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a b s t r a c t

Archaeological excavations of a late Ice-Age (Pleistocene) site on
the western slope of the Rocky Mountains in Colorado uncovered
large rocks that were suspected to be the remains of a house
structure. Classical statistical analyses supported this possible
conclusion but could not characterize the possible shape of the
structure. Analyses using Ripley’s K -function and an adaptation
called the L-function confirmed the strong likelihood that the
location patternwas not homogeneous across the site. Both nearby
regularity andmore distant clusteringwere identified. Circular and
elliptical fits to the rock locations were compared using L-function
simulation envelopes. The simulation envelopes provided strong
evidence that the large rocks formed a circular pattern, suggesting
that they formed the foundation of a prehistoric house structure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spatial point processes (e.g., Cliff and Ord, 1981; Ripley, 1981; Diggle, 1983; Cressie, 1993;
Schabenberger and Gotway, 2004) are widely used to characterize spatial locations of interest. Often
the interest is in identifying locations that contain dense clusters of vegetation, insect or animal
habitats, or mineral deposits. The focus in this article is on identifying nonrandom patterns of rocks
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that could mark the foundation of a prehistoric dwelling at a Late Pleistocene (Ice Age) archaeological
site.

Point pattern spatial analysis is of particular value in archaeology, not just in discerning the
significance of a spatial pattern and its potential archaeological significance (Miller, 2011) but, as is
the case of the Mountaineer archaeological site – the focus of this article – of identifying whether
a pattern is cultural in origin or merely a result of natural phenomena. Point pattern statistics in
archaeology have been previously applied in a variety of archaeological settings and atmultiple spatial
scales (Bevan and Conolly, 2006), from the distribution of sites across a region (e.g., Kvamme, 1990;
Premo, 2004; Ciminale et al., 2009) to the patterning of objectswithin individual sites (e.g.,MacDonald
and Small, 2009; Hill et al., 2011; Miller, 2011; de Smet et al., 2012). Statistical analyses have involved
a variety of methods, including the recent application of Ripley’s K -function and its transformation to
the L-function (e.g., Crema et al., 2010; Miller, 2011), techniques applied to the Mountaineer site rock
patterns in this article.

The Mountaineer site is situated atop an isolated, flat mesa located at an elevation of 2625 m
above sea level (∼8600 ft) in the Upper Gunnison Basin of Colorado on the western slope of
the Rocky Mountains, 50 km from the Continental Divide. The perimeter of the mesa provides a
sweeping, virtually unobstructed view of almost 12 km2 of the surrounding basin. Late Pleistocene
hunter–gatherers took notice of this topographic vantage. Archaeological survey of the surface of the
mesa top revealed a number of spatially discrete surface artifact clusters, each approximately∼4–6m
in diameter yielding specimens diagnostic of the Folsom archaeological culture, which is radiocarbon
dated to approximately 12,200–12,500 calibrated 14 C years before present (Stiger, 2006; Meltzer,
2009).

Initial excavation of one of those clusters, designated Block A, revealed a concentration of stone
artifacts (including diagnostic Folsom projectile points, as well as knives, scrapers and other tools),
charcoal, bone and burned mud (clay) daub, all found within and immediately surrounding what
appeared to be a roughly circular arrangement of large rocks (>35 cm inmaximumdimension) (Stiger,
2006). This discovery was interpreted as the remains of a Folsom-age dwelling, with the large rocks
supposed to have formed the foundation and lower walls of the structure, and which presumably
anchored wooden poles that served as its upper walls. The inference that the upper walls were made
of wood was based on several daub fragments that preserved the rounded form and bark imprint of
aspen poles (Stiger, 2006, Fig. 8).

If that interpretation is correct, Mountaineer would be one of the very rare sites from this
remote time period to have produced traces of a structure (Irwin-Williams et al., 1973; Frison, 1982;
Surovell andWaguespack, 2007; Robinson et al., 2009;Waguespack and Surovell, 2014). The dearth of
habitation evidence is due to the fact that the peoples who occupied North America during this time
(as well as before and for several millennia afterward) were highlymobile hunter–gatherers who only
briefly occupied a place on the landscape, and hence rarely invested the labor required to construct
substantial and more lasting dwellings. They were unlike later sedentary groups who occupied the
same location for long periods (months, years, and decades) and created a built environment of, for
example, adobe or stone (e.g., the well-known prehistoric pueblos of the American southwest).

