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SUMMARY. We respond to criticism levelled at bootstrap confidence intervals for the 

correlation coefficient by recent authors by arguing that in the correlation coefficient case, 

non-standard methods should be employed. We propose two such methods. The first is a 

bootstrap coverage correction algorithm using iterated bootstrap techniques (Hall, 1986; Beran, 

1987a) applied to ordinary percentile method intervals (Efron, 1979), giving intervals with 

high coverage accuracy and stable len,gths and endpoints. The simulation study carried out for 

this method gives results for sample sizes 8, 10, and 12 in three parent populations. The 

second technique involves the construction of percentile-t bootstrap confidence intervals for a 

transformed correlation coefficient, followed by an inversion of the transformation, to obtain 

"transformed percentile-t" intervals for the conelation coefficient. In particular, Fisher's 

z-transformation is used, and nonparamemc delta method and jackknife variance estimates are 

used to Studentize the transformed correlation coefficient, with the jackknife-Studentized , 

transforrhed percentile-t interval yielding the better co-verage accuracy, in general. Percentile-t I 

intervals constructed without first using the transformation perform very poorly, having large 

expected lengths and erratically fluctuating endpoints. The simulation study illustrating this 

technique gives results for sample sizes 10, 15, and 20 in four parent populations. Our 



techniques provide confidence intervals for the correlation coefficient which have good 

coverage accuracy (unlike ordinary percentile intervals), and stable lengths and endpoints 

(unlike ordinary percentile- t intervals). 
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1. INTRODUCTION 

The problem of constructing bootstrap confidence intervals for the correlation coefficient 

has received considerable recent attention. One very popular bootstrap algorithm, the percentile 

method, has been criticized because of coverage inaccuracy (see Rasmussen, 1987 and 

Lunneborg, 1985). Efron (1981) has pointed out that another favored technique, the 

percentile-t method, fails strikingly when used with the currelation coefficient. Efron employed 

a jackknife variance estimate to standardize for scale. We have repeated Efron's experiment, 

using both the jackknife and the nonparamemc delta method variance estimates to Studentize, 

with almost identical results. The percentile-t bootstrap method founders in both cases because 

the Iengths of these confidence intervals fluctuate erraticaIly, their large expectations and 

standard deviations reflecting the inaccuracy of these particular variance estimates in small 

samples. 

In the present paper, we argue that the correlation coefficient is better treated by specialized 

means. The percentile-t method, which is becoming accepted as an accurate and standard tool 

for simpler problems (Bickel and Freedman, 198 1; Beran, 1987% 1987b, 1987c; Schenker, 

1987; Hall, 1987, 1988; Singh, 1987), is apparently less suitable for more complex statistics 

such as the correlation coefficient. We propose two practical and accurate alternative methods. 

One is based on coveragecorrection of the percentile method and is discussed in Section 2; the 

other is an application of percentile-t to a transformed correlation coefficient, and is treated in 

Section 3. Both promise to be useful in other complex interval construction problems. The 

performance of each method is illustrated in a simulation study, which shows that each type of 
I 

interval has good coverage accuracy (unlike ordinary percentile intervals), and good stability 

properties (unlike ordinary percentile-t intervals). 

2. COVERAGE-CORRECTED PERCENTILE METHOD 

Coverage correction by bootstrap iteration has been studied before (Hal11986; Beran, 

1987a; Hall and Martin, 1988), but as a device for improving on methods which already have 



reasonable coverage accuracy. In particular, it is usuaily advocated for percentile-t confidence 

intervals. Our approach in this paper is different. Acknowledging that the percentile method has 

good stability properties - that is, successive bootstrap estimates of percentile method critical 

points do not fluctuate erratically - we adjust the interval so as to improve its much-criticized 

coverage accuracy. By so doing, we manage to retain the interval's stability, yet greatly 

enhance its coverage performance. In simpler problems, such as estimation of a mean, it makes 

little sense to coverage-correct a percentile-method interval, when the percentile-t interval 

has superior coverage accuracy to start with, and almost as good stability. 

