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Clovis, with its distinctive biface, blade and osseous technologies, is
the oldest widespread archaeological complex defined in North
America, dating from 11,100 to 10,700 14C years before present (BP)

(13,000 to 12,600 calendar years BP)1,2. Nearly 50 years of archaeolo-
gical research point to the Clovis complex as having developed south
of the North American ice sheets from an ancestral technology3.
However, both the origins and the genetic legacy of the people who
manufactured Clovis tools remain under debate. It is generally
believed that these people ultimately derived from Asia and were
directly related to contemporary Native Americans2. An alternative,
Solutrean, hypothesis posits that the Clovis predecessors emigrated
from southwestern Europe during the Last Glacial Maximum4. Here
we report the genome sequence of a male infant (Anzick-1) recov-
ered from the Anzick burial site in western Montana. The human
bones date to 10,705 6 35 14C years BP (approximately 12,707–12,556
calendar years BP) and were directly associated with Clovis tools.
We sequenced the genome to an average depth of 14.43 and show
that the gene flow from the Siberian Upper Palaeolithic Mal’ta
population5 into Native American ancestors is also shared by the
Anzick-1 individual and thus happened before 12,600 years BP. We
also show that the Anzick-1 individual is more closely related to all
indigenous American populations than to any other group. Our data
are compatible with the hypothesis that Anzick-1 belonged to a pop-
ulation directly ancestral to many contemporary Native Americans.
Finally, we find evidence of a deep divergence in Native American
populations that predates the Anzick-1 individual.

The only known Clovis burial and associated mortuary assemblage
was found in the Americas at the Anzick site, Montana, in 1968 (refs 6–8)
(Fig. 1a, b). Here, approximately 100 stone tools and 15 osseous tool frag-
ments (Fig. 1d, e) (at least one made of elk; Supplementary Information
section 3.4) that are technologically consistent with artefacts of the Clovis
complex9,10 were found in direct association with the partial fragmentary

remains of an infant child (Anzick-1). The human remains were found
directly below the Clovis artefacts and were covered with red ochre.
Bone from the skeleton was directly dated using XAD-collagen to
10,705 6 35 14C years BP (CAMS-80538) or 12,707–12,556 calendar
years BP, close to the end of the Clovis time period1,7 (Fig. 1c).

Initial genetic screening of the Anzick-1 skeletal remains using PCR
coupled with cloning and Sanger sequencing yielded a mitochondrial
DNA (mtDNA) haplogroup assignment of D4h3a (Supplementary
Information section 3). The D4h3a haplogroup was verified and fur-
ther characterized in the subsequent shotgun sequencing of Anzick-1
(Supplementary Information section 12 and Extended Data Fig. 2).
D4h3a is one of the rare mtDNA lineages specific to Native Americans,
is distributed along the Pacific coast in North and South America among
contemporary populations11, and is also present in ancient specimens12.
Its current distribution has been interpreted as evidence for an early
coastal migration route11. Our findings of this mtDNA haplogroup inland
in the oldest skeleton from the Americas to be mtDNA-typed to date
question such interpretation and underscore the view that current dis-
tributions of genetic markers are not necessarily indicative of the move-
ment or distribution of peoples in the past3. The Anzick-1 D4h3a does
not carry any of the polymorphisms that define the several subgroups
of the haplogroup13 and is thus placed at the root of D4h3a. Our finding
suggests that the origin of the D4h3a branch is likely to be at the upper
bound of the previously obtained estimate of 13,000 6 2,600 calendar
years BP 14, or possibly even older.

Shotgun sequencing of the Anzick-1 DNA revealed a highly variable
endogenous human DNA content across different extracts, even those
recovered from the same bone fragment (0.5–28.2%; Supplementary Infor-
mation section 4 and Extended Data Table 3). This suggests a consid-
erable influence of microenvironments on long-term DNA preservation
across the Anzick-1 bone fragments15. We obtained an average sequenc-
ing depth of 14.43 coverage. On the basis of the observed DNA fragment
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length distribution, we computed molecular half-life estimates16 for a
100-base pair fragment to be 4,852 and 5,137 years for nuclear DNA and
mtDNA, respectively. These are consistent with predictions based on
estimated burial temperature and geographical location (Supplemen-
tary Information section 7). Nucleotide misincorporation patterns were
consistent with increased post-mortem cytosine deamination at DNA
fragment termini17 (Supplementary Information section 8). The mtDNA
data provided a contamination estimate with a 95% credibility interval
of 0.15–0.38%18 (Supplementary Information section 9). As the Anzick-1
individual was found to be male, we were also able to quantify con-
tamination levels on the basis of heterozygosity levels seen on the X
chromosome19, which resulted in similarly low contamination estimates
(,1.2%, Supplementary Information section 11). Characterization of
the error rate yielded an overall estimate of 0.84% (Supplementary
Information section 10). Per-library error rates as well as nucleotide-type-
specific error rates are shown in Extended Data Fig. 1c; as expected, the
error estimates are driven by deamination-related DNA-damage errors.