Yet, however transient Folsom and other early groups were, they assuredly prepared and made
use of shelters of some form. The rare archaeological glimpses of their shelters indicate they must
have been highly ephemeral structures: little remains of them, save for hints such as post molds
(Irwin-Williams et al., 1973; Knudson, 2009), areas of hardened earth interpreted as prepared floors
(Frison and Bradley, 1980), bison ribs found driven into the ground below the original surface in a
manner to suggest use as tent pegs (Hill, 2008; Frison, 1982, :39-40), or in the spatial distribution and
concentration of hearths and artifacts (Surovell andWaguespack, 2007; Hill et al., 2011; Waguespack
and Surovell, 2014). In this respect, the possible structure at Mountaineer, with its apparent rock
foundation and walls, is especially unusual, if not otherwise unique.

Although the interpretation of the apparent structure at the Mountaineer site as a dwelling is
compelling, it is primarily based on a visual examination of the apparently circular arrangement of
large rocks, the approximately overlapping area of darkened (presumably anthropogenic) sediment,
and relative to them the spatial density and distribution of artifacts, hearths, and other materials
(Stiger, 2006). Complicating this interpretation is the fact that the large blocks forming the presumed
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Fig. 1. View taken from the south of the Block C area looking north showing it in the initial stages of excavation in 2009.
For reference with Fig. 3, this portion of Block C is from grid lines E600 to E608, and from N380 to N388. (Photograph by D.J.
Meltzer).

architectural elements are of the samewelded volcanic tuff that comprises the near-surface bedrock of
the site, andwhich are strewnacross its surface (theUpperGunnisonBasin is one of the coldest regions
of North American and is annually subject to harsh freeze-thaw action that fractures the bedrock and
shifts the blocks both horizontally and vertically, and hence can potentially arrange their distribution).

The human eye has a strong tendency to see patterns, even where none may exist (Barrow and
Bhavsar, 1987;Wunsch, 2006). Visual inspection alonewill not suffice to determine a spatial structural
pattern amidst a field strewnwith naturally broken rocks. The possibility that the distribution of large
rocks might be natural rather than anthropogenic must be investigated statistically.

Such an effort is especially imperative in this context, given how rare built architecture is from this
time period and the important research questions that will follow if it can be demonstrated that these
large rocks were carefully arranged by prehistoric peoples as part of the foundation andwall supports
of a dwelling. Questions of interest include: what prompted the investment in labor in construction at
this particular site; what might that reveal about the intended (and actual) length of the occupation
and the activities that may have taken place here; and why is this site so unusual relative to other
sites of this age?

Therefore, following the work at Block A, subsequent excavations at Mountaineer included among
the goals an effort to resolve statistically whether the patterning of the large rocks in other of the
spatially-discrete surface artifact clusters could be demonstrated to be non-random and cultural and,
if so, if the size and shape of that pattern could be discerned in a manner that would provide insight
on its purpose. That effort involved intensive excavations in the artifact cluster on a site recorded as
Block C, a concentration of Folsom-age artifacts∼91m southeast of Block A. Like Block A, the artifacts
in Block C were found amidst an abundance of welded tuff blocks.

Fig. 1 is a view of the Block C site in the initial stages of excavation in 2009, after the surface
vegetation had been cleared and a portion of the block excavated to a depth of 10 cm. Many large
and small rocks are present but there is no discernible pattern that suggests the possible presence of
a structure.

In order to make the distribution of the rocks in Block C amenable to spatial statistical analyses,
an excavation and mapping protocol was developed to generate detailed point pattern data. All
excavations in Block C took place in 5 cm vertical increments within 50 cm2 quadrants of 1 m2 units.
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Fig. 2. An expanded view of the southeast corner of Block C after subsequent excavations in 2009. The arc of several large,
presumed ‘house’, rocks neighbor other large rocks that could indicate an entryway angling off to the southeast. (Photograph
by D.J. Meltzer).

In the course of the excavations, the locations of all rocks greater than or equal to 10 cm but less
than 25 cm in maximum dimension were mapped with an EDM Total Station (which provides sub-
millimeter accuracy). These rocks, along with any rocks< 10 cm in length, were discarded in order to
continue the excavation of that 5 cm excavation level. All rocks ≥ 25 cmwere left in place. When the
excavation of a particular 5 cm level of a 1 m2 unit was completed, separate photographs were taken
of the floor of each of the four 50 cm2 quadrants, showing all the rocks in place. The photographswere
printed off-site and then returned to the field, after which each rock≥ 25 cm in lengthwas numbered
and its position precisely mapped with the EDM Total Station. Excavations in that unit were then
continued down to the next level. The next 5 cm level was excavated, exposing the next level of rocks,
and the process of photographing and mapping was repeated. Fig. 2 shows exposed rocks following
subsequent excavations in the southeast corner of Block C. The figure shows the emergence of several
large neighboring rocks.