To explain our coverage correction method, we first show how to consmct a basic 

(1-a)-level percentile interval (Efron, 1979). Let 8 be the unknown parameter (correlation 

coefficient, in our case), and let 6 be its estimate based on an n-sample, X. Let X* be an 

n-sample (called a resample) drawn with replacement from X, and let 6' be the version of 8" 

computed using X* instead of X. By regeated resampling from X, find $ and such that 

- *  - 
P ( 8  I x  l x ) = a / 2 = ~ ( 6 * 2 ;  IX). 

a a 

The equal-tailed percentile interval is I(X) s [ ia, ;a_). Other types of percentile method 

interval are discussed by Hall (1988). 

There are at least two ways of coverage conecting this interval by bootssap iteration. One 

operates at the level of the quantile (Hall, 1986), the other by adjustment of nominal coverage 
I 

(Beran, 1987a).(See also Loh, 1987.) In practice they give almost identical numerical results. 

A 

For the former interval, define 2a(t) = ;h - t, and 9a(t) = ?a + $ for the latter, put Ga(t) = xa-t, 

A 

and $,(t) = ya,t. The aim is to choose t (usually small and non-zero) so as to correct for 

coverage emr.  The first step is to estimate coverage, as follows. Let I~((x) = [ a( t ) ,  $a(t)l. 
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(When t=O, It(X) is just the percentile interval, I(X).) Our estimate of the true coverage, x(t), 

which we obtain by simulation. Usually, e(t) will be close to the nominal coverage, 1-a, when 

t is close to zero. Choose t = t^to solve the equation, ?(t) = 1-a. Then 1;TX) is the 

coveragecorrected interval. 

It may be shown as in Hall (1988) that the basic percentile interval has coverage error of 

order n-1, and that the coveragecorrected interval has coverage error of order r 2 ;  see Hall and 

Martin (1988). However, it could be unwise to rely too heavily on this type of asymptotic 

result when dealing with the correlation coefficient in small samples, especially given that the 

highly erratic behavior of percentile-t intervals is certainly not apparent from Edgeworth 

expansions. 

In practice, the iterated percentile method for constructing cofidence intervals is relatively 

computationally expensive, when compared with ordinary percentile or percentile-t methods. In 

particular, if at each resampling operation, B resamples are drawn, then the time taken to 

construct an iterated percentile method interval is roughly proportional to B2 compared with B 

for an ordinary percentile or percentile-t interval. the coverage accuracy 

it is our experience that one iteration is usually enough to substantially improve coverage 

accuracy to a reasonable level. 
I I 

We conclude this section with a simulatioti study of iterated percentile method 

intervals for the correlation coefficient, p. Table 2.1 contains a summary of simulations from 

three parent populations, using sample sizes n = 8, 10, and 12. For simulation 1, the sample, 

X { W1,Y1),.-., (&,Y,,)), is drawn from a bivariate folded normal population, denoted by 



IN(O,I)I, with p = 0; for simulation 2, p = 0.5, with the sample, X, being drawn such that 

= Zli + Wi, and Yi = Gi + Wi, where Zli, 221, and Wi are distributed as independent folded 

normal variates, for i=l, ..., n; and for simulation 3, the sample, X, is drawn from a bivariate 

lognormal population with p = (l+eln)-1 = 0.37754. In each case, adjustment was made 

directly to nominal coverage, B=299 resamples were drawn in each resampling operation, and 

each e n q  was based on 1000 samples for each value of n. The simulation study indicates that 

one bootstrap iteration does improve coverage accuracy dramatically. Especially significant is 

the performance of the iterated percentile method when the parent population is bivariate 

lognormal. In this instance, the iterated percentile method interval has much better coverage 

accuracy than the percentile-t methods considered in Section 3. In fact, coverage of the iterated 

percentile method intervals is correcr; that is, not significantly different from the nominal 

coverage in each of the nine combinations of sample size and parent populations considered. 

What is more, this coverage correction is realized without unreasonable increase in average 

interval length over the ordinary percentile method. 

