationéry component, i.e. the nearly
constant second column with I¢(2"2)I =~ 1, is by far the most pronounced pattern in
both arrays. However, the YW GPAC shows no indication of an ARMA(4,1) pattern
but instead suggests an ARMA(2,0). The GPAC array based on TT estimates also
shows a very constant second column and also suggests an ARMA(2,0) although the

zero behavior is not strong. Notice also that in the TT GPAC array the fourth
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Table 3.3 GPAC Arrays Based on a Realization of Length 300
From the ARMA(4,1) Model of Example 3.2

- O

tJ

Nh = W

N o= O

[, - V]

505
-.965
2.036

519
-.900
2.102

502
-.949
2.029

519
-875
2.105

(a) Using TT Estimates

Autoregressive Order

2 3 4 5
-.995 .185 =377 -.320
-.994 -1.767 -512 -.196
-.993 1.267 =755 -.340
-.989 .250 -.484 -.451
-.989 -1.288 -.568 -.267
-.988 1.393 -.672 -1.198

(b) Using YW Estimates

Autoregressive Order

2 3 4 5
-.974 -.136 -.076 -.110
-.978 .400 119 -.053
-.976 1.550 574 -.184
-.972 S12 -1.318 © 522
-.970 -1.165 -.650 -.683

-.969’| .609 -.030 -.105

6
-.117
142
-.068
524
1.074
.024

-.084
-111
-.091
-.124
-.263
-.378
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column shows a certain degree of constancy, and that there is a slight indication of
an ARMA(4,1). From this example we see that even when TT estimates are used, the
nonstationarity pattern is the strongest pattern indicated by the GPAC array and
may therefore mask the true pattern or destroy it completely. We therefore
recommend a dynamic prefiltering technique introduced by Gray and Woodward
(1986) for identifying and removing nonstationary components. Later we show that
this can be done automatically so that two passes through the data are not

necessary.

(c) Measuring the GPAC Pattern

Davies and Petrucelli (1984) examined the model identification capabilities of
the GPAC by performing a simulation study in which 1000 realizations from the
ARMA(3,2) model of Example 3.1 were generated. Empirical means and standard
deviations of GPAC elements involved in the ARMA(3,2) pattern were found across
the 1000 realizations. Davies and Petrucelli questioned the model identification
capabilities of the GPAC because of what they perceived to be high wvariability
across realizations. However, the fact that a particular GPAC element is .275 for
one realization and .655 for another may not be relevant for model identification.
The question for model identification is "What is the pattern of array values
within a single realization?” and not “"What are particular array values for a
realization or across realizations?” The actual results of the Davies and Petrucelli
(1984) simulation relate more to the performance of Yule-Walker estimators as

coefficient estimators than they do to model identification via the GPAC.

In an effort to examine the actual model identification capabilities of the
GPAC, we investigate measuring the pattern within a given sample GPAC array.

Here, the strength of the ARMAC(K,j) pattern is measured by the W-statistic defined

by
i

W(kaj)=wc C(k,j) + W Z(k,j) (3.4)

where
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3 —-—

3 -~
Z ¢£ﬂ-z )’ N
Zeh) - |= / B,
==

and w. , wz , ¢, , i=0,...,3 and z, , i=1,...3 are non-negative constants which have to
be chosen. In essence C(k,j) measures the strength of a column constancy behavior
for the kth column beginning in row j while Z(k,j) measures zero behavior in the
Jjth row beginning in column k+l relative to the size of the constants. The order

selected is (p,q) such that

W(p,@) = min _ W(k,j) (3.5)
0<k<K
' 1<j<d

Unless some of the weights are taken to be zero, the W-statistic measures the
GPAC pattern by looking for four “constants” down a column such that the row
containing the first of these constants has three “zeros” immediately following that
constant. In Section 4 we present results of simulations investigating the model

identification capabilities of the GPAC array on the basis of the W statistic.