Over three seasons of fieldwork in Block C, 120 m2 were excavated following this protocol, almost
two thousand photographs of 50 cm2 quadrants were taken, and nearly 3900 rocks≥ 10 cm in length
were individually mapped. The emerging overall map of all rocks had considerable spatial noise. It
was anticipated, however, that by examining the distribution of the larger rocks, the ones that could
have served as foundation or wall stones, might reveal a ‘‘signal’’ amidst the noise, if one existed.

Of the nearly 3900 rocks, 253 rocks were >30 cm in their maximum dimension and deemed large
enough, based on experimental evidence, to have served as the foundation or wall supports of a
structure (Stiger (2006) used a 35 cm cutoff). These rocks were colloquially designated as ‘‘house
rocks’’. Some of their locations are depicted in Fig. 2. Plotting the distribution of all the large rocks
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showed they occurred in a roughly circular pattern, which included in the southeast quadrant of the
excavation area a particularly well-defined arc of large rocks and an apparent entryway marked by a
parallel line of rocks that extended 1.5m on a bearing of 100°±5° toward the rising sun, as indicated
in Fig. 2.

Although our focus in this article is on the possible architectural elements of Block C, we note
that ∼22,000 stone artifacts, most of which were very small pieces of flaking debris from artifact re-
sharpening andmanufacture (the total mass of stone artifacts amounts to∼3 kg), were also recovered
from Block C. A small number of formally prepared tools, including both finished projectile points and
point preforms were recovered, as well as a variety of processing implements, particularly gravers
and scrapers, suggesting that considerable bone and hide working had taken place. The density and
distribution of these artifacts generally conformed to an area within and a few meters beyond the
roughly circular pattern of large rocks. It is thus of particular importance to demonstrate whether
those large rocks are architectural features, which would suggest the presence of artifacts occur both
inside and outside the walls of the structure, for that in turn will help enhance our understanding of
any spatial patterning to the activities that took place at the site.

The purpose of this article is to investigate the randomness of the spatial locations of 253 large
rocks in this excavated site. If a spatial pattern in the large rocks is determined to be nonrandom, a
second goal is to characterize the likely shape of the house structure.

2. Investigation of spatial randomness

Complete spatial randomness (CSR) is characterized by spatial processes for which the locations in
a region of fixed size and number are independently and uniformly distributed. Homogeneous Poisson
processes characterize location counts for regions that exhibit CSR. Extreme deviations from CSR are
regions in which the spatial locations occur on a regular grid or regions for which the locations are
highly clustered.

2.1. Quadrat-based methods

Lack of spatial randomness is often investigated by counting the number of locations within
each of several fixed-area subregions or quadrats in a region of interest. Functions of these counts
can be meaningfully compared to theoretical values for regions that exhibit CSR. Swindel (1983)
proposed a simple calculation for determining the optimal quadrat size (q) for such calculations:
q = 1.6/λ̂. The quantity λ̂ is an estimate of the density of locations in the region. Diggle (1983, Sec.
3.2.2) recommended estimating the density or intensity λ by λ̂ = N/ |A|, where N is the number of
large rocks and |A| is the area of the region. The region of interest in Block C that encompasses the
possible house rocks is 10 m in the easting direction and 9 m in the northing direction. Consequently,
|A| = 90 m2 and λ̂ = 253/90, resulting in an optimal quadrat size of 0.75 × 0.75 m2. Using this
optimal quadrat size, the quadrat counts shown in Fig. 3 were determined.

Quadrat counts range from 0 to 5. A chi-square goodness of fit test (χ2
= 14.01, df = 4, p =

0.007) rejects the hypothesis that the quadrat counts are a realization of a homogeneous
Poisson process; hence, CSR is rejected. Several calculated indices of spatial randomness do not
unambiguously indicate violation of CSR. For example, Fisher et al. (1922) relative quadrat variance
I = s2/X̄ = 1.18, where X̄ is the mean and s2 is the variance of the quadrat counts. This value is fairly
close to the theoretical value of 1 for homogeneous Poisson processes. In contrast, Lloyd (1967) mean
crowding, X∗

= I + X̄ − 1 = 1.80, indicates that on the average approximately 2 neighboring large
rocks share a quadrat with any other large rock. Coupledwith the apparent visual circular pattern, the
beginning of which is suggested in Fig. 2, this result is consistent with the house rocks being clustered.