3. TRANSFORMED PERCENTILE-T METHOD 

The percentile-t method of constructing confidence intervals has been discussed widely of 

late, usually applied to statistics for which there is available a reasonably stable variance 

estimate (see, for example, Bickel and Freedman, 198 1; Beran, 1987a, 1987b, 1987c; Hall, 

1987, 1988; Singh, 1987). For instance, it is known (Hall, 1988) that the percentile-t method 

works well when constructing confidence intervals for the Studentized mean. The performance 

of percentile-t intervals for a parameter, 8, depends largely on how well we are able to estimate 



the variance of the estimator, 8. In the case of the co&lation coefficient, the use of standard 

estimates of variance, such as the jackknife estimate (MZer, 1974), or the nonpararnetric delta 

method estimate (Efron and Gong, 1983, p.40), to S tudentize, results in percentile-t intervals 

with e&cal.Iy varying lengths and endpoints. We propose to 1) transform the correlation 

coefficient to a sratistic for which there is a reasonably stable variance estimate, 2) use the 

percentile-t method to construct a (1-a)-level confidence interval for the transformed correlation 

coefficient, and then 3) invert into a (1-a)-level confidence interval for the correlation 

coefficient 

First recall the construction of a basic (1-a)-level percentile-t interval. Let 8 be the 

unknown parameter, and let 6 and G2 be estimates of 8 and the variance of 8, respectively, 

based on an n-sample, X Let Xf be a same-size resample, drawn with replacement from X, 

and let $ and s* be versions of 8 and 9 computed using X? rather than X. By repeated 

resampling from X, find fa and such that 
A *  A *  r r 

P ( ( 0  -0)/;r*~; I X ) = a / 2 = P ( ( B  -0)/o*>; I X ) .  
a a ' 

The equal-tailed percentile- t interval is J(X) r [ 6-6&, 6-6; J . 

Now consider the transformafion of th2 correlation coefficient, p. Fisher's (1921) 
I 

transformation of the sample correlation coefficient, 6, assuming the underlying population is 

bivariate normal, has variance almost independent of p. Let Z = log((l+fi)/(l-6))/2. Then, for 

even fairly small samples from a bivariate normal population, Z is approximately normally 

&mibuted with mean 5 = log{(l+p)l(l-p))/2 and variance (n-3)-1; see Kendall and Stuart 
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(1977, vo1.2, p.312). Efion (1982) and Efron and Gong (1983) suggest that, under the 

assumption that samples are drawn from a bivariate normal population, the percentile method 

can be used to construct good confidence intervals for p since it is invariant under monotone 

transformations, and the z-transformed correlation coefficient has almost constant variance. 

However, this does not resolve the problem of what to do when the underlying population is 

not bivariate normal. We suggest that Fisher's z-transfonnation can still be used when the 

parent population is non-normal, that a percentile-t method be used to construct a (I-a)-level 

confidence interval for 5, and this interval transformed back into a (I-a)-level confidence 

interval for p . 

To construct a percentile-t interval for 5, one needs an estimate of the variance of Z Simple 

calculations show that, asymptotically, n f w - 5 )  is dishbuted with mean zero and variance 

provided the bivariate moments pij, for i j d ,  ..., 4, exist (When the underlying population is 

bivariate n o d ,  the expression (3.1) equals one.) The obvious plug-in estimate of (3.1) is just 

the nonparametric delta method estimate of the variance of the transformed correlation 

coefficient. Unfortunately, the nonparametric delta method does not provide a very stable 

estimate of (3.1) in small sa~~~ples, because of the difficulty in estimating high-order moments 
I 

accurately. Miller(1974, S&on 5.3) advocates ushg the jackknife estimate of the variance of the 

transfonned statistic. He notes that "transformations are needed to keep the jackknife on scale 

and thus prevent distortion of the results". Therefore, we also investigate the use of the jacklarife 

e sha t e  of the variance of Z in constructing percentile-t intervals for the transformed correlation 

coefficient. 

A particularly attractive feature of Fisher's z-transformation is that, since it is one-to-one, 



smctly increasing and maps [-1,1] onto the real line, all the intervals obtained for p are 

constrained to lie within [-1,1]. We have found that constructing percentile-t intervals for p 

without first transforming the correlation coefficient results in occasional extremely long 

intervals that conruin [- 1 ,I]. In principle, rather than using Fisher's z- transformation, we could 

have used almost any one-teone, smctly increasing function mapping [- 1,1] onto the real line. 

