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T h e  generalized part ial  autocorrelation (GPAC) a r r a y  was introduced b y  

Woodward and Gray  (1981) a s  a method of identifying t h e  order  of an ARMA(p,q) 

process. T h e  GP.AC identif ication technique i s  a generalization of t h e  model iden- 

tification method popularized by Box and Jenkins (1970). Davies and Petrucell i  (1984) 

provide simulation evidence t o  argue t h a t  in f a c t  t h e  GPAC i s  of limited usefulness  

due  t o  t h e  f a c t  t h a t  t h e  sample GP-AC a r r a y  is  unstable when applied t o  time se r ies  

of only moderate length. 

In t h i s  paper we address  t h e  findings of Davies and Petrucell i  and show t h a t  

in general t h e y  a r e  not  valid. Essential ly t h e y  h a v e  concentrated on examining 

variabil i ty between GP?IC a r r a y s  when t h e  model identif ication capabilities of t h e  

GPAC a r r a y  depend on var iabi l i ty  within an a r ray .  T h r o u g h  a simulation s t u d y  i t  i s  

shown t h a t  GPAC patterns a r e  more stable t h a n  Davies and Petrucell i  suggest  and 

t h a t  t h e  W-sta t is t ic  provides  model identification r e s u l t s  comparable t o  those  of 

AIC in a f rac t ion  of t h e  time. T h e  W-statist ic i s  defined f o r  purposes of measuring 

t h e  pa t t e rns  in a sample GPAC a r r a y  automatically and providing a quan t i t a t ive  

means of assessing t h e  model identification information in an a r ray .  We also examine 

sample GPAC a r r a y s  based on t h e  est imates of T s a y  and T i a o  (1984). T h e s e  a r e  

shown t o  perform be t t e r  t h a n  t h e  Yule-Walker based a r r a y s  examined previously,  

par t icular ly  when near nonsta t ionary components a r e  in t h e  model. I'n cer ta in  cases  

t h e  GPAC r e s u l t s  using t h e  T s a y  and T iao  es t imates  a r e  f a r  super ior  t o  those  of 

AIC. We br ie f ly  examine t h e  use  of an over f i t t ing  procedure  proposed by Gray  and 

Woodward (1986) t o  automatically perform model identif ication in t h e  presence of 

nonstationary components. 
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1. Introduction 

The generalized partial autocorrelation (GPAC) function was introduced by 

Woodward and Gray (1981) for  purposes of model identification in the  ARMA(p,q) 

setting. The  GPAC function is an extension of the  partial autocorrelation function 

used by Box and Jenkins (1975) in ARMA model identification. Woodward and Gray 

(1981) used an array to present t h e  information in the  GPXC function, and this 

array was shown to  be related t o  the  S-array of Gray, Kelley, and McIntire (1978). 

Woodward and Gray (1981) showed tha t  the  GPAC array uniquely determines p and 

q when the  true autocorrelation is known, a property i t  shares with the  S-array. 

Unique identification of p and q when the true autocorrelation function is known is 

only assured using the Box-Jenkins approach when either p=O or q=O. Woodward and 

Gray (1981) discussed the  use of the  GPAC based on single, finite length real- 

izations, and showed examples in which the model identifying pattern in the GPAC 

was clearly discernible. Davies and Petruccelli (1984) presented simulation evidence 

and real data examples to argue t h a t  the sample GPAC array  is  unstable when 

applied t o  time series of only moderate length and tha t  i t s  use in detecting MA 

components is  limited. 

In this  paper we discuss t h e  findings of Davies ahd Petrucelli (1984) and show 

tha t  their conclusions are unfounded, largely due to  t h e  fac t  tha t  they are 

essential1 y confusing variability between GPAC arrays with variability within an 

array. In Section 2 we define t h e  GPAC function and associated array. In Section 3 

we discuss the  estimation of the  GPAC array from sample data and present 

alternative estimation approaches. We also discuss an ad hoc quantification of the  



pattern in the  GPAC a s  a means of assessing t h e  model identification capabilities of 

the  GPAC. In tha t  section we also briefly discuss model identification using GPAC 

ar rays  in t h e  nonstationary case. Finally, in Section 4 we re-examine the  resul ts  of 

Davies and Petrucelli  (1984) and fu r the r  explore the  model identification capabilities 

of t he  GPAC a r ray  by comparing i t  t o  the  AIC method of Akaike (1974). Even 

though we st i l l  believe tha t  the  GPAC is best applied when inspected visually by 

the  investigator, a s tat is t ic  is introduced t o  measure the  pattern in the  GPAC a r ray  

so tha t  t he  comparison with AIC is s t r ic t ly  quantitative. Even in this  automated 

form, which may be able to  be improved upon, GPAC compares ve ry  favorably with 

the  4IC and in f ac t  in many circumstances i t  i s  much better. The  automated form of 

GPAC model identification requires f a r  less computation time than AIC. 

3. T h e  Generalized Partial Autocorrelation Function 

Consider t h e  univariate ARMA(p,q) process given by 

f o r  t = 0, *I, =2,  ... where a, is assumed t o  be white noise, with the  autoregressive 

coefficients &,, i=l,. . .,p and moving average coefficients O,, i=l,. . .,q being real 

constants. We of ten  write (2.1) in the  form qj(B)X, - 8(B)a, where 

and where f o r  a function of t, f(t1, t he  backshift operator Bk is defined by Bkf(t) - 
f(t-k). T h e  generalized partial autocorrelation is defined t o  be 



where B(s,t) is  t h e  sxs  matrix defined by 

and A(s,t) is  t he  matrix composed of t h e  f i r s t  s-1 columns of B(s,t) with t he  s t h  

column given by (p,+,, ..., pt+,).. T h e  GPAC element q5FL id thus  the  solution of t he  

extended Yule-Walker equations f o r  t h e  k t h  autoregressive coefficient of an 

ARMA(k,j). More generally, in this  paper we will use the notation #Lqd to  denote t he  

k t h  autoregressive coefficient corresponding t o  an ARMA(p,q) model. Woodward and 

Gray (1981) suggest displaying the  GPAC elements a s  an a r ray  whose (k,j)th element 

i s  

T h e  model identification pattern in th i s  a r ray  is based on the  f ac t  tha t  if t he  

process is ARMA(p,q) 

Th i s  pat tern uniquely identifies t h e  order  of a stationary ARMA(p,q) process. T h e  

form of t h e  GPAC a r r ay  w4en X, i s  an ARMA(p,q) process is shown in Table 2.1. In 

order t o  identify p and q given a GPAC array,  bne searches f o r  a column p in which 

constant behavior oocurs associated with a row q in which t h e  elements a r e  ze ro  

f o r  columns k > p. Woodward and Gray  (1981) show tha t  t h e  GPAC elements can be 
I obtained a s  a rat io  of elements of t h e  S-array proposed by  Gray, Kelley and 

McIntire (1978). T h e  behavior exhibited by  (2.5) derives from t h e  f ac t  t h a t  t h e  

autocorrelation function from a s ta t ionary  ARMA(p,q) process given in (2.1) satisfies 



the  difference equation 

Pk = dlPk-l + '.. + d ~ P k - ~  9 2 q + 

0 

Moving 

Average 4-1 

Order 4 

q+ 1 

Table 2.1 GPAC Array f o r  an ARMA(p,q)  Process 

Autoregressive Order 

1 ... P- 1 P P+ 1 p+2 

* u - undefined 

Special care must be exercised when dealing with processes which are 

nonstationary or  v e r y  nearly so. Before considering th i s  case  we provide the  

following definition. 