The above quadrat analyses fail to make use of spatial similarity or dissimilarity of neighboring
quadrats. Greig-Smith (1952) (see also Cressie, 1993; Schabenberger and Gotway, 2004) resize the
quadrats so that the number of quadrats is a power of 2. Contiguous quadrats are aggregated in
sequentially larger pairs of contiguous blocks, with each block in a pair containing q = 2k (k =

1, 2, 3, . . .) quadrats. For each block size, analysis of variance mean squares are calculated for the
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Fig. 3. Quadrat counts of Block C large rocks.

Fig. 4. Mean squares vs. individual block sizes (q) for Block C large rocks.

counts from pairs of neighboring blocks. The Block C quadrats were resized to provide 28
= 256

quadrats of size 10/16 = 0.625 m by 9/16 = 0.5625 m and the number of large rocks for each
quadrat was determined. Fig. 4 is a plot of the mean squares as a function of the block sizes (q).

One thousand random reassignments of the 253 Block C large rocks were used to calculate the 95%
simulation envelopes shown in Fig. 4. If the large rocks in Block C exhibit CSR, themean squareswould
be expected to fall between the lower and upper limits of the simulation envelope. The first two block
sizes have mean squares that fall below the simulation envelope, indicating that large rocks in close
proximity are exhibiting more regularity (or regular dispersion) in location than would be expected
under CSR. Mean squares for large rocks in 3 of the 4 largest block sizes are above the simulation
envelope, indicating greater clustering thanwould be expected under CSR. These conclusions support
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the chi-square goodness of fit test’s rejection of the hypothesis that large rock counts in Block C follow
a homogeneous Poisson process, as would be expected under CSR.

2.2. K- and L-function methods

While the Greig-Smith aggregation procedure does make use of neighboring quadrat similarity in
counts, none of the previous quadrat procedures directly accommodate the spatial distances among
individual rocks. Ripley (1976) and Ripley (1977) introduced a procedure based on second-moment
calculations and the spatial intensity λ that can do so. He defined the K -function for a stationary,
isotropic point process so that λK(h) is the expected number of additional locations of the process
that are within a distance h of any location in a region. There are several variations of the K -function
available in the literature, most of which differ depending on whether and how border (i.e., edge)
corrections are applied. Ripley estimated K(h) as

K̂(h) =
1

Nλ̂

N
i=1

N
j=1

i≠j

w(si, sj)−1I(∥si − sj∥ ≤ h). (1)

For the Mountaineer large rocks, si and sj are two rock locations, N = 253 is the number of large
rocks in the region, I = 1 if the distance between the rock locations ∥si − sj∥ ≤ h and is 0 otherwise,
and λ̂ = N/ |A| = 2.811 is the estimated intensity. The edge-correction weightw(si, sj) is not applied
since all the large rocks are well within the boundary of Block C; hence, w(si, sj) is set equal to 1. The
K -function is calculated for a range of distances h and can be graphed as a function of h.

Besag (1977) recommended graphing a variation of the K -function, the L-function:

L(h) =


K(h)
π

− h. (2)

Under an assumption of a homogeneous Poisson process, K(h) = πh2 so that the empirical L-function
should reasonably approximate a horizontal line centered at zero. A plot of the estimated L-function
allows identifying the small-scale regularity, L(h) < 0, and large-scale clustering, L(h) > 0, in a
transformed scale muchmore clearly than does the K -function. Fig. 5 shows the L-function (Baddeley
and Turner, 2005) of the large rocks in Block C. It suggests regularly dispersed rock locations for small
and large distances and clustering for intermediate distances between rocks.

A 95% simulation envelope for the L-function (e.g., Baddeley, 2010, Ch. 20) was calculated for the
Block C large rocks and is also shown in Fig. 5. The simulation envelope is calculated assuming a
homogeneous Poisson process using the estimated intensity function for the Block C large rocks. A
comparison of the L-function values for each distance h with the limits of the simulation envelope
indicates that large rock locations in Block C show regularity for small distances, less than 0.3 m,
and very large distances, greater than 2 m, since the empirical L(h) is below the simulation envelope.
Clustering of the Block C large rocks is indicated for distances between approximately 0.4 and 1.4 m,
since the empirical L(h) is above the simulation envelope. These conclusions that explicitly use the
distances between the large rocks are similar to those using the Greig-Smith quadrat aggregation
procedure in Fig. 4.

The primary finding of the foregoing analyses is that the Block C large rocks exhibit both regular
dispersion and clustering. This is not a natural feature of randomly scattered rock patterns but is
consistent with what would be expected if the large rock locations formed the base of a prehistoric
house structure. The broad pattern of large rocks, henceforth referred to as house rocks, suggests that
perhaps the house structure was circular, primarily due to the low density of large rocks in the center
of the region and the high density of rocks at distances equidistant from the center. However, other
shapes such as elliptical are also suggested. In the next section, methods for evaluating these possible
circular or elliptical shapes are introduced.
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Fig. 5. Empirical L-function curve for Block C large rocks.