It should be noted that the procedure described in (3.4) and (3.5) applies to
the stationary case. If nonstationary or nearly rionstationary components are present
in the data, then direct application of the W-statistic would be expected to often
select p too small based on the dicussion in Sections 2 and 3, especially when using
Yule-Walker estimates. A procedure for automatically detecting nonstationary

behavior using overfitting as described by Gray and Woodward (1986), removing the
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nonstationary components and modeling the stationary model components is feasible

and will be discussed in Section 4.

4. Rejoinder to Davies and Petrucelli Reéults

The conclusions of Davies and Petrucelli (1984) concerning the performance
of the GPAC were that in practice, the GPAC array has minimal model identification

capability especially when g > 0. Their findings in support of these conclusions can

be summarized as follows:

{a) Simulation results showed lack of stability of GPAC
elements for the ARMA(3,2) model in (3.3) even with
realization lengths of 300 and 500

' (b) Marked failure of the GPAC to identify the following

following models based on realizations of various lengths

() (1-4B)X, = (1-.7B)a,

(4.1)
(ii) (1-.5B)X. = (1+B-.4B%a,

(c) Failure of the GPAC to provide "correct” model
identification for several classical data sets
for which mixed models have been obtained using

other techniques i

These findings will be addressed individually in this section, and it will be shown
that in each case their conclusions are not valid. Before proceeding, we mention that
simulation results quoted in this paper are based on realizations generated using

N(0,1) white noise with the normal deviates being generated using IMSL routine



13

GGNPM on the IBM 3081-D24 computer at Southern Methodist University. For each
simulated model to be examined, 100 realizations were generated for each realization
"length under consideration. Both the YW GPAC and TT GPAC arrays were computed
for each realization. AIC is also calculated for each realization. using the 1974
TIMSAC program. The W-statistic defined in Section 3 Awas calculated using w. = 1,
wz =1 ,¢ch=c;=1¢=.8,¢c3=.6 and 2, = 1, 2z, = .8, z3 = .6 to allow for slight
deterioration of the pattern, i.e. beginning with c¢; and z; the constants were taken
as simply linear weights. For each realization, the identification procedures selected
from the rectangular array of possible orders, p =1, ..., 6 and ¢ =0, ... ,3. The top
3 models as indicated by an identification procedure were identified for each
realization. For simulation from a particular model we table the percentage of
realizations for which the true model was correctly identified and, in parentheses,
the percentage of realizations for which the true model was among the top three

choices for each of the identification techniques.

{a) ARMAC(3,2) Simulation Results

Woodward and Gray (1981) presented a YW GPAC array for a realization of
length 300 from the ARMAC(3,2) model considered earlier in Example 3.1 and showed
that the GPAC pattern indicating an ARMA(3,2) was discernible. Based upon the
simulation study described in Section 3, Davies and Petrucelli (1984) claimed that
realizations from the model in Example 3.1 for which the ARMACGS,2) identification
can be made are "the exception rather than the rule.” They concluded that even for
realizations of length 500, the corresponding standard deviations were comparatively
high. As we have already pointed out, the standard deviations they spoke of are not
really relevant as ‘this section will demonstrate. We re-examined the model
identification capabilities of the GPAC in this setting using the W-statistic to

measure the pattern.

In Table 4.1 we display the results of our simulation investigation. In the-
table we indicate the percent of realizations for which an ARMA(3,2) was selected as
the first choice by the W-statistic and the percent for which an ARMA(3,2) was in
the top three choices for various realization lengths. For comparison, we also
display the model identification results using AIC. From the table it can be seen

that in fact with n=300 the W-statistic correctly identified the model about 70% of