Definition 2.1 The k complex numbers A,, A,, ..., A, will be said t o  approach the  

unit circle uniformly if IAII = IA,l = -.- = IA,I as  IA,I -- 1. 

Findley (1978) and Quinn (1980) show t h a t  if: 

(a) X, i s  an ARMA(s+d,q) process where d roots  of t he  

characteristic equation approach the  unit circle 

uniformly 

(b) Of t h e  d roots  in (a) 

(i) m a re  distinct 

(ii) j of these have highest multiplicity h 

(c) 2; is t h e  limiting value of p, as  t h e  d roots  

approach the  unit circle uniformly 

then, 2; satisfies a linear homogeneous difference equation of order j, of t h e  form 

for  all integer m, where $(B) = 1 - $:B - - - -  - ?,bjB" and I?,bjl-1. Actually, i t  can be 

shown t h a t  @(B) in (2.7) is t h a t  operator formed from t h e  product of t he  

nonstationary fac tors  of highest multiplicity in qb(B). T h e  following resul t  is  a 

consequence of t h e  above remarks. 

Theorem An. ARMA(p,q) process is nonstationary if and only if fo r  some k 5 p, 

This  "dropping back" in t h e  order of t h e  difference equation being satisfied by p: 

holds approximately f o r  p,' whenever some of t h e  roots  of qb(B) a re  close t o  t he  uni t  
d circle. When th i s  occurs  a column of t h e  GPAC a r r ay  prior t o  t he  p th  column will 

be "nearly constant" with these values being real numbers near 1 o r  -1. T h e  

implications of these resu l t s  when modeling a realization from a nonstationary o r  



nearly nonstationary PIRMA process will be discussed in Section 3. 

3. Using the GPAC Array with Data 

' (a) Estimation Techniques 

Obviously, the fact that the GPAC pattern uniquely identifies the order of a 

stationary process is o.nly useful in practice if the patterns can be identified when 

GPAC elements have been estimated. Woodward and Gray (1981) suggest estimating 

the GPAC elements by replacing the autocorrelations in A(s,t) and B(s,t) with their 

corresponding sample estimates, i.e. pk is estimated by 

In other words, the GPAC array elements are estimated by J!,jL, the extended Yule 

Walker estimate of 4, , if the process is assumed to be ARMA(k,j). Woodward and 

Gray (1981) show that  these estimates can be obtained as simple ratios of elements 

in the sample S-array. However, Yule-Walker estimates can be poor, especially in 

the presence of roots near the unit circle. 

Clearly, any technique for estimating the autoregressive coefficients of an 

ARMA(p,q) will yield a sample GPAC array. We will investigate the use of the 

estimates of Tsay and Tiao (1984) as alternatives to  the  Yule-Walker approach 

suggested originally by Woodward and Gray (1981). Tsay and Tiao (1984) introduced 

estimates of the autoregressive parameters of an ARMA(p,q) process based on 

iterated AR(k) regressions. Their estimates are Least squares estimates obtained from 

recursively adding MA type terms to an AR(k). These estimates can be obtained 

recursively using the  formula 



where .m = 1, ... , k ; k 2 1 and j 2 1  where 

2:: = ordinary least squares estimate for -4R(p) 

and for an ARMA(p,q) process 

We will refer to estimates using this approach as T T  estimates. Tsay and Tiao 

(1984) showed that their estimates are consistent for the autoregressive parameters 

when initialized by the  ordinary least squares estimates, whether or not the model 

contains nonstationary components and that  T T  estimates are asymptotically 

equivalent to  ' 'Y'W estimates when X, is stationary. On the other hand, Findley 

(1980) has reportedly shown that  when t h e  process is nonstationary, the  sample 

autocorrelation approaches p' so that  t h e  Yule-Walker estimates approach the $? in 

Equation 2.7. In this paper we will use the  implementation of the T T  estimation 

procedure utilized by Gray and Woodward (19863 and initialize with Burg (19753 

estimates. 

Example 3,. Consider a realization of length 300 from the  XRMA(3,2) process 

where a, is normal white noise with zero mean and unit variance. It can be easily 

seen that  this  ARMA(3,2) model is stationary with none of i t s  roots close to  the 

unit circle. In Table 3.1 we display the  GPAC arrays for this realization using T T  

and YW estimates. Notice that  there is ve ry  little difference in the  ar rays  of Table 

3.1, and tha t  for each array the  identification as an ARM4(3;2) is clear since 9: = 
( 2 )  .52 for j 2 2 and 4ick = 0 for k > 3. 

A parametric procedure for  estimating coefficients is to use maximum 

likelihood (ML). These estimates are obtained using an iterative scheme which is 



Table  3.1 GPAC A r r a y s  Based on a Realizat ion of Length 300 

From the ARMA(3,2) Model of Example 3.1 

(a) Using TT Est imates  

Autoregress ive  Order  

1 2 3 4 5 6 

0 -85 1 -.705 -430 .353 -.347 -.I25 

Moving 1 .624 -.444 3 0 2  .723 -.459 -.SO9 

Average 2 .433 .024 .512 .I23 -.046 -.063 

Order 3 .450 -9.586 SO9 .28 1 -.I99 -.042 

4 1.295 -. 136 .536 -. 179 -.003 -.343 

5 1.492 4.88 1 -538 -. 192 23.770 -.343 

(b) Using YW Es t ima tes  

Autoregress ive  Order  

1 2 3 4 5 6 

0 .85 1 -.702 .417 .355 -.323 -. 144 

Moving 1 -623 -.445 .911 .687 -.465 -.688 

Average 2 .433 .022 .514 .I11 -.019 -.078 

Order 3 .449 -10.393 -512 .I86 -.449 -.073 



sometimes very slow to converge, especially if some of the model components are 

nonstationary or nearly nonstationary. Thus, a GPAC technique based on ML 

estimates may require substantially more computation time than YW or TT, 

especially when roots of the characteristic equation are near the unit circle. This is 

the reason the ML estimates were not used by Gray and Woodward (1981) where the 

GPAC was introduced and will not be considered any further now. Akaike's 

Information Criterion (AIC), see Akaike (19741, is theoretically based on ML 

estimation and consequently also requires much more computation time than either 

the YW or T T  GPAC. This will be discussed more in Section 4. 