3. L-function circular pattern characterization

In this section, L-functions are used to characterize possible circular shapes for the assumed
foundation of the Block Chouse rocks. Characterizations using only large-distance clustering andusing
both large-distance clustering and small-distance regularity are presented.

3.1. Large-distance clustering

Using geometrical arguments, the theoretical L-function for a perfectly circular structure of radius
ρ centered at the origin and lying entirely within a specified region of size |A| can be shown to be

L(h) =


|A|

π2
cos−1


1 −

h2

2ρ2


− h, (3)

where h is the distance between two locations on the circumference of the circle. Fig. 6 contains graphs
of the L-function in Eq. (3) for locations lying in a circular pattern centered at the origin within a
region of the same size as Fig. 1. Fig. 6(a) displays L-functions for 2000 locations (to produce smooth
curves) on circles having radii from 3.2 to 4.4m. Structures with radii in this range are in keepingwith
structures known from ethnographic and estimated from hunter–gatherer archaeological contexts,
though would be toward the higher end of their range. The largest structure in a sample of 40 such
cases compiled by Morgan (2015, Tables 3.3–3.5) had a radius of 4.99 m, with an average radius of
∼2.75 m.

The L-function curves in Fig. 6(a) have similar shapes but are distinguishable. The L-function
for a radius of 3.8 m is dashed because it is approximately the radius of the least squares circular
fit to the house rocks (see Table 4). Fig. 6(b) consists of L-functions for circles of radius 3.8 m in
which the location deviations from the circle are independently normally distributed with mean 0
and standard deviations (σ ) increasing from 0.8 to 1.2 m. The L-function for σ = 1 m is dashed
because it is approximately the standard deviation of the least squares circular fit to the house rocks.
While the curves are distinctive for small distances, they are very similar over the linear portion for
larger distances, especially for the smaller standard deviations; moreover, the curves all intersect at
approximately h = 3.25 m.

The intersection of all the curves in Fig. 6(b) suggests a method for estimating the radius for circles
centered at the origin. Eq. (3) indicates that there is a direct relationship between the L-function and
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(a) Varying radii. (b) Varying standard deviations.

Fig. 6. L-functions for circular rock patterns. (a) No noise (σ = 0); radii varying from 3.2 m (top) to 4.4 m (bottom) in
increments of 0.3 m. (b) Radius 3.8 m; standard deviations varying from σ = 0.8 m (top) to σ = 1.2 m (bottom) in increments
of 0.1 m.

the radius ρ of the corresponding perfectly circular point processes. The L-function can be used to
estimate the unknown radius of a perfectly circular point process by solving Eq. (3) for the radius:

ρ =
h

2

1 − cos


π2(L(h)+h)2

|A|

 . (4)

Since all the curves in Fig. 6(b) intersect at approximately 3.25m, solving Eq. (4) at approximately this
distance should produce reasonable estimates ρ̂ of the radius for all the L-functions in the figure.

3.2. Small-distance regularity

L-function values were calculated from Eq. (3) following a thinning of randomly generated
circular rock locations. Thinning was accomplished by eliminating simulated locations that were very
close together. Nearest-neighbor distances between simulated rock locations were required to be
predominantly between 0.15 and 0.45 m, similar to the Block C large rocks. The thinning induced
regular dispersion among neighboring rock locations.

Fig. 7 contains L-functions calculated for 253 randomly generated locations around a circle of radius
3.8mwith independent additive normally distributed errorswithmean 0 and standard deviation 1m,
similar to the least squares estimates for the Block C rock locations (see Sections 4.1 and 5). The solid
curve in Fig. 6 is the L-function for locations that were not thinned. A 95% simulation envelope for the
L-function is provided by the dotted curves above and below the solid curve. The primary deviations
from the horizontal line for a homogeneous Poisson process are due to clustering at small distances
and regularity at very large distances.

The dashed curve in Fig. 7 is the calculated L-function for locations that were thinned, inducing
regular dispersion. A 95% simulation envelope is provided by the dot–dash curves above and below
the dashed curve. The dashed curve illustrates both small-distance regular dispersion, intermediate
distance clustering, and large distance regular dispersion similar to the L-function in Fig. 5 for the
Block C large rocks. A notable feature of the two sets of simulation envelopes is the lack of overlap for
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Fig. 7. L-functions for circles with large-distance clustering, with and without small-distance regular dispersion.

the smaller distances. This confirms that a sufficiently large initial dip in the L-function like in Fig. 5
is a characteristic of regularly dispersed rock locations.