Table 4.1

Percent Correct Classification for

(1-1.5B + 1.21B2 - .46B3)X,

= (1L + .2B + .9B2)a,

Realization Length 500 300 200 100 50
lst
Choice 81 68 62 30 16
TT GPAC Top
3 92 82 73 __38 27
1st
Choice 79 71 56 20 9
YW GPAC Top
3 94 83 75 33 23
lst
Choice 73 80 76 45 15
AIC Top ‘
3 88 91 91 74 39
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the time while with n=500 the W-statistic gave approximately 80% correct
classification using the TT and YW GPAC. The GPAC based procedures picked an
ARMA(3,2) as one of the top three choices slightly over 80% of the time for n=300
and over 90% of the time at m=500. These results dispell the notions that the
realization given by Woodward and Gray (1981) was én “exception” and that the
"comparatively high” wvariability in GPAC elements for n=500 is too large for model
identification. The GPAC resuits for n=300 and 7n=500 were similar to the AIC
results shown in the table with the GPAC showing a slight advantage at n=500 and
AIC having somewhat better identification at n=300. Also shown in Table 4.1 are the
identification results for n=200, 100 and 50. There we see that n=50 is too small for
identification of this model by either AIC or GPAC. At n=200 and n=100 AIC does
better at identifying the ARMA(3,2) and at picking the ARMA(3,2) as one of the top
three models. As we shall see in the sections that follow, this is not a general

result, i.e. AIC will not always outperform the W-statistic on small samples.

Before terminating the discussion here, we consider the computation times
involved in performing the identification routines. It should be noted that in
calcu-lating computation times, we have not included the computation of sample
autocorrelations and dutocovariances. Including these calculations would have

increased the times for YW GPAC and AIC. In the simulations summarized in Table

4.1, the GPAC procedures proved to be much faster than AIC. The YW GPAC

required approximately .02 seconds per realization, independent of realization length.
The TT GPAC required about .1 seconds for every 50 observations in a realization,
i.e. the computation time for n=50 was about .l seconds, for n=300 about .6 seconds,
etc. On the other hand, the TIMSAC-74 version of AIC required around 25 seconds

per realization for the simulations described in Table 4.1.

It is informative at this point to compare the use of GPAC and AIC for model
identification. Both procedures essentially involve the calculation of a statistic
based ﬁpon the parameter estimates for each candidate model. Howevex_', the GPAC
using either TT or YW, does not require estimation of the moving average param-
eters while AIC does. Estimation of the moving average parameters is difficult,
especially near the noninvertible region. Since GPAC avoids this estimation,
satisfactory parameter estimates can be obtained without the necessity of using

time consuming maximum likelihood and approximate maximum likelihood routines.
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(b) Simulations from ARMA Models

(i) Re-examination of the Davies and Petrucelli Models

Davies and Petrucelli (1984) report extensive simulations based on the ARMA
models of (i) and (ii) in (4.1). They report that model identification was not possible
for realization lengths even as large as 200. They did not suggest alternative
approaches. First it should be pointed out that examination of these two models
reveals the source of the model identification difficulties. Model (i) is "obviously'
nearly white noise since there is near cancellation of the two operators.'T.he true
autocorrelations, p,, for Model (i) are shown in Table 4.2 for k= 1, 2, ..., 8, and they

confirm our observations.

Table 4.2 True Autocorrelations for the ARMA(1,1) Model
1-4B8X_. =1 - .7B)a.

k O k Pz
1 -.232 5 -.006
2 -.093 _ 6 -.002
3 -.037 7 -001
4 -.015 3 -.000

It is clear that realizations from (i) will be difficult to distinguish from white noise

unless realization lengths are exceptionally long.

Model (ii) also has some "near cancellation” which is evident when (1+B-.4B%
is factored as (1-.3062B)(1+1.3062B). Another problem with this model which is clear
in this factored form is that this ARMAC(],2) model is actually non-invertible. The
invertible process with the same autocorrelations as the Davies and Petrucelli model

has the moving average operator
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ARY — (1 " 1
B8(B) = (1 '306‘3)(1+1—.3062B)

(1-.3062B)(1+.7656B) .