(b) Nonsta tionary Components 

The results of Gray, Kelley and NIcIntire (19781, Findley (1978) and Quinn 

(1980) suggest that the  sample autocorrelation function of an ARMA(p,q) process 

with stationary and "nearly nonstationary" components will approximately satisfy a 

difference equation of order less than p. In  essence, these nearly nonstationary 

components tend to dominate other components. For this reason, Box and Jenkins 

(1975) recommend differencing a series whose sample autocorrelation damps slowly, 

i.e. which approximately satisfies the f irst  order difference equation pk - IbLpk- ,  =O 

where 20: is near 1. Box and Jenkins (1975) defined the ARIMA(p,d,qj model to 

accomodate these unit roots. Gray and Woodward (1981) further discuss the problem 

of model identification in the nonstationary case, taking into consideration any roots 

near the  unit circle (+1 and complex roots), and they showed that  these 

nonstationary components can be detected using the S-array and GPAC array. 

Nonstationary components manifest themselves in the GPAC array as a nearly 

constant column whose values are "near" 1 or -1. The important point here is that 

when such a pattern is detected, this should serve as a warning that  other 

stationary components may be present in the model which may not be detectable 

until the data is transformed by the nonstationary factors. Tsay and Tiao (1984) 

show that  T T  estimates are consistent whether or not the model has nonstationary 

components, and that  convergence to the  components of nonstationary factors is like 

l/n instead of 1 / f i  as in the stationary case. They claim that use of the T T  

estimates removes the  need for preliminary transformation. This is  true to an 

extent. That  is, T T  estimates vastly improve the estimates in the near 



nonstationary case, but there can be problems with their use also (see Gray and 

Woodward 1986). 

Example 3.2 Consider a realization of length 300 from the ARMA(4,l) process 

where again a, is normal white noise with zero mean and unit variance. We display 

the AR factors of this model in Table 3.2. 

Table 3.2 Factor Table for the ARMA(4,l) Model of Example 3.2 

Factor Roots Absolute System 

Reciprocal Frequency 

From Table 3.2 i t  can be easily seen that this model contains two roots close to the 

unit circle and two roots relatively far removed from it. The GKM-Findley-Quinn 

result suggests that the  GPAC arrays, based on YW estimates will tend to show a 
( j 1  second order behavior where the second column is nearly constant with 1#221 a 1, 

0 1 . However, the  preceding discussion indicates that  the  GPAC arrays based 

on T T  estimates may indicate the  proper ARMA(4,l) model due to  the Tsay-Tiao 

consistency result. In Table 3.3 we display the GPAC arrays for this realization 

using T T  and YW estimates. Inspection of these two arrays indicates that the  

second order behavior due to  the  nearly nonstationary component, i.e. the nearly 

constant second column with 1#%1 = 1, is by far the  most pronounced pattern in 

both arrays. However, the  YW GPAC shows no indication of an ARMA(4,l) pattern 

but instead suggests an ARMA(~,O). The GPAC array based on TT estimates also 

shows a very constant second column and also suggests an ARMA(2,O) although the 

zero behavior is not strong. Notice also that  in the TT GPAC array the fourth 



Table 3.3 GPAC Arrays  Based on a Realization of Length 300 

From t h e  ARMA(4,l) Model of Example 3.2 

(a) Using TT Estimates 

Autoregressive Order 

1 2 3 4 

0 .SO5 -.995 .I85 -.377 

Moving 1 -.965 -.994 -1.767 -.512 

Average 2 2.036 -.993 1.267 -.755 

Order 3 .519 -.989 250  -.484 

4 -.go0 -.989 - 1.288 -.568 

- 2.102 -.088 1.393 -.672 

(bj Using YW Estimates 

.Autoregressive Order 

1 3 
i 3 

0 .502 -.974 -.I36 

Moving 1 -.949 -.978 .400 

Average 2 2.029 -.976 1.550 

Order 3 .519 -.972 .512 

4 -.875 -.970 -1.165 



column shows a certain degree of constancy, and that  there is a slight indication of 

an ARMA(4,l). From this example we see that even when T T  estimates are used, the 

nonstationarity pattern is the strongest pattern indicated by the GPAC array and 

may therefore mask the t rue  pattern or destroy i t  completely. We therefore 

recommend a dynamic prefiltering technique introduced by Gray and Woodward 

(1986) for  identifying and removing nonstationary components. Later we show that  

this can be done automatically so that  two passes through the data are not 

necessary. 

(c) Measuring the GPAC Pattern 

Davies and Petrucelli (1984) examined the model identification capabilities of 

the GPAC by performing a simulation study in which 1000 realizations from the 

ARMA(3,2) model of Example 3.1 were generated. Empirical means and standard 

deviations of GPAC elements involved in the ARMA(3,2) pattern were found across 

the 1000 realizations. Davies and Petrucelli questioned the model identification 

capabilities of the GPAC because of what they perceived to  be high variability 

across realizations. However, the fact that  a particular GPAC element is .275 for 

one realization and .655 for another may not be relevant for  model identification. 

The question for model identification is "What is the pattern of array values 

within a single realization?" and not "What are particular array values for a 

realization or across realizations?" The actual results of the Davies and Petrucelli 

(1984) simulation relate more to  the performance of Yule-Walker estimators as 

coefficient estimators than they do to model identification via the  GPAC. 

In an effort  to examine the actual model identification capabilities of the 

GPAC, we investigate measuring the pattern within a given sample GPAC array. 

Here, the strength of the ARMA(k,j) pattern is measured by the W-statistic defined 

by 
I 

where 



and wc , wz , C? , i=0 ,..., 3 and zl , i=1, ... 3 a re  non-negative constants which have t o  

be chosen. In essence C(k,j) measures t h e  s t rength of a column constancy behavior 

fo r  t he  kth column beginning in row j while Z(k,j) measures zero behavior in t he  

j t h  row beginning in column k+l  relative to  t he  s ize of the  constants. T h e  order 

selected is (p,q) such t h a t  

W(p,q) = min W(k,j) 
O<k<K 
l < f l J  

Unless some of t h e  weights a r e  taken t o  be zero, t he  W-statistic measures t he  

GPAC pattern by looking fo r  four  "constants" down a column such tha t  t he  row 

containing t h e  f i r s t  of these  constants has  three  "zeros" immediately following t h a t  

constant. In Section 4 we present resu l t s  of simulations investigating t h e  model 

identification capabilities of t h e  GPAC a r r ay  on t h e  basis of t h e  W statistic. 