4. Fitting methods and comparisons

Since the pattern of the Block C house rocks is believed to be circular, this section concentrates on
fitting circular point processes, with additional investigations of elliptical processes. L-function circle
characterizations are not easily extended to elliptical shapes; consequently, fitting methods for those
processes are presented and compared using simulations.

4.1. Least squares circle fit

Bullock (2006), Pratt (1987), and Taubin (1991), among others, derivedmethods for fitting circular
point processes. One of the most straightforward and easily implemented is Bullock’s (2006) least
squares circle fit. Let (xi, yi) denote a rock location, ui = xi − x̄, and vi = yi − ȳ. Denote the least
squares criterion function for a circle centered at (uc, vc) with radius ρ =

√
θ as

g(uc, vc, θ) =

n
i=1

{(xi − uc)
2
+ (yi − vc)

2
− θ}

2. (5)

Let Su =


ui, Suu =


u2
i , etc. Differentiating Eq. (5) with respect to uc and vc and equating the

results to 0 enables the least squares estimates of the center of the circle, x̂c = ûc + x̄ and ŷc = v̂c + ȳ,
to be obtained by solving

ûcSuu + v̂cSuv = (Suuu + Suvv)/2 (6)

ûcSuu + v̂cSuv = (Suuu + Suvv)/2 (7)

for ûc and v̂c . Similarly, differentiating Eq. (5) with respect to θ provides the solution for ρ̂ =


θ̂

θ̂ = û2
c + v̂2

c + (Suu + Svv)/n. (8)
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Table 1
Means and standard deviations of 1000 radius estimates.
h 3.00 3.25 3.50
σ 0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25
Average 3.96 4.00 4.01 3.91 3.92 3.89 3.87 3.85 3.80
Std.Dev. 0.05 0.08 0.09 0.05 0.07 0.09 0.05 0.07 0.09
h Across h 3.00 3.25 3.50 Nonlinear
σ 0.75 1.00 1.25 Across σ 0.75 1.00 1.25
Average 3.91 3.92 3.90 3.99 3.91 3.84 3.93 3.93 3.90
Std.Dev. 0.06 0.09 0.12 0.08 0.07 0.08 0.07 0.09 0.11

4.2. L-function circle fit

When location deviations from a perfectly circular pattern centered at the origin follow a normal
probability distribution, Fig. 6(b) illustrates the relatively large differences in L-function curves that
can occur for small distances and the nearly coincident linearity for large distances when the standard
deviations are sufficiently small. Selecting suitable values of the distance h near the intersection of the
curves enables a relatively stable solution for the radius to be obtained for a range of possible standard
deviations by using Eq. (4) to obtain an estimate ρ̂.

In order to assess the performance of this possible estimationmethod, simulationswere conducted
with parameter values similar to those for the least squares fit to the Block C large rocks (see Table 4,
Section 5). A total of 1000 simulations were conducted for which 253 rock locations were uniformly
generated around a circle centered at the origin with radius 3.8 m. Error variation around the circle
followed a zero mean normal probability distribution using three choices for the standard deviation:
0.75, 1.0, and 1.25 m. For each simulation radius estimates ρ̂ were calculated from Eq. (4) using h
values of 3.0, 3.25, and 3.5 m. The middle value of h was chosen at the approximate distance where
all the curves intersect in Fig. 6(b). Summary results are shown in Table 1.

As can be seen from the summary information in the upper portion of Table 1, the empirical
L-function provides estimates that are all reasonably close to the true radius ρ = 3.8 m. When
averaged across the three chosen values of h for each standard deviation in the first 3 columns of
the lower portion of the table, or averaged across the three standard deviations for each h in the next
3 columns, the radius estimates remain reasonable. For comparison purposes, the nonlinear optimize
function in R was used to select the best fitting L-function estimate of the radius for each simulated
data set using Eq. (3). The algorithm returned the estimated value of ρ that minimized the sum of the
squared deviations over a range of h values from 2.75 to 3.75 between the empirical L-function and
one calculated using an estimate of ρ. This range of h values was chosen to include most of the linear
region for the small standard deviations in Fig. 6(b). As shown in Table 1, the nonlinear estimateswere
comparable to the other estimates in the table.