We determined the Y-chromosome haplogroup to be Q-L54*(xM3)
and, along with 15 previously analysed Y-chromosome sequences20, we
constructed a tree to illustrate the phylogenetic context within hap-
logroup Q (Supplementary Information section 13 and Extended Data
Fig. 2). Confining our analyses to transversion single nucleotide poly-
morphisms (SNPs), we leveraged the date of Anzick-1 to estimate a
divergence time between haplogroups Q-L54*(xM3) and Q-M3, two
of the major founding Y-chromosome lineages of the Americas, of approx-
imately 16,900 years ago (95% confidence interval: 13,000–19,700; Sup-
plementary Information section 13).

We assessed the genome-wide genetic affinity of the Anzick-1 indi-
vidual to 143 contemporary non-African human populations by com-
puting outgroup f3-statistics21, which are informative on the amount of
shared genetic drift between an individual and other populations. The
data set included 52 Native American populations, for which genomic
segments derived from recent European and African admixture have
been excluded22. We found that the Anzick-1 individual showed a statis-
tically significant closer affinity to all 52 Native American groups than
to any extant Eurasian population (Fig. 2). The same conclusion was
reached from admixture clustering analyses (Supplementary Informa-
tion section 14 and Extended Data Fig. 3), and when using D-statistics
based on genomic sequence data (Supplementary Information section 16).

Interestingly, the Anzick-1 individual showed less shared genetic his-
tory with seven Northern Native Americans from Canada and the Artic,
including three Northern Amerind-speaking groups (‘NA’ group),

and the Central American Yaqui (Supplementary Information section
15, Fig. 2), than with 44 Native populations from Central and South
America (‘SA’ group) (Fig. 2). This finding was further supported by
allele-frequency-based D-statistics, which strongly reject the hypothesis
of a population tree with topology (Anzick-1, (NA, SA)). By contrast, a
tree assuming a branching pattern of (NA, (Anzick-1, SA)) was not
rejected (Supplementary Information section 15 and Fig. 3).

We investigated two possible scenarios that could explain this pattern:
(1) a basal diversification of the NA and SA lineages that predates the
Clovis period, with the Anzick-1 individual belonging to the SA lineage
(Fig. 3c); and (2) the Anzick-1 individual is basal to both lineages, but
the lineages diverged at a time close to approximately 12,600 years ago,
and the NA group received subsequent gene-flow from other, perhaps
Siberian, populations (Fig. 3b). This latter hypothesis of additional pulses
of gene flow has been suggested for the four Na-Dene- and Eskimo–
Aleut-speaking groups by a previous study, whereas the three NA groups
and Yaqui have been found to carry exclusively ‘First American’ ancestry22.

We analysed 19 different published Siberian populations and found
that allele-frequency-based D-statistics in all cases, with the exclusion
of Naukan, were compatible with a diversification pattern of (Siberian,
(NA, SA)), with no evidence for gene flow into the NA group (Supplemen-
tar Information section 15), a pattern that agrees with previously pub-
lished results22. This suggests that model (1) is more likely, and that
the structure between Native American lineages predates the Anzick-1
individual and thus appears to go back to pre-Clovis times.

We used outgroup f3-statistics to evaluate the shared genetic history
between all Native American populations and the Anzick-1 genome,
the 24,000-year-old human sample from Mal’ta, Siberia5 and the 4,000-
year-old Saqqaq Palaeo-Eskimo sample from Greenland19. We again
found a closer relationship between Anzick-1 and all Native Americans
(Supplementary Information section 15 and Extended Data Fig. 5).
Together with the fact that Anzick-1 shows the same relative affinity
to western and eastern Eurasians, this suggests that the gene flow from
the Mal’ta lineage into Native Americans happened before the NA and
SA groups diverged.