I t  should be noted t h a t  t he  procedure described in (3.4) anid (3.5) applies t o  

the  s tat ionary case. If nonstationary or  nearly nonstationary components a r e  present 

in the  data, then direct  application of t h e  W-statistic would be expected t o  of ten 

select p too small based on t h e  dicussion in Sections 2 and 3, especially when using 

Yule-Walker estimates. A procedure f o r  automatically detecting nonstationary 

behavior using overf i t t ing a s  described by Gray and Woodward (19861, removing t h e  



nonstationary components and modeling the stationary model components is feasible 

and will be discussed in Section 4. 

4. Rejoinder t o  Davies and Petrucelli Results 

T h e  conclusions of Davies and Petrucelli (1984) concerning the  performance 

of t h e  GPAC were t h a t  in practice, t h e  GPAC ar ray  has minimal model identification 

capability especially when q > 0. Thei r  findings in support of' these conclusions can 

be summarized a s  follows: 

(a) Simulation resul ts  showed lack of stability of GPAC 

elements fo r  t h e  ARMA(3,2) model in (3.3) even with 

realization lengths of 300 and 500 

(b) Marked fai lure  of t h e  GPAC t o  identify t h e  following 

following models based on realizations of various lengths 

(c) Failure of t h e  GPAC t o  provide "correct" model 

identification f o r  several  classical data s e t s  

fo r  which mixed models have  been obtained psing 

o ther  techniques I 

These findings will be addressed individually in this  section, and i t  will be shown 

t h a t  in each case their  conclusions a re  not valid. Before proceeding, we mention tha t  

simulation resul ts  quoted in t h i s  paper a r e  based on realizations generated using 

N(0,l) white noise with t h e  normal deviates being generated using IMSL routine 



GGNPM on t h e  IBM 3081-D24 computer a t  Southern Methodist University. For each 

simulated model t o  be examined, 100 realizations were generated fo r  each realization 

' length under consideration. Both t he  YW GPAC and TT GPAC a r r ays  were computed 

fo r  each realization. AIC is  also calculated f o r  each realization using the  1974 

TIMSAC program. T h e  W-statistic defined in Section 3 was calculated using wc = 1, 

wz = 1 , co = c1 = 1, c2 = .8, c3 = .6 and zl = 1, z2 = .8, z3 = .6 t o  allow fo r  slight 

deterioration of t h e  pattern, i.e. beginning with cl and zl t he  constants were taken 

as  simply linear weights. For  each realization, t h e  identification procedures selected 

from the  rectangular a r ray  of possible orders, p = 1, ... , 6 and q - 0, ... ,3. T h e  top 

3 models a s  indicated by an identification procedure were identified fo r  each 

realization. For  simulation from a particular model we table t h e  percentage of 

realizations f o r  which t h e  t rue  model was correct1 y identified and, in parentheses, 

t h e  percentage of realizations f o r  which the t r u e  model was among the  top th ree  

choices fo r  sach  of t he  identification techniques. 

(a1 XRMA(3,2) Simulation Results 

Woodward and Gray (1981) presented a Y'W GPAC a r r ay  f o r  a realization of 

length 300 from t h e  ARMA(3,2) model considered earlier in Example 3.1 and showed 

t h a t  t he  GP.IC pat tern indicating an ARMA(3,2) was discernible. Based upon t h e  

simulation s t u d y  described in Section 3, Davies and Petrucelli (1984) claimed t h a t  

realizations from t h e  model in Example 3.1 fo r  which the  XRMA(3,2) identification 

can be made a re  "the exception ra ther  than t h e  rule." T h e y  concluded tha t  even fo r  

realizations of length 500, t h e  corresponding standard deviations were comparatively 

high. As we h a v e  already pointed out,  t h e  standard deviations t h e y  spoke of a r e  not 

really re levant  a s  th i s  section will demonstrate. We re-examined the  model 

identification capabilities of t h e  GPAC in t h i s  sett ing using t h e  W-statistic t o  

measure t h e  pattern. 

In Table 4.1 we display t h e  resul ts  of o u r  simulation investigation. In t h e  

table we indicate t h e  percent of realizations fo r  which an ARMA(3,2) was selected a s  

t h e  f i r s t  choice by t h e  W-statistic and the  percent fo r  which an ARMA(3,2) was in 

t he  top t h r ee  choices fo r  var ious realization lengths. For  comparison, we also 

display t he  model identification resul ts  using AIC. From t h e  table i t  can be seen 

t h a t  in f ac t  with n=300 t h e  W-statistic correct ly  identified t h e  model about 70% of 



Table 4.1 Percent Correct Classification for 

(1-1.5B + 1.21~2 - . 4 6 ~ 3 ) ~ ~  = (1 + .2B + . 9 ~ ~ ) a ~  

Realization Length 500 300 200 100 5 0 
1st 

Choice 8 1 68 6 2 30 16 
TT GPAC TOP 

3 9 2 82 73 38 2 7 
1st 

Choice 7 9 7 1 5 6 2 0 9 
YW GPAC TOP 

3 9 4 83 7 5 3 3 23 - 
1st 

Choice 73 80 76 4 5 15 
AIC TOP 



the  time while with n=500 the  W-statistic gave approximate1 y 80% cor rec t  

classification using t h e  TT and YW GPAC. T h e  GPAC based procedures picked an 

ARMA(3,2) a s  one of t h e  top th ree  choices s l ight ly  over  80% of t h e  time f o r  n=300 

and over  90% of t h e  time a t  n=500. These resu l t s  dispel1 t h e  notions t h a t  t h e  

realization given by  Woodward and Gray (1981) was an "exception" and t h a t  t h e  

"comparatively high" variability in GPAC elements fo r  n=500 is  too large fo r  model 

identification. T h e  GPAC results f o r  .n=300 and n=500 were similar t o  t he  AIC 

resul ts  shown in t h e  table with t he  GPAC showing a slight advantage a t  n=500 and 

AIC having somewhat be t te r  identification a t  n=300. Also shown in Table 4.1 a r e  t h e  

identification resu l t s  f o r  n=200, 100 and 50. T h e r e  we see t ha t  .n=50 is  too small f o r  

identification of t h i s  model by e i ther  AIC o r  GPAC. At n=200 and n=100 AIC does 

better a t  identifying t h e  .ARMA(3,2) and a t  picking t h e  XRlMA(3,2) a s  one of t h e  top 

three models. As we shall  see in t h e  sections t h a t  follow, th i s  i s  not a general 

result, i.e. XIC will not  always outperform t h e  W-statist ic on small samples. 