4.3. Bayesian circle and ellipse fits

This section details Bayesian methods for fitting possible circular or elliptical rock patterns. The
Bayesian model fitting approach is implemented in order to provide point estimates for either the
radius of a circle or the major and minor axes lengths of an ellipse. The form of the ellipse that is
investigated is:

(xi − xc)2

a2
+

(yi − yc)2

b2
− 1 = ϵi ∼ N(0, σ 2), (9)

where (xc, yc) is the center of the ellipse and a and b are the lengths of the semi-major and semi-minor
axes. This definition of an ellipse includes circular patterns when a = b = ρ. Eq. (9) assumes that the
locations deviate from an ellipse according to a normal distribution with mean zero and standard
deviation σ .
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Based on the above relationship, the likelihood function with independent ϵi ∼ N(0, σ 2), i =

1, 2, . . . , n can be written as

L(x|2) = σ−n exp

−

n
i=1


(xi − xc)2

a2
+

(yi − yc)2

b2
− 1

2

/2σ 2

. (10)

Non-informative priors were selected for each of the unknown parameters. The uniform distribution
U[0, 7] is used as the prior distribution of the semi-major and minor axes; the improper prior 1/σ 2 is
used as the prior distribution of σ 2; and a bivariate uniform distribution over the sampling window
is used as the prior distribution of the center (xc, yc). Specifically, the priors are

π(σ 2) ∝
1
σ 2

. (11)

π(a) ∝ Uniform[0, 7]. (12)
π(b) ∝ Uniform[0, 7]. (13)
π(xc, yc) ∝ Bivariate Uniform[(598, 608) × (380, 389)]. (14)

In this formulation only the variance parameter (σ 2) has a closed-form posterior (inverse-gamma)
distribution:

f (σ 2
|2) ∝ Inv–gamma


scale =

(d − 1)T (d − 1)
2

, shape =
n
2


, (15)

where d is a vector with di =


(xi−xc )2

a +
(yi−yc )2

b , for i = 1, 2, . . . , n. The remaining parameters are
updated using a Metropolis–Hastings algorithm.

4.4. Comparisons of circle fits

A simulation study was conducted using 253 generated circular locations with center (0, 0), radius
3.8 m, and N(0, σ 2) independent errors, with σ = 0.5 and 1. In order to examine the effects of non-
normal errors, two additional error distributions were examined: the uniform[−1, 1] distribution
which is symmetric and relatively short-tailed; and a centralized (mean 0) gamma(2, 2) distribution
which is skewed and relatively long tailed. Included in the simulations are the Bayesian, Bullock
(2006), L-function, Pratt (1987), and Taubin (1991) circle fits.

The parameter estimates ρ̂, and (x̂c, ŷc) were directly estimated in the Bullock, Pratt and Taubin
methods. The L-function-based estimates of the radius were obtained by using Eq. (4) and the
estimates (x̂c, ŷc) of the center of the circlewere chosen to be the data averages (x̄, ȳ). For the Bayesian
method, the radius and the center were estimated by using posteriormedians for each parameter. The
simulation study was repeated 1000 times (comparisons of 500 and 1000 simulations yielded very
similar results), and sample standard errors for each of the parameter estimates were calculated. The
resulting estimates are reported in Table 2.

All five fitting methods provide reasonable mean estimates of the radius parameter. The Bayesian
method provides slightly smaller radius estimates for the normal σ = 1 errors but the mean is still
reasonably close to the true radius 3.8 m. As expected, the standard errors for the σ = 1 errors
are larger, approximately twice as large, as those for the σ = 0.5 errors. All the estimates and
standard errors of the center (0, 0) of the circle are reasonable and approximately the same for the
various methods. Even though the Bayesian model is explicitly based on assuming normal errors, the
simulations using non-normal error structures demonstrate robustness of the Bayesian method, as is
true for the other estimation methods across the various error distributions that were examined.

4.5. Comparisons of ellipse fits

Fitzgibbon et al. (1996) proposed an efficient method for fitting ellipses to data. The method
minimizes the algebraic distance

n
i=1 z

2
i subject to the constraint b2 − 4ac = 1, where
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Table 2
Parameter estimates under different error structures for circular data simulations: estimated average radius
ρ̂, center (x̂c , ŷc), and standard error estimates.

Error Method Radius SE xc SE yc SE
True 3.80 0.00 0.00

N(0, 0.5)

Bayesian 3.79 0.03 0.00 0.04 −0.00 0.04
Bullock 3.82 0.03 0.00 0.04 0.00 0.04
L-function 3.86 0.08 0.02 0.03 0.00 0.04
Pratt 3.87 0.08 0.00 0.04 0.00 0.04
Taubin 3.82 0.04 0.00 0.04 0.00 0.04

N(0, 1)

Bayesian 3.64 0.17 0.00 0.09 0.00 0.09
Bullock 3.74 0.08 0.00 0.08 0.00 0.08
L-function 3.85 0.11 0.02 0.06 0.00 0.07
Pratt 3.91 0.13 −0.00 0.09 0.10 0.09
Taubin 3.74 0.08 0.01 0.08 −0.01 0.09