Next, we addressed the relationship of the Anzick-1 genome to whole-
genome sequences from contemporary humans, including two novel
genomes from Karitiana and Mayan individuals, and from the ancient
Saqqaq sample19. To explore the question of direct ancestry, we devel-
oped a novel method to assess the amount of genetic drift experienced
by each of a pair of populations after their divergence, without making
any assumptions about demography (Supplementary Information section
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Figure 1 | Geographic and 14 C dating overview, and examples of artefacts
from the site. a, Location of the Anzick site relative to continental glacial
positions from 16,000 to 13,000 calendar years BP (cal BP). b, Photograph of the

Anzick site. The site is located at the base of the slope at the far left (arrow).
c, Age of the human remains and osseous tools relative to other Clovis sites.
d, Clovis fluted projectile point from the site. e, Clovis osseous rod from the site.
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17). If the Anzick-1 individual belonged to a population directly ances-
tral to a sampled contemporary population, the amount of genetic drift
on the Anzick-1 branch should be zero, as it would have experienced
no genetic drift since the ‘divergence’ with the sampled population. We
find that the data are compatible with the Anzick-1 individual belong-
ing to a population that is directly ancestral to the two South American
Karitiana samples, as is the case for the Mayan, after masking the latter
for recent European admixture (Fig. 4a, b). By contrast, there is a posi-
tive amount of drift on both lineages when comparing Anzick-1 to Saqqaq,
Europeans, Asians and Pacific Islanders. This shows that the Anzick-1
sample has diverged from populations from outside the Americas.
Furthermore, in agreement with the SNP analyses, TreeMix23 (Fig. 4c

and Supplementary Information section 18) and outgroup f3-analyses5,21

(Extended Data Figs 5, 6), the Anzick-1 sample is genetically more
closely related to Central and South Americans than to any other pop-
ulations, including the Saqqaq individual from Greenland. After mask-
ing the Mayan genome for recent European admixture, TreeMix places
the Anzick-1 individual in a position in the tree compatible with the
hypothesis that it is ancestral to both Mayan and Karitiana, with
Anzick-1 exhibiting virtually no drift on its branch since its divergence
from other populations (Fig. 4c).

We conclude that the male infant, buried approximately 12,600 years
ago with ochre-covered Clovis artefacts at the Anzick site, belonged to a
meta-population from which many contemporary Native Americans are
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Figure 2 | Genetic affinity of Anzick-1. a, Anzick-1 is most closely related to
Native Americans. Heat map representing estimated outgroup f3-statistics for
shared genetic history between the Anzick-1 individual and each of 143
contemporary human populations outside sub-Saharan Africa. b, Anzick-1 is
less closely related to Northern Native American populations and a Yaqui

individual than to Central and South Native Americans such as the Brazilian
Karitiana. We computed D-statistics of the form D(Han, Anzick-1; Karitiana,
X) to test the hypothesis that a second Native American population X is as
closely related to Anzick-1 as the South American Karitiana is. Thick and thin
whiskers represent 1 and 3 standard errors, respectively.
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Figure 3 | Simplified schematic of genetic models. Alternative models of the
population history behind the closer shared ancestry of the Anzick-1 individual
to Central and Southern American (SA) populations than Northern Native
American (NA) populations; see main text for further definition of populations.
We find that the data are consistent with a simple tree-like model in which NA
populations are historically basal to Anzick-1 and SA. We base this conclusion
on two D-tests conducted on the Anzick-1 individual, NA and SA. We used
Han Chinese as outgroup. a, We first tested the hypothesis that Anzick-1 is
basal to both NA and SA populations using D(Han, Anzick-1; NA, SA). As in