Before terminating t h e  discussion here, we consider t he  computation times 

involved in performing the  identification routines. I t  should be noted t h a t  in 

calculating computation times, we have  not included t h e  computation of sample 

autocorrelations and autocovariances. Including these calculations would have  

increased t h e  times f o r  YW GPAC and AIC. In t h e  simulations summarized in Table  

.1.1, t he  GPAC procedures proved to  be much f a s t e r  than AIC. T h e  YW GPAC 

required approximately .02 seconds per realization, independent of realization length. 

T h e  TT GPAC required about .1 seconds fo r  e v e r y  50 observations in a realization, 

i.e. t he  computation time fo r  n=50 was about -1 seconds, f o r  n=300 about -6 seconds, 

etc. On t h e  o t h e r  hand, t h e  TIMSAC-74 version of AIC required around 25 seconds 

per realization f o r  t h e  simulations described in Table  4.1. 

I t  i s  informative a t  t h i s  point t o  compare t h e  use of GPAC and AIC f o r  model 

identifi'cation. Both procedures essentially involve t h e  calculation of a s ta t i s t i c  

based dpon t h e  parameter estimates f o r  each candidate model. However, t h e  GPAC 

using ei ther  TT o r  YW, does not require estimation of t h e  moving average param- 

e te rs  while AIC does. Estimation of t he  moving average parameters i s  difficult ,  

especially near t h e  noninvertible region. Since GPAC avoids th i s  estimation, 
\< 

sat isfactory parameter estimates can be obtained without t he  necessity of using 

time consuming maximum likelihood and approximate maximum likelihood routines. 



(b) Simulations from ARMA Models 

(i) Re-examination of the Davies and Petrucelli Models 

Davies and Petrucelli (1984) report extensive simulations based on the ARMA 

models of (i) and (ii) in (4.1). They report that model identification was not possible 

for realization lengths even as large as 200. They did not suggest alternative 

approaches. First i t  should be pointed out that examination of these two models 

reveals the source of the model identification difficulties. Model (i) is obviously 

nearly white noise since there is near cancellation of the two operators. The true 

autocorrelations, p,, for Model (i) are shown in Table 4.2 for k= 1, 2, ..., 8, and they 

confirm our observations. 

Table 4.2 True Autocorrelations for the ARMA(1,l) Model 

It is clear that realizations from (i) will be difficult to distinguish from white noise 

unless realization lengths are exceptionally long. 

Model (ii) also has some "near cancellationn which is evident when (1+3-.4B2) 

is factored as (1-.3062B)(1+1.3062B). Another problem with this model which is clear 

in this factored form is that this ARMA(1,2) model is actually non-invertible. The 

invertible process with the same autocorrelations as the Davies and Petrucelli model 

has the moving average operator 



Thus  we will consider realizations from t h e  invertible ARMA(1,2) model 

ra ther  than t h e  one in (4.1). Realizations from th i s  model should behave much like 

those of an MviA(1) o r  MA(2) due t o  t h e  nearly cancelling factor. T h u s  i t  i s  doubtful  

t ha t  any of t h e  existing techniques could claim a bet ter  model for  this  data than an 

MA(1) or MA(3) without a fairly large sample. T h e  t r u e  autocorrelations fo r  t h e  

model in (4.2) (which a r e  t h e  same as those f o r  Model 4.l(ii)) a re  shown in Table 4.3. 

These indicate t h a t  only p ,  is  substantially different  from zero but t h a t  i t  i s  too  

large for  a t r u e  MA(1) but not for  an MviA(21, demonstrating why an MA(1) or  MA(2) 

is  likely t o  be chosen (and i t  i s  not a poor model f o r  th i s  data) unless t h e  sample 

s ize  is  qui te  large. 

Table 4.3 T r u e  Autocorrelations fo r  t h e  ARMA(1,2) Model 

(1 - .5B)X, - (1 + .4594B - .2344~')a, 

Realizations of length n-100 and n=200 were simulated from Model 4.l(i) and 

(4.2). As would be expected from Table 4.2, many realizations from model 4.l(i) a r e  

not distinguishable from white noise. Specifically, applying t h e  Ljung-Box-Pierce 



statistic (see Ljung and Box 1978) to  these realizations using a 5% level of signifi- 

cance and 25 sample autocorrelations, we failed to  reject white noise 73% of the time 

for n=100 and 45% of the time for n=200. Actually, the analysis of any time series 

should begin with a preliminary test  for  white noise. Appropriate model identifica- 

tion would involve finding models for  only the realizations for  which white noise is 

rejected. Also, Model 4.2 is poorly identified as an ARMA(1,2) by both GPAC and 

AIC procedures as demonstrated by the fact that neither procedure identified an 

ARMA(1,2) model as the f irst  choice more than 15% of the time for  n=100 or n-200. 

Although the GPAC array can be used to detect pure MA models, i t  has always been 

recommended by the authors that  one should inspect the sample autocorrelations 

before examining the GPAC. If this  is  done, in the case of the MA process there is 

no need to consider the GPAC. Thus  a more proper use of these methods would 

probably have resulted in selection of an MA(1) or  MAC) model. Allowing pure MA 

models using AIC may have resulted in AIC model identification as an MA(1) or 

MA(9). 

(iij Simulations from Other ARMA Models 

From the preceding observations we conclude that the conclusions drawn by 

Davies and Petrucelli on the XRMX(3,2) model of Example 3.1 are incorrect and that 

the criticism of the GPAC on the basis of the ARMA(1,l) and ARMA(1,9) models in 

(4.1) are probably valid for any current model identification method. Thus we 

believe their results provide little or no evidence concerning the  value of the 

GPAC as a method for determining a proper ARMA model. We conclude this section 

by examining the GPAC array using more reasonably selected ARMA models. In 

Table 4.4 are listed 10 ARMA models on which this simulation analysis will be based. 

In this table we show the factors of the autoregressive and moving average 

operators. In Table 4.5 we show the  results of the simulation. As before, for each ! 

I 
model we table the percent of the realizations .for which each procedure identified 

the t rue  model and the percent for  which the t rue  model was one of the top three 

choices. 