We conclude this section with a simulation study comparing the performance of four 

percentile-t methods. Four sets of simulations were carried out using different parent 

populations. In the first, the sample, X z ((X1,Y1), ...,&, Y,,)}, was drawn from a bivariate 

normal population with p = 0; in the second, X was drawn from a bivariate folded normal 

population with p = 0; in the third, X was drawn such that Xi = Zli + Wi, and Yi = & + Wi, 

where Zli, ZZi, and Wi are distributed as independent folded normal variates, for i=l, ..., n, 

resulting in p = 0.5; and in the fourth, X was drawn from a bivariate lognormal distribution 

with p = (l+eln)-I = 0.37754. The five types of interval constructed were as follows: (i) 

Ordinary percentile-t interval Studentizing with the nonparametric delta method estimate of the 

variance of 6;  (ii) As in (i), except Studentizing with the jackknife estimate of the variance of 6; 
(iii) Ordinary Percentile method interval; (iv) Transformed percentile-t interval, involving 

Fisher's L Studentizing with the nonparametric delta method estimate of the variance of Z 

(sample inomenh in (3.1)); and (v) AS in (iv). except Studentizing with the jackknife estimate 

of the variance of Z. Throughout, each entry is based on 1000 samples for each of the sample 

sizes n = 10, 15, and 20, with B=299 resamples being drawn at each resampling operation. 

Results are given for nominal coverages 90%, 95%, and 99%. 
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Throughout Tables 3.1 - 3.4 estimated coverages that are greater than two standard errors 

from the nominal coverage are marked with an asterisk (*), and those that are greater than ten 

standard errors from the nominal coverage are marked with a dagger (7). It is clear from 

Tables 3.1 - 3.4 that in all the cases considered, the Ordinary percentile-t intervals 

perform poorly. Even though they have reasonable coverage, often overcovering, they 

tend to be very long - some of them contain [-I, 11 - and the estimated standard emr  of interval 

length is large. In comparison, the percentile method intervals, although undercovering 

rather badly (statistically significantly in all cases), tend to be shorter, with fairly stable 

length. Except when the underlying population is bivariate lognormal, the ~ansformed 

percentile-t intervals perform very well, having significantly better coverage accuracy than the 

percentile method intervals, while being only slightly longer than them, in general. 

When the underlying population is bivariate lognormal (see Table 3.4), the transformed 

percentile-t intervals that use the nonparametric delta method to estimate the variance of Z fail 

badly. They suffer from severe undercoverage and are still longer than the percentile method 

intervals. This is probably due to the instability in small samples of the plug-in estimate of the 

asymptotic variance, (3.1). The transformed percentile-t intervals that employ a jackknife 

estimate of the variance of Z have better coverage accuracy than the other transformed 

percentile-t intervals, although they still undercover moderately, having coverage accuracy 

about the same as the corresponding percentile method intervals. This is a fairly encouraging 

result in favor of the jackknife since that method is fairly general, making no explicit use of 

(3.1). None of the four percentile-t methods considered yielded coverage accuracy as high as 

the iterated percentile method outlined in Section 2. I 

Overall, the transformed percentile-t interval which used the jackknife estimate of the 

variance of Z performed consistently best amongst the intervals considered in this section. 

However, none of the percentile-t intervals discussed performed particularly well when the 

underlying population was heavy tailed. In that case, if high coverage accuracy is desired, it 

would be better to use the iterated percentile method. 
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Table 2.1. Characteristics of ordinary and iterated percentile method bootstrap confidence 

.. intervals for the correlation coefficient. Nominal coverage .is 90% throughout. Tabulated 

characteristics are estimated coverage (nominal SE is .01), average length, standard enor of length, 

and average value of upper endpoint 

n Simulation 1 (p = 0.0) Simulation 2 @ = 0.5) Simulation 3 (p = 0.3775) 

Ordinary Iterated Ordinary Iterated Ordinary Iterated 
percentile percentile percentile percentile percentile percentile 
method method method method method method . 