the results for each pairwise comparison between SA and NA populations
(Extended Data Fig. 4), this hypothesis is rejected. b, Next, we tested D(Han,
NA; Anzick-1, SA); if NA populations were a mixture of post-Anzick-1 and
pre-Anzick-1 ancestry, we would expect to reject this topology. c, We found
that a topology with NA populations basal to Anzick-1 and SA populations is
consistent with the data. d, However, another alternative is that the Anzick-1
individual is from the time of the last common ancestral population of the
Northern and Southern lineage, after which the Northern lineage received gene
flow from a more basal lineage.
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descended and is closely related to all indigenous American populations.
As such, contemporary Native Americans are effectively direct descen-
dants of the people who made and used Clovis tools and buried this
child. In agreement with previous archaeological and genetic studies24,25,
our genome analysis refutes the possibility that Clovis originated via a
European (Solutrean) migration to the Americas4. Furthermore, the
Anzick-1 findings do not support the hypothesis, based on cranial data,
that American populations around the time of Clovis were subsequently
assimilated by more recent migrants who were the ancestors of contem-
porary Native Americans26,27. The Anzick-1 data thus serves to unify the
genetic and archaeological records of early North America, it is consistent

with a human occupation of the Americas a few thousand years before
Clovis2,3,28, and demonstrates that contemporary Native Americans
are descendants of the first people to settle successfully in the Americas.
Our results are also consistent with previous models derived from
mtDNA, which imply that Native American populations primarily
derive from a single-source population, but that there was a secondary
movement into northern North America29. However, several different
scenarios are compatible with an early divergence of the NA and SA
groups and analyses of more ancient human remains are needed to
further test the findings and interpretations from this single individual
and to elucidate the complex colonization history of the Arctic and
North American populations.

METHODS SUMMARY
We sampled bone fragments from the Anzick-1 skeleton, from the Anzick site in
Montana, for ancient DNA and 14C dating analyses (Supplementary Information
sections 1, 2). From DNA extracts we generated Illumina sequencing libraries,
which were sequenced on the Illumina HiSeq platform (Supplementary Informa-
tion sections 3, 4). We verified the authenticity of the ancient DNA through damage
patterns and decay rates (Supplementary Information sections 7, 8), and estimated
contamination using analyses of both mtDNA and nuclear DNA (Supplementary
Information sections 9, 10). To investigate the affinity of the Anzick-1 individual to
worldwide modern-day populations we computed outgroup f3-statistics5,21 using a
genome-wide SNP data set of 143 groups collected from multiple studies (Sup-
plementary Information section 15). To test historical models relating the Anzick-1
individual to modern-day Native Americans from a Northern group (Cree, Ojibwa
and Algonquin) and a Southern group (44 Central and South American groups),
we computed D-statistics21 using the full allele frequency information (Supplemen-
tary Information section 15). To test whether the Anzick-1 individual could have
belonged to a population ancestral to some of the modern populations, we devel-
oped a new maximum likelihood method for estimating the length of the branches
of a drift tree with two populations (leaves in the tree) represented by two genomes.
The method fits a model with the following parameters: the probability of pairwise
coalescence within population 1 (c1), the probability of pairwise coalescence within
population 2 (c2), and the probabilities of genotype patterns in the ancestral popu-
lation, to the observed counts of joint genotype patterns of the two genomes. These
parameters are uniquely determined by the observed genotype configurations.
Letting the Anzick-1 individual be represented by population 1, the null hypothesis
that it belongs to an ancestral population of a specific modern population (popu-
lation 2) then formally corresponds to a test of the hypothesis c1 5 0 (Supplemen-
tary Information section 17).
Statement regarding legal and ethical issues. Acknowledging the complex eth-
ical and legal issues surrounding the research of Native American human remains
in the United States, we have striven not only to comply with federal and state law
but also to proactively consult with Native American tribes. The Anzick burial site
was discovered on private land and the remains recovered have not been in control
of a federally funded museum or federal agency, and thus the Native American
Graves Protection and Repatriation Act (NAGPRA) does not apply. Under Montana
state law, unmarked human burials are not considered abandoned. Advice provided
to the project by members of the Montana State Burial Board, however, confirmed
that as no claimant has made a request for the remains, the human remains from
the Anzick burial site remain under the control of the landowners, the Anzick
family. However, to ensure that Native American concerns were addressed, we
have informed nine Native American groups with reservations in the surrounding
area of the Anzick site about our work. E.W. and S.M.D. visited in person the
cultural representatives of the Northern Cheyenne, Crow, Black Feet and Salish
and Kootenai tribes. S.M.D. was in direct contact with the Lakota, Rocky Boys,
Assiniboine, Gros Ventre and Chippewa cultural representatives. We received no
objections to our research from these groups; however, many of the tribal repre-
sentatives requested reburial of the remains. The Anzick family is working towards
reburial of the human remains from the site.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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