Several observations can be made from this table. First, the  consistency of 

the GPAC results is demonstrated by the fact that  in all cases, better identification 

was obtained using n=200 than for n-100 or n-50. Due to  the consistency properties 



Table 4.4 ARMA Models Used in 
Simulations - Showing Fac.tors 

Model AR Factors MA Factors 

(a) (1-1.3B + .7B2)Xt = (1 + .7B)at 1-1.3B + .7B2 1 + .7B 

(b) (1-1.3B + .7B2)Xt = (1 - .7B)at 1-1.3B + .7B2 1 - .7B 

(d) (1 - 1.5B + 1.21B2 - .46B3)Xt = at 1-.79B+.65B2 
1-.71B 

(e) (1 - .96B2 + .64B4)Xt = at 

(f) (1 - .96B2 + .64B4)Xt = (1 + .8B2)at 1-1.6B + . 8 ~ ~  1 + .8B2 
1+1.6B + .8B2 

(g) (1 + B + .99BZ)Xt = at 1+B+.99BL 

(h) (1 + B + .99B2)Xt = (1-.7B)at l+B+. 99BZ 1 - .7B 

( i )  ( 1 - 2 . 5 ~ + 2 . 9 6 ~ ~ - 1 . 7 5 ~ ~ + . 4 9 ~ ~ ) ~ ~  1-1.3B+.7BZ 
= at 1-1.2B+.7B2 

(j) (1-2.5B+2.96B2-1.75B3+.49B4)Xt 1-1.3B+.7B2 1 + .7B 
= (l+.7B)at 1-1.2B+.7B2 
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of the Tsay-Tiao (for both stationary and nonstationary series) and of Yule-Walker 

estimates (for stationary time series), the GPAC arrays are "consistent" for the 

true pattern which results in a W-statistic of zero, the minimum value attainable by 

the W-statistic. However, the AIC is well known to not be consistent, a property 

which is demonstrated in the table by the fact that i ts  identification results are not 

generally any better a t  n=200 than a t  n=100. 

Secondly, the GP.4C techniques clearly tend to outperform AIC for purely 

autoregressive processes. For ARMA processes in which there is no near 

cancellation of operators (such as (a), (h) and (j)), the GPAC procedures tend to  

perform better than XIC at  n=200, although for model (h) the AIC performance is 

substantially better a t  n=50. On the other hand, when there is near cancellation, 

the AIC tends to outperform GPAC. Model (a) in Table 3.4 is an ARMX(3,lj example 

used by Brockwell and Davis (1987) to demonstrate the performance of AIC. Clearly, 

there is no near cancellation in this model. For model (a) the T T  GPAC and AIC 

perform similarly for n=50 or n=100 with the  T T  GPAC providing better 

identification a t  .n=200. Model (b) in Table 4.4 is a modification of the Brockwell 

model in which the moving average factor is changed so that  the factors more 

nearly cancel. This can be seen by noticing that the roots of 1-1.3B+.7B2=0 are 

.93&.75i, i.e. they have positive real part. The roots of 1+.7B=0 and 1-.7B=0 are - 
1.43 and 1.43 respectively so that the root of 1-.?B=O is closer in the complex plane 

to .93i.?5i. When models (a) and (b) are inverted into their infinite order 

autoregressive form, i t  can easily be seen that model (b) is more nearly an AR(1) 

model. In Table 4.5 we see that  for n=100, the AIC results are better than those of 

GPAC while for n=2OO the GPAC provides identification comparable to or better 

than AIC. For most of the  ARMA(p,q) models considered with q>O, the GPAC 

procedures compared favorably with AIC. 

Another point of interest from the 'tables is that  TT GPAC results are 

typically better than those for the YW GPAC. .The difference seems to be large in 

the presence of roots near the unit circle, i.e. (gl and (hl, as would be expected. Also 

of interest are models (i) and (j) which contain nearly repeated roots. There we see 

the T T  GPAC clearly outperforming AIC and YW GPAC although n=100 seemed to  

be too small for identification in model (j). 

In models (el, (g), (i) and (jl the TT GPAC clearly outperforms AIC. Although 



the ARMA(4,O) was the most popular choice by, AIC for realizations from the XR(4) 

model in (el, several realizations were mismodeled as an .4RMA(4,q), q ,# 0 or 

ARMA(5,q). For the nearly nonstationary AR(2) model in (g), AIC tended to model the 

series as an ARMA(2,l) almost as often as it  did as an AR(2). Similarly, when the 

YW GPAC did not identify an AR(2) for these realizations, it  usually selected an 

ARMA(2,l). For the .4R(4) model of (i) with nearly repeated roots, AIC tended to 

identify realizations of length 50 or 100 as having autoregressive order 2 or 3, and 

when n=300 XIC tended to identify AR(5) or ARMA(4,q) models for varying values 

of q. For realizations of length 50 or 100 from the ARMA(4,l) model of (j), none of 

the techniques gave satisfactory results. However, for n=2OO the T T  GPAC had 

results far  superior to those of AIC with AIC selecting ARMX(4,q) and ARMA(5,q) 

models for varying values of q. Simulations from model (j) were also run for n=300, 

in which case an ARMA(4,l) was identified as the top model for 71% of the 

realizations using the T T  GPAC while YW GPAC and AIC performance was no better 

than i t  was a t  n=100 and n=300. It is obvious that the approximate MLE routine 

used by Akaike in TIMSAC-71 is not performing well in the presence of the nearly 

repeated roots. Improved MLE routines in more recent implementations of BIC may 

provide better AIC results. The YW GPAC tended to select second order models for 

the modeis of (i) and (j). 

Finally we consider the AR.MA(4,l) model considered previously in Example 

3.2, and in Table 4.6 we show the model identification results analogous to those of 

Table 1.5 following the row heading "No Prefiltering." As in Table 4.5, the percent 

correct classification is given in the table with the number of times the correct 

model was among the top three choices given in parentheses. It can be seen that 

none of the model identification procedures performed well, as would be expected 

due to the near nonstationary factor. The T T  GPAC results were poor but were 

better than those for the YW GPAC. This is consistent with the discussion in 

Example 3.2.- Gray and Wdodward (1986) . p  roposed a method for  removing 

nonstationarities by fitting the data with a high order autoregressive model, 

calculating a factor table associated with this model and then transforming the data 

by factors associated with roots near the unit circle. In order to demonstrate that 

this procedure can be used effectively in an automated mode in this setting, we re- 

examined these simulations. For each of the 100 realizations reported above, we 



overf i t  t h e  data with a 10th order autoregressive model and then transformed t h e  

data by any fac tors  fo r  which t h e  absolute value of t he  reciprocal of t h e  

associated root(s) was greater than a threshold chosen here  t o  be .95. T h e  resulting 

transformed ser ies  was then modeled. T h e  purpose of th i s  procedure was t o  remove 

the  nonstationary component, leaving a stationary ARMA(2,l) process t o  be modeled. 

When a second order nonstationarizing f i l ter  was used and t h e  transformed data was 

modeled a s  an ARMA(2,1), then t h e  procedure models t he  data as  an ARMA(4,l). The  

results of t h e  simulation a re  shown in Table 4.6 in t h e  section titled "Prefiltering." 