8 cov. -847 -908 -837 -905 .840 .903 

len. 1.16 1.41 .97 1.25 1.02 1.29 

s t  err. 29 -37 .37 -46 .36 -44 

10 cov. -844 

len. 1.02 

st.err, 24  

upper 51 

12 cov. 363 

l ea  .92 

st.err. 20 

U P F  .46 



Table 3.1. Characteristics of four percentile-t met hod bootstrap confidence intervals for 

the correlation coefficient. The parent population is bivariate normal with p = 0. Nominal 

coverages are 90%, 95% and 99%. Tabulated characteristics are estimated coverage (nom- 

inal SE is -01 for 90% intervals, .007 for 95% intervals, and .003 for 99% intervals), average 

length, standard error of length and average value of upper endpoint. Estimated coverages 

that are more than two standard errors away &om the nominal coverage are marked with a 

*, and those that are more than ten standard errors from the nominal coverage are marked 

with a t. 

n Untransformed percentile-t Ordinary Transformed percentile- t 

Delta method Jackknife Percentile Delta method Jackknife 

10 cov. 

len. 

st-err. 

upper 

15 cov. ' 

len. 

st-err. 

upper 

20 cov. 

len. 

st-err. 

upper 



Table 3.2. Characteristics of four percentile-t method bootstrap confidence intervals for 

the correlation coefficient. The parent populations are independent folded Normals. Nom- 

inal coverages are 90%, 95% and 99%. Tabulated characteristics are estimated coverage 

(nominal SE is . O 1  for 90% intervals, .007 for 95% intervals, and .003 for 99% intervals), 

average length, standard error of length and average value of upper endpoint. Estimated 

coverages that are more than two standard errors away from the nominal coverage are 

marked with a *, and those that are more than ten standard errors from the nominal 

coverage are marked with a i. 

n Untransformed percentile-t 0 rdinary Transformed percentile- t 
Delta method Jackknife Percentile Delta method Jackknife 

10 cov. .95* .98* 1.0 * .95* .9i* 1.0 * .85* .92* .98* .92 .95 .99 .89 .95 .99 

len. 1.96 3.08 15.7 2.10 3.31 16.5 1.01 1.21 1.56 1.10 1.30 1.70 1.11 1.34 1.71 

st.err. 1.36 2.54 39.1 1.57 2.79 37.0 .23 .25 .25 .32 .32 .26 .36 .36 .27 

upper 9 1.55 11.5 1.00 1.68 11.9 .53 .61 .74 .54 .65 .88 .54 .68 .89 

15 cov. .92* .96 .99 .92* -96 .99 .8G* .go* .98* .90 .94 .99 .90 .94 .99 

len. 1.16 1.64 3.39 1.21 1.79 3.61 .81 .97 1.28 -87 1.05 1.43 .90 1.08 1.46 

st.err. .60 1.00 2.40 -78 1.43 2.74 .17 .19 .21 .25 .28 .27 .26 .30 .29 

upper .59 .84 1.96 .64 -93 2.09 .42 .46 .61 .44 .51 . i 4  .44 .55 .76 

20 cov. .93* .96 .99 .93* .97* 1.00* .88 .91* .98* .90 .93* .99 .90 .93* .99 

len. .89 1.20 2.19 .93 1.27 2.30 .TO .84 1.12 .74 .91 1.26 .78 .93 1.27 
st.err. .32 .49 1.04 .40 .61 1.18 .13 .15 .18 .19 .23 .26 .21 .25 .26 

upper .40 .63 1.23 .48 .67 1.30 .35 .42 .53 . 3 i  .46 .66 .39 .47 .67 



Table 3.3. Characteristics of four percentile- t method bootstrap confidence intervals for 

the correlation coefficient. The samples X E {XI,. . . ,x,) and y = {Yl,. . . , Y,) are 

d r a w  so that Xi = Z1; + Wi and Y; = Z2; + Wi  where Zli ,  Zzi  and Wi are distributed 

as independent folded normal variates for i = 1, . . . , n and p = 0.5. Nominal coverages 

are 90%, 95% and 99%. Tabulated characteristics are estimated coverage (nominal SE is 

.01. for 90% i n t e d s ,  .007 for 95% intervals, and .003 for 99% intervals), average length, 

standard error of length and average value of upper endpoint. Estimated coverages that 

are more than two standard errors away &om the nominal coverage are marked with a *, 
and those that are more than ten standard errors from the nominal coverage are marked 

with a t. 
- 

n Untransformed percentile-t Ordinary Transformed percentile-t 
Delta method Jackknife Percentile Delta method Jackknife 