1 + .4594B - .2344B°

I

Thus we will consider realizations from the invertible ARMA(],2) model
(1-5B)X. = (1 + .4594B - 2344B%a, 4.2)

rather than the one in (4.1). Realizations from this model should behave much like
those of an MA(1l) or MA(2) due to the nearly cancelling factor. Thus it is doubtful
that any of the existing techniques could claim a better model for this data than an
MA(1) or MA(2) without a fairly large sample. The true autocorrelations for the
model in (4.2) (which are the same as those for Model 4.1(ii)) are shown in Table 4.3.
These indicate that only p, is substantially different from zero but that it is too
large for a true MA(1l) but not for an MA(2), demonstrating why an MA(1l) or MA(Q2)
is likely to be chosen (and it is not a poor model for this data) unless the sample

size is quite large.

Table 4.3 True Autocorrelations for the ARMA(1,2) Model
(1 - 53B)X,. = (1 + .4594B - .2344B%a,

k [4% k Pz
1 617 5 .024
2 .191 6 012
3 .096 7 006
4 .048 8 .003

Realizations of length m=100 and n=200 were simulated from Model 4.1(i) and
{4.2). As would be expected from Table 4.2, many realizations from model 4.1(i) are

not distinguishable from white noise. Specifically, applying the Ljung-Box-Pierce
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statistic (see Ljung and Box 1978) to these realizations using a 5% level of signifi-
cance and 25 sample autocorrelations, we failed to reject white noise 73% of the time
for n=100 and 45% of the time for n=200. Actually, the analysis of any time series
should begin with a preliminary test for white noise. Appropriate model identifica-
tion would involve finding models for only the realizations for which white noise is
rejected. Also, Model 4.2 is poorly identified as an ARMA(1,2) by both GPAC and
AIC procedures as demonstrated by the fact that neither procedure identified an
ARMA(1,2) model as the first choice more than 15% of the time for n=100 or n=200.
Although the GPAC array can be used to detect pure MA models, it has always been
recommended by the authors that one should inspect the sample autocorrelations
before examining the GPAC. If this is done, in the case of the MA process there is
no need to consider the GPAC. Thus a more proper use of these methods would
probably have resulted in selection of an MA(1) or MA(2) model. Allowing pure MA
models using AIC may have resulted in AIC model identification as an MA(l1) or

MAQ).

(i1} Simulations from Other ARMA Models

From the preceding observations we conclude that the conclusions drawn by
Davies and Petrucelli on the ARMA(3,2) model of Example 3.1 are incorrect and that
the criticism of the GPAC on the basis of the ARMA(],1) and ARMAC(L,2) models in
(4.1) are probably wvalid for any current model identification method. Thus we
believe their results provide little or no evidence concerning the value of the
GPAC as a method for determining a proper ARMA model. We conclude this section
by examining the GPAC array using more reasonably selected ARMA models. In
Table 4.4 are listed 10 ARMA models on which tfxis simulation analysis will be based.
In this table we show the factors of the autoregressive and moving average
operators. In Table 4.5 we show the results of the simulation. As before, for each
model we table the percent of the realizations for which each procedure identified
the true model and the percent for which the true model was one of the top three

choices.

Several observations can be made from this table. First, the consistency of
the GPAC results is demonstrated by the fact that in all cases, better identification

was obtained using n=200 than for n=100 or n=50. Due to the consistency properties



Table 4.4 ARMA Models Used in
Simulations - Showing Factors

Model AR Factors MA Factors
(a) (1-1.3B + .7B%)X, = (1 + .7B)ay 1-1.3B + .7B? 1+ .78
(b) (1-1.3B + .7B1)X, = (1 - .7B)ay 1-1.3B + .7B? 1 - .78
(C) (l - .1B - .56B1)Xt = at 1_-8B
1+.7B

(d) (1 - 1.5B + 1.21B? - .46B?)X, = a,  1-.79B+.65B?
1-.71B
(e) (l - .9632 + -64B4)Xt = at 1-1.6B + -8B2

1+1.6B + .8B!

n

(1 + .8B%)ay 1-1.6B + .8B? 1 + .8B?