Note t h a t  although we have  explained th i s  procedure in a stepwise manner, t h e  

prefiltering and subsequent modeling was done in a single pass through t h e  data. 

There i t  can be seen tha t  t h e  prefiltering improved t h e  identification performance 

markedly. Notice t h a t  a f t e r  t h e  prefiltering, t h e  T T  GPAC and YW GPAC resul ts  

are  v e r y  similar. T h e  AIC routine was not run  with t h e  prefiltering, but such a 

procedure could also be applied with it. 

Table 1.6 Percent Correct Classification f o r  

(1 - 1.8B + 2.29B2 - 1 . 2 9 2 ~ ~  +.495B4)xt = (1 - .7B)a, 

.n=300 

I TT G P A C I  YW GPAC I AIC 1 

Pref iltering i 1 (83) 1 (83) 1 I 

(c) GPAC on Real Data 

Due t o  t h e  concern expressed by Davies and Petrucelli t ha t  t h e  GPAC 



pat terns  a r e  no t  c lear  f o r  real  data, especially when "known" models h a v e  moving 

average terms, we compare t h e  performance of t h e  GPAC a r r a y  a s  measured by t h e  

W-statist ic on real  data. We h a v e  examined t h e  following. ser ies  considered by 

Davies and Petrucelli,  i.e. Series A, Ser ies  C, Ser ies  E (sunspot data) and Series J 

(ou tpu t  ser ies)  from Box and Jenkins (1975), and t h e  metals data from Makridakis 

(1978). 

In Tab le  4.7 we show models identified by Box and Jenkins, AIC and t h e  W- 

s ta t is t ic  f o r  Ser ies  A, C and E. T h e  AIC resu l t s  a r e  those  obtained using TIMSAC- 

74 with t h e  rectangular  search of model orders. T h e  AIC and W-statist ic r esu l t s  in 

Table 4.6 a r e  based on model selection f o r  p 8 and q 2. Box and Jenkins 

identified two possible models f o r  Ser ies  A, C, and E. These  a r e  displayed a s  BJ1 

and BJ2. Whenever  t h e y  differenced t h e  data  t o  form an XRIMA(p,d,q) model, we 

h a v e  expressed t h i s  in Table  4.6 a s  an XRMA(p+a,q) model fo r  notational 

consistency. We also show t h e  top t h r e e  choices found by AIC and with t h e  W- 

s ta t is t ic  (on t h e  TT GPAC array).  ~ h e s e '  a r e  denoted .4IC1 - AIC3 and W1 - W3 

respectively and a r e  given in order  of preference. T h e  ser ies  were also modeled 

using over f i t t ing  with a 10th order  autoregress ive  and prefi l tering on t h e  basis of a 

threshold of -95. T h e  model identification resu l t s  based on t h e  W-statist ic a f t e r  t h e  

prefi l tering a r e  denoted W1P-W3P. 

Table 4.7 Modeling of Real Data Series 

BJ1 BJ2 1 AICl AIC? 41~3( W1 W? w 3  W1P W2P W3P 

On the basis of these  r e s u l t s  i t  appears  t h a t  t h e  GPAC a r r a y  obtains models 

consistent  wi th  t h o s e  of previous  techniques. A few comments a r e  in o rder  here. 

Davies and Petrucel l i  (1984) quo te  AIC models obtained b y  Ozaki (1977). T h e s e  d i f fe r  

in some c a s e s  f rom the AIC models obtained here. F o r  example, f o r  Ser ies  A, Ozaki 

Series A (1,l) ----- 
S e r i e s C  (2,O) ( 2 3  

S e r i e s E  (2,O) (3,O) 

(1,l) 2 1  1 2  

(3,l) 2 4 1  

(2,O) (2,l) (3,O) 

0 (1,l) (7,l) 

0 (1,O) (2,l) 

(2,O) (8,O) (2,l) 

(7,O) (1,l) (7,l) 

(2,O) ----- ----- 
(8,O) (5,O) (7,2) 



shows t h e  ARMA(7,O) model t o  be t h e  optimal f o r  o u r  range of o rde r s  which i s  

consis tent  with t h e  W-sta t is t ic  choice. Our  implementation of AIC chooses t h e  

ARMA(7,O) a s  best  of t h e  p u r e  AR models considered. CAT (see  Parzen 1974) and 

F P E  (see Akaike 1969) a lso  se lec t  an  AR(7) model f o r  se r i e s  A. I t  should  be noted 

t h a t  o u r  over f i t t ing  de tec ted  no near  nonstat ionari t ies s o  t h a t  t h e  data  was not  

prefi l tered.  T h u s  W1P-W3P a r e  t h e  same a s  Wl-W3. 

Ozaki f inds  t h e  ARMA(2,O) model f o r  Ser ies  C t o  be second best. Overf i t t ing  

a s  we did f o r  Ser ies  A r e s u l t s  in a second o rder  pref i l ter  with essential ly t h e  same 

coeff ic ients  a s  t h e  ARMA(2,O) model chosen by t h e  W-statistic. Applying t h e  Ljung- 

Box-Pierce test t o  t h e  t ransformed data,  we failed t o  r e j e c t  white noise a t  t h e  5% 

level, and t h u s  t h e  modeling procedure  i s  terminated. T h i s  i s  indicated in Table  4.7 

b y  t h e  f a c t  t h a t  no models a r e  g iven f o r  second and th i rd  cho ice  a f t e r  prefiltering. 

However, i t  i s  in teres t ing t o  n o t e  t h a t  examination of Se r ies  C revea l s  a seeming 

discont inui ty  around t h e  60 th  da ta  value.  Since t h i s  i s  da ta  collected e v e r y  minute, 

i t  seems t h a t  t h e r e  i s  some indication t h a t  an  adjus tment  may h a v e  been made a f t e r  

t h e  f i r s t  h o u r  causing an ARMA model t o  not  be an  appropr ia te  model f o r  t h e  data. 

I t  should  be noted t h a t  t h e  ARMA(2,O) model f o r  Se r ies  E i s  a poor model 

(see Woodward and Gray  1978) which ar ises  f rom t h e  f a c t  t h a t  t h e  ARMA model 

which best  f i t s  t h e  sunspo t  da ta  h a s  a pair of complex r o o t s  close t o  t h e  uni t  

circle. T h e  ARMA(2,O) behavior  i s  reflecting t h i s  near nonsta t ionar i ty  r a t h e r  than  

t h e  complete model. Over f i t t ing  r e s u l t s  in a second o r d e r  nea r  nonsta t ionary  

prefi l ter .  As indicated in T a b l e  4.7, applying t h i s  prefi l tering t o  t h e  da ta  r e s u l t s  in 

a n  ARMA(8,O) a s  the f i r s t  cho ice  of the W-statistic. Ozaki f inds  the ARMA(8,O) a s  

optimal among o u r  range of orders. 