CY -90 .95 .99 .90 .95 .99 .90 .95 .99 .90 .95 .99 .90 .95 .99 

10 cov. .91 .98* .90 .91 . .98* -99 .83* .92* .97* .87* .95 .99 .90 .94 .90 

len. . 1.76 2.81 9.93 1.90 3.05 10.5 .82 1.01 1.41 -99 1.22 1.58 1.01 1.22 1.60 

st.err. 2.44 3.17 18.6 2.42 3.78 19.6 .32 .33 .37 -39 -40 .35 -42 .42 .38 

upper 1.04 1.35 5.35 1.10 -1.44 5.61 .82 .8G .92 .80 .86 .95 .80 -86 .95 

15 cov. .92 .97* .99 .92* .90 .99 .85* .92* .97* .90 .94 .98* .90 .94 .98* 

len. .99 1.34 2.65 1.06 1.43 2.87 .66 .79 1.11 -76 .92 1.27 .78 .96 1.30 

st.err. .57 .75 2.51 .67 .88 3.37 -21 .24 .29 .28 .32 .35 -31 .36 .38 

upper -85 .96 1.53 .87 1.00 1.64 .77 .80 -86 7 .81 .90 .77 .81 .91 

20 cov. .91 -96 .99 .91 .96 1.0 * .86* .93* .99 .88 .94 .90 .88 .94 .98 

len. .77 1.00 1.76 .81 1.06 1.88 .57 .69 .96 .65 .i8 1.09 .67 .82 1.12 

&.err. .33 .44 .90 .38 .51 1.04 .16 1 .23 .22 .24 .31 .25 .28 .34 

upper .?8 .88 1.16 .80 .90 1.21 .73 .77 .83 .73 .78 .87 .74 .79 -87 



Table 3.4. Characteristics of four percentile- t method bootstrap confidence intervals for 

.the correlation co&cient. The parent population is bivariate lognormd with p x 0.3775. 

Nominal coverages are 90%, 95% and 99%. Tabulated characteristics are estimated cover- 

age (nominal SE is . O 1  for 90% intervals, .007 for 95% intervals, and .003 for 99% intervals), 

average length, standard error of length and average value of upper endpoint. Estimated 

coverages that are more than two standard errors away from the nominal coverage are 

marked with a *, and those that are more than ten standard errors from the nominal 

coverage are marked with a t. 

n Untransformed percentile-t Ordinary Transformed percentile- t 
Delta method Jaclcknife Percentile Delta method Jackknife 

10 cov. .82* .91* .97* .87* .94* .99 .83* .92* .98* .77T .88* .96* .85* .90* .97* 

len. 2.24 3.38 12.1 2.82 4.65 15.9 .90 1.08 1.45 .99 1.20 1.56 1.13 1.30 1.65 

st.err. 2.50 4.17 21.1 3.16 5.75 28.8 .28 .30 .33 -40 .40 .36 . 4 4  .43 .36 

upper .95 1.20 4.16 1.13 1.49 5.33 .83 .89 .94 .72 .78 .87 .77 -80 .90 

15 cov. .80* .87i  .97* -87 .93* .98* .85* .92* .98* .77t .84t .94t .83* .90* .97* 

len. 1.28 1.89 4.10 1.71 2.56 5.70 .75 .89 1.20 .81 -98 1.33 .97 1.16 1.48 

st.err. -90 1.68 4.39 1.41 2.74 6.47 .21 .22 .24 .32 -36 .39 .43 .42 .39 

upper .85 .99 1.43 1.02 1.22 1.88 .77 .82 .89 .69 .73 .82 .75 .78 .86 

20 cov. -82' .88f .95t .87* .92* .98* .85* .93* .98* .80t .86i .94t .86* .90* .96* 

len. 1.08 1.44 2.50 1.40 1.91 3.50 .66 .78 1.03 .74 -87 1.16 .86 1.03 1.33 

&.err. .69 1.18 1.86 1.12 1.87 3.15 .18 .18 .20 .30 .34 .36 -38 .42 .40 

upper .84 .96 1.24 1.00 1.17 1.59 .74 .78 -85 .69 .73 .80 .73 .78 .85 