(£) (1 - .96B? + .64BY)X,
1+1.6B + .8R?

(g) (1 + B + .99B2)X, = a 14B+.99B?
(h) (1 + B + .99B%)X, = (1-.7B)at 1+B+.99B* 1 - .78
(i) (1-2.5B+2.96B*~1.75B3+.49B%)X, 1-1.3B+.7B?

= ay 1-1.2B+.7B?
(j) (1-2.5B+2.96B?-1.75B%+.49B%)X, 1-1.3B+.7B? 1 + .78

= (1+.7B)a, 1-1.2B+.7B?
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of the Tsay-Tiao (for both stationary and nonstationary series) and of Yule-Walker
estimates (for stationary time series), the GPAC arrays are “consistent” for the
true pattern which results in a W-statistic of zero, the minimum value attainable by
the W-statistic. However, the AIC is well known to not be consistent, a property
which is demonstrated in the table by the fact that its identification results are not

generally any better at n=200 than at n=100.

Secondly, the GPAC techniques clearly tend to outperform AIC for purely
autoregressive processes. For ARMA processes in which there is no near
cancellation of operators (such as (a), (h) and (j)), the GPAC procedures tend to
perform better than AIC at n=200, although for model (h) the AIC performance is
substantially better at n=50. On the other hand, when' there is near cancellation,
the AIC tends to outperform GPAC. Model (a) in Table 4.4 is an ARMA(2,1) example
used by Brockwell and Davis (1987) to demonstrate the performance of AIC. Clearly,
there is no near cancellation in this model. For model (a) the TT GPAC and AIC
perform similarly for 7n=50 or 7n=100 with the TT GPAC providing better
identification at n=200. Model (b) in Table 4.4 is a modification of the Brockwell
model in which the moving average factor is changed so that the factors more
nearly cancel. This can be seen by noticing that the roots of 1-1.3B+.7B°=0 are
.93-+.75i4, i.e. they have positive real part. The roots of 1+.7B=0 and 1-.7B=0 are -
1.43 and 1.43 respectively so that the root of 1-.7B=0 is closer in the complex plane
to .93+.75i. When models (a) and (b) are inverted into their infinite order
autoregressive form, it can easily be seen that model (b) is more nearly an AR(1)
model. In Table 4.5 we see that for n=100, the AIC results are better than those of
GPAC while for n=200 the GPAC provides identification comparable to or better
than AIC. For most of the ARMA(p,q) models considered with g>0, the GPAC

procedures compared favorably with AIC.

Another point of interest from the 'tables is that TT GPAC results are
typically better than those for the YW GPAC. The difference seems to be large in
the presence of roots near the unit circle, i.e. (g) and (h), as would be expected. Also
of interest are models (i) and (j) which contain nearly repeated roots. There we see
the TT GPAC clearly outperforming AIC and YW GPAC although n=100 seemed to

be too small for identification in model (j).

In models (e), (g), (i) and (j) the TT GPAC clearly outperforms AIC. Although
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the ARMA(4,0) was the most popular choice by AIC for realizations from the AR(4)
model in (e), several realizations were mismodeled as an ARMAM,q), q = 0 or
ARMA(S,q). For the nearly nonstationary AR(2) model in (g), AIC tended to model the
series as an ARMA(2,1) almost as often as it did as an AR(2). Similarly, when the
YW GPAC did not identify an AR(2) for these realizations, it usually selected an
ARMA(2,1). For the AR(4) model of (i) with nearly repeated roots, AIC tended to
identify realizations of length 50 or 100 as having autoregressive order 2 or 3, and
when n=200 AIC tended to identify AR(5) or ARMA(4,q) models for varying values
of q. For realizations of length 50 or 100 from the ARMA(4,1) model of (j), none of
the techniques gave satisfactory results. However, for n=200 the TT GPAC had
results far superior to those of AIC with AIC selecting ARMA(4,q) and ARMA(5,q)
models for varying values of @. Simulations from model (j) were also run for n=300,
in  which case an ARMA(4,1) was identified as the top model for 71% of the
realizations using the TT GPAC while YW GPAC and AIC performance was no better
than it was at n=100 and n=200. It is obvious that the approximate MLE routine
used by Akaike in TIMSAC-74 is not performing well in the presence of the nearly
repeated roots. Improved MLE routines in more recent implementations of AIC may
provide better AIC results. The YW GPAC tended to select second order models for
the modeis of (i) and (j).