T h e  13th  o rde r  models suggested b y  Parzen (1979) and Woodward and G r a y  

(1981) f o r  t h e  metals d a t a  a r e  excluded f rom consideration in the model ranges 

considered f o r  t h e  models in T a b l e  4.7. If t h e  range is changed t o  p< 15 and q < 2, 

the ARMA(13,l) model considered b y  Woodward and Gray  (1981) i s  t h e  second W- 

s t a t i s t i c  choice. I t  should  be  pointed o u t  t h a t  over f i t t ing  did n o t  iden t i fy  a n y  near  

nonsta t ionary  components. 

F o r  Se r ies  J, Box and Jenkins  obtained an ARMA(4,2) model while Kitigawa 

(1977) used AIC t o  obtain a n  ARMA(3,2) model. Davies and Petrucel l i  claimed t h a t  



t h e  inspection of t h e  GPAC a r r ay  fo r  S e r i e s  J did not "confirm ei ther  model a s  

being appropriate." In Table 4.8 we show t h e  YW GPAC ar ray  t o  which Davies and 

Petrucelli ref  erred. 

Table 4.8 Yule-Walker GPAC f o r  Series J 

Autoregressive Order 

1 2 3 4 5 6 

0 .97 1 -.804 .I88 2 6 0  .059 -.063 

Moving 1 .923 -.723 1.259 220  .332 -.076 

Average 2 ,885 -.563 .54 1 -.071 .lo1 .I61 

Order 3 3 5 8  -.374 .197 .912 .I85 .lo9 

1 -845 -009 ,553 -.427 .630 .43 1 

5 2345 -53.828 .552 -770 -.076 .392 

T h e  ARM,4(3,2) behavior in th i s  a r r ay  is v e r y  clear with @;; = .51 for  j 2 2 and 

with small fo r  k 2 4. Thus,  one would clearly pick an ARMA(3,2) a s  t h e  only 

possible chioce from th is  table. Moreover, t h e  W-statistic overwhelmingly selects an 

ARMA(3,2). Table  4.9 shows t h e  W-statistics associated with model orders  p=1, ... ,6 

and q=O, ... ,5. T h e  W-statistic picked an ARMA(3,2) a s  t h e  f i r s t  model choice b y  a 

wide margin. I t  should be mentioned tha t  t h e  "constant" behavior in column one may 

have  caused some confusion. Since t he re  i s  no accompanying zero behavior, t h i s  

should lead t o  no difficulty although i t  does suggest t h e  presence of a root  in t h e  

neighborhood of t h e  unit  circle. However, using a 10th orde'r over f i t  autoregressive 

model with threshold of .95, we detect  no components sufficiently close t o  t h e  unit  

circle t o  warrant filtering t h e  data. T h e  point i s  t h a t  th i s  is  a detectable pat tern 

which can easi ly  be measured and identified using s ta t is t ics  such  a s  t h e  W-statistic, 

contradicting t h e  claim of Davies and Petrucelli: 



Table 4.9 Array of W-statistic Values for Series J 

Based on the GPAC Array of Table 4.5 

Autoregressive Order 

1 2 3 4 5 6 

0 .64 1 .540 .932 1.304 .940 5.130 

Moving 1 1.020 2.347 .773 3.906 1.21 1 3.125 

Average 2 .577 20.533 2 5 3  2.398 1.617 1.067 

Order 3 .70 1 23.256 1.179 1.866 1.942 1.560 

4 .464 35.000 1.155 2.008 10.309 3.259 

5 40.000 24.300 1.506 10.526 71.429 16.667 

5. Concluding Remarks 

In this paper we have examined the potential of the GPAC array for ARMA 

model identification. We have shown that i ts  performance can be expected to be 

much better than that  indicated by the results of Davies and Petrucelli. This is 

also consistent with the empirical experience of the present authors using GP.4C 

arrays. It should be pointed out that the GPAC method, as well as  most other model 

identification methods, should be used with care when some roots of the ' 

I 
characteristic equation are close to the unit circle. We recommend a prefiltering 

procedure such as the one we applied in Table 4.6 as a preliminary step in any 

identification procedure so that the nonstationary components of the model do not 

mask the stationary portion. 

Although we feel that the best use of the GPAC is via inspection by the 

analyst, we have introduced the W-statistic here to eliminate the subjectivity of 

the method for comparison purposes. The choice of constants in the simulation 



analyses reported he re  have  not been shown to  be optimal and may be able t o  be 

improved. In fact ,  t h e  general form of t he  W-statistic in (3.4) may not be the best 

way to  measure t h e  pat tern in t he  array. Our resu l t s  simply show tha t  recognizable 

patterns do exis t  in GPAC a r r ays  and the  W-statist ic i s  a measure of these 

patterns. As such, t h e  W-statistic should be viewed a s  a guide for  helping t h e  

analyst t o  consider t h e  most suggestive patterns. T h e  resul ts  in Table 1.5 indicate 

tha t  the  GPAC can be used successfully t o  ident i fy  a wide variety of ARMA 

models. In many instances t h e  identification is  f a r  superior to tha t  using t h e  

TIMSAC-74 version of AIC. Another important point i s  t h a t  a GPAC analysis can be 

performed in a f ract ion of the  time required by .4IC. We have  picked the  TIMSAC- 

74 version of AIC a s  an example of an automatic model identification procedure in 

wide use. Improvements have been made in AIC resulting from better maximum 

likelihood estimation, consistency has been attained using BIC, etc. Our purpose in 

comparing ou r  resu l t s  with th i s  version of -4IC has  not been to  claim tha t  ou r  

method is  necessarily superior, but t ha t  i t  indeed does identify ARMA models 

competitively with t h e  established techniques in f a r  !ess computing time. 

Finally, w e  now recommend using Tsay-Tiao estimates of t he  autoregressive 

coefficients fo r  purposes of calculating GP.4C a r r a y s  from data. Arrays based on 

unconditional ML estimates have not been examined in th i s  report. Such ML GPAC 

ar rays  based on good s tar t ing values (Tsay-Tiao, etc.) may be t he  optimal approach 

if time is not a factor .  However, t h e  fac t  t ha t  t h e  cu r r en t  implementations of GPAC 

using T T  and YW estimates do not require estimation of t he  moving average param- 

e te rs  is  v e r y  appealing. 

In conclusion, w e  believe t h a t  t h e  assertion by  Davies and Petrucelli tha t  t h e  

GPAC is  not useful  f o r  ARMA(p,q) models with q>O i s  unfounded and t h a t  GPAC 

performs well on real data. 
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