Finally we consider the ARMA(4,1) model considered previously in Example
3.2, and in Table 4.6 we show the model identification results analogous to those of
Table 4.5 following the row heading "No Prefiltering.” As in Table 4.5, the percent
correct classification is given in the table with thé number of times the correct
model was among the top three choices given in parentheses. It can be seen that
none of the model identification procedures performed well, as would be expected
due to the near nonstationary factor. The TT GPAC results were poor but were
better than those for the YW GPAC. This is consistent with the discussion in
Example 3.2.. Gray and Woodward (1986) -proposed a method for removing
nonstationarities by fitting the data with al high order autoregressive model,
calculating a factor table associated with this model and then transforming the data
by factors associated with roots near the unit circle. In order to demonstrate that
this procedure can be used effectively in an automated mode in this setting, we re-

examined these simulations. For each of the 100 realizations reported above, we
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overfit the data with a 10th order autoregressive model and then transformed the
data by any factors for which the absolute value of the reciprocal of the
associated root(s) was greater than a threshold chosen here to be .95. The resulting
transformed series was then modeled. The purpose of this procedure was to remove
the nonstationary component, leaving a stationary ARMA(2,1) process to be modeled.
When a second order nonstationarizing filter was used and the transformed data was
modeled as an ARMA(2,1), then the procedure models the data as an ARMA(4,1). The
results of the simulation are shown in Table 4.6 in the section titled "Prefiltering.”
Note that although we have explained this procedure in a stepwise manner, the
prefiltering and subsequent modeling was done in a single pass through the data.
There it can be seen that the prefiltering improved the identification performance
markedly. Notice that after the prefiltering, the TT GPAC and YW GPAC results
are very similar. The AIC routine was not run with the prefiltering, but such a

procedure could also be applied with it.

Table 4.6 Percent Correct Classification for
(1 - 1.8B + 2.29B* - 1.292B° +.495BY)X, = (1 - .7B)a.

n=300
TT GPAC YW GPAC AIC
25 1 9
No Prefiltering (61) (10) (32)
| 57 58 -
Prefiltering i (83) (83)

(c) GPAC on Real Data

Due to the concern expressed by Davies and Petrucelli that the GPAC
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patterns are not clear for real data, especially when “known” models have moving
average terms, we compare the performance of the GPAC array as measured by the
W-statistic on real data. We have examined the following series considered by
Davies and Petrucelli, i.e. Series A, Series C, Series E (sunspot data) and Series J
(output series) from Box and Jenkins (1975), and the metals data from Makridakis

(1978).

In Table 4.7 we show models identified by Box and Jenkins, AIC and the W-
statistic for Series A, C and E. The AIC results are those obtained using TIMSAC-
74 with the rectangular search of model orders. The AIC and W-statistic results in
Table 4.6 are based on model selection for p < 8 and ¢ < 2. Box and Jenkins
identified two possible models for Series A, C, and E. These are displayed as BJl
and BJ2. Whenever they differenced the data to form an ARIMA(p,d,q) model, we
have expressed this in Table 4.6 as an ARMA(p+d,q) model for notational
consistency. We also show the top three'choices found by AIC and with the W-
statistic (on the TT GPAC array). These are denoted .AICI - AIC3 and W1 - W3
respectively and are given in order of preference. The series were also modeled
using overfitting with a 10th order autoregressive and prefiltering on the basis of a
threshold of .95. The model identification results based on the W-statistic after the
prefiltering are denoted W1P-W3P.

Table 4.7 Modeling of Real Data Series

BJ1 BJ2Z | AIC1 AlIC2 AICj w1 W2 W3 W1iP W2P W3P

Series A (1,1)  ----- (1,1 &N 1,2|17,0 a1 o1 (7,0 a1 30
Series C (2,0) (2,2) G 22 G4GD|Co (1,00 (2,1 [(2,0)  -—---  e----
Series E (2,0) (3,0) 2,0 D GO|R0 G0 @D |0 (0 ((72)

|

On the basis of these results it appears that the GPAC array obtaiﬁs models
consistent with those of previous techniques. A few comments are in order here.
Davies and Petrucelli (1984) quote AIC models obtained by Ozaki (1977). These differ

in some cases from the AIC models obtained here. For example, for Series A, Ozaki
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shows the ARMA(7,0) model to be the optimal for our range of orders which is
consistent with the W-statistic choice. Our implementation of AIC chooses the
ARMA(7,0) as best of the pure AR models considered. CAT (see Parzen 1974) and
FPE (see Akaike 1969) also select an AR(7) model for series A. It should be noted
that our overfitting detected no near nonstationarit.ies so that the data was not

prefiltered. Thus W1P-W3P are the same as W1-W3,

Ozaki finds the ARMA(2,0) model for Series C to be second best. Overfitting
as we did for Series A results in a second order prefilter with essentially the same
coefficients as the ARMA(2,0) model chosen by the W-statistic. Applying the L jung-
Box-Pierce test to the transformed data, we failed to reject white noise at the 5%
level, and thus the modeling procedure is terminated. This is indicated in Table 4.7
by the fact that no models are given for second and third choice after prefiltering.
However, it is interesting to note that examination of Series C reveals a seeming
discontinuity around the 60th data wvalue. Since this is data collected every minute,
it seems that there is some indication that an adjustment may have been made after

the first hour causing an ARMA model to not be an appropriate model for the data.

It should be noted that the ARMA(2,0) model for Series E is a poor model
(see Woodward and Gray 1978) which arises from the fact that the ARMA model
which best fits the sunspot data has a pair of complex roots close to the unit
circle. The ARMA(2,0) behavior is reflecting this near nonstationarity rather than
the complete model. Overfitting results in a second order near nonstationary
prefilter. As indicated in Table 4.7, applying this prefiltering to the data results in
an ARMA(S,0) as the first choice of the W-statistic. Ozaki finds the ARMA(8,0) as

optimal among our range of orders.

The 13th order models suggested by Parzen (1979) and Woodward and Gray
(1981) for the metals data are excluded from consideration in the model ranges
considered for the models in Table 4.7. If the range is changed to p< 15 and ¢ < 2,
the ARMA(13,1) model considered by Woodward and Gray (1981) is the second W-
statistic choice. It should be pointed out that overfitting did not identify any near

nonstationary components.

For Series J, Box and Jenkins obtained an ARMA(4,2) model while Kitigawa
(1977) used AIC to obtain an ARMA(3,2) model. Davies and Petrucelli claimed that
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the inspection of the GPAC array for Series J did not “"confirm either model as
being appropriate.” In Table 4.8 we show the YW GPAC array to which Davies and

Petrucelli referred.
Table 4.8 Yule-Walker GPAC for Series J

Autoregressive Order

1 2 3 4 5 6
0 971 -.804 .188 .260 .039 -.063
Moving 1 923 =723 1.258 .220 332 -.076
AVerage 2 885 -.563 541 -.074 .101 164
Order 3 838 -.374 497 912 .185 .109
4 845 .009 553 -.427 630 431
5 .845 -53.828 552 770 -.076 392

The ARMAC(3,2) behavior in this array is very clear with ¢(3]3) =~ .54 for j > 2 and
with ¢§f,l small for k¥ > 4. Thus, one would clearly pick an ARMA(3,2) as the only
possible chioce from this table. Moreover, the W-statistic overwhelmingly selects an
ARMA(3,2). Table 4.9 shows the W-statistics associated with model orders p=1, ... ,6
and gq=0, ... ,5. The W-statistic picked an ARMA(3,2) as the first model choice by a
wide margin. It should be mentioned that the "constant” behavior in column one may
have caused some confusion. Since there is no accompanying zero behavior, this
should lead to no difficulty although it does suggest the presence of a root in the
neighborhood of the unit circle. However, using a 10th order overfit autoregressive
model with threshold of .95, we detect no components sufficiently close to the unit
circle to warrant filtering the data. The point is that this is a detectable pattern
which can easily be measured and identified using statistics such as the W-statistic,

contradicting the claim of Davies and Petrucelli.‘;'
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Table 4.9 Array of W-statistic Values for Series J
Based on the GPAC Array of Table 4.8

Autoregressive Order

1 2 3 4 5 6
0 641 540 932 1.304 .940 3.130
Moving 1 1.020 2.347 773 3.906 1.211 3.125
Average 2 577 20.833 .253 2.398 1.647 1.067
Order 3 .701 23.256 1.179 1.866 1.942 1.560
4 464 25.000 1.155 2.008 10.309 3.289
S 40.000 24.390 1.506 10.526 71.429 16.667

5. Concluding Remarks

In this paper we have examined the potential of the GPAC array for ARMA
model identification. We have shown that its performance can be expected to be
much better than that indicated by the results of Davies and Petrucelli. This is
also consistent with the empirical experience of the present authors using GPAC
arrays. It should be pointed out that the GPAC method, as well as most other model
identification methods, should be used with care when some roots of the
characteristic equation are close to the unit circle. We recommend a prefiltering
procedure such as the one we applied in Table 4.6 as a preliminary step in any
identification procedure so that the nonstationary components of the model do not

mask the stationary portion.

Although we feel that the best use of the GPAC is via inspection by the
analyst, we have introduced the W-statistic here to eliminate the subjectivity of

the method for comparison purposes. The choice of constants in the simulation
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analyses reported here have not been shown to be optimal and may be able to be
improvéd. In fact, the general form of the W-statistic in (3.4) may not be the best
way to measure the pattern in the array. Our results simply show that recognizable
patterns do exist in GPAC arrays and the W-statistic is a measure of these
patterns. As such, the W-statistic should be viewed as a guide for helping the
analyst to consider the most suggestive patterns. The results in Table 4.5 indicate
that the GPAC can be used successfully to identify a wide wvariety of ARMA
models. In many instances the identification is far superior to that using the
TIMSAC-74 version of AIC. Another important point is that a GPAC analysis can be
performed in a fraction of the time required by AIC. We have picked the TIMSAC-
74 version of AIC as an example of an automatic model identification procedure in
wide use. Improvements have been made in AIC resulting from better maximum
likelihood estimation, consistency has been attained using BIC, etc. Qur purpose in
comparing our results with this version of AIC has not been to claim that our
method is necessarily superior, but that it indeed does identify ARMA models

competitively with the established techniques in far less computing time.

Finally, we now recommend using Tsay-Tiao estimates of the autoregressive
coefficients for purposes of»calculating GPAC arrays from data. Arrays based on
unconditional ML estimates have not been examined in this report. Such ML GPAC
arrays based on good starting values (Tsay-Tiao, etc.) may be the optimal approach
if time is not a factor. However, the fact that the current implementations of GPAC
using TT and YW estimates do not require estimation of the moving average param-

eters is very appealing.

In conclusion, we believe that the assertion by Davies and Petrucelli that the
GPAC is not useful for ARMA(p,q) models with ¢>0 is unfounded and that GPAC

performs well on real data.
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