Uniform[−1, 1]

Bayesian 3.78 0.04 0.00 0.05 0.01 0.05
Bullock 3.82 0.04 0.00 0.05 −0.00 0.05
L-function 3.87 0.09 0.02 0.03 0.00 0.04
Pratt 3.90 0.11 0.00 0.05 −0.00 0.05
Taubin 3.82 0.04 0.00 0.05 −0.00 0.05

Gamma(2, 2)

Bayesian 3.70 0.10 −0.00 0.05 0.00 0.05
Bullock 3.74 0.07 0.00 0.06 0.00 0.06
L-function 3.78 0.05 0.02 0.04 0.00 0.05
Pratt 3.83 0.04 0.01 0.07 0.00 0.06
Taubin 3.74 0.07 0.00 0.07 0.00 0.06

zi = axi2+bxiyi+cyi2+dxi+eyi+f = 0 is the general formof the conic equation. Themethod is ellipse-
specific, so even non-ellipse data will always return an elliptical fit. The Fitzgibbon et al. method is
robust, efficient and easy-to-implement. Similar work can be found in Halir and Flusser (1998). They
discussed and extended (Fitzgibbon et al., 1996). Both Halir and Flusser (1998) and Fitzgibbon et al.
(1999) provided algorithms that produce numerically stable fits.

Harker et al. (2008) proposed a method to fit specific types of conics to data. Direct and specific
fitting of ellipses and hyperbolas is achieved by imposing a quadratic constraint on the conic
coefficients. Prasad et al. (2012) introduced a least-squares-based ellipse fitting method that, unlike
the previousmethods, does not require constrained optimization. Themethod uses a geometricmodel
of an ellipse and minimizes the geometric distance |y+

b2x0
a2y0

x−
b2
y0

| from any point (x, y) on the plane

to the closest point (x0, y0) on the ellipse x2

a2
+

y2

b2
= 1. The solutions are restricted to ellipses.

Table 3 compares the performance and robustness of the Bayesian, Fitzgibbon et al., Harker et al.,
and Prasad et al. ellipse-fitting methods. Data are generated from elliptical point patterns with semi-
major axis = 3.8 m, semi-minor axis = 3.0 m, and random errors following the same error
distributions as with the circle-fitting simulations. The center of the ellipse is located at the origin
and the major axis of each elliptical process is rotated 30° from the easting direction. As with the
circular processes, 253 locations are used in each simulated elliptical process. The simulation is
repeated 1000 times and the average estimates and corresponding standard errors are reported. In
the Bayesian method, the average posterior median parameter estimates of both the semi-major
and semi-minor axes and of the rotation angle are reported. The rotation angle was determined by
a principal components analysis prior to the Bayesian fitting of the other model parameters. The
estimates of the center of the ellipse for the various methods were similar to those for the circle fits
in Table 2 and are not reported.

Overall the Bayesian, Fitzgibbon et al., and Harker et al. methods performed well in these
simulations for all the error distributions. None of these three estimation methods clearly out-
performed the others. The Prasad et al. method tended to give the highest estimates for the length
of the major axis and the lowest estimates for the length of the minor axis and for the rotation angle.
The standard errors for the Prasad et al. method tended to be larger than those for the other methods.



576 K.P. Jayalath et al. / Spatial Statistics 14 (2015) 563–580

Table 3
Parameter estimates under different error structures for elliptical data simulations: average estimatedmajor
(a) and minor (b) axes lengths, rotated angle, and standard error estimates.

Error Method a SE b SE Angle SE
True 3.80 3.00 30°

N(0, 0.5)

Bayesian 3.87 0.09 3.14 0.15 29.84° 2.27°
Fitzgibbon 3.83 0.06 3.11 0.12 29.76° 3.31°
Harker 3.86 0.09 3.08 0.10 29.76° 4.04°
Prasad 4.01 0.22 2.90 0.12 19.56° 10.74°

N(0, 1)

Bayesian 3.88 0.11 3.38 0.39 27.56° 5.29°
Fitzgibbon 3.85 0.10 3.25 0.26 25.66° 7.78°
Harker 3.95 0.20 3.18 0.21 21.86° 12.43°
Prasad 4.88 1.11 2.73 0.28 9.18° 21.05°

Uniform[−1, 1]

Bayesian 3.86 0.08 3.11 0.12 30.10° 1.82°
Fitzgibbon 3.81 0.05 3.08 0.10 28.08° 3.68°
Harker 3.84 0.07 3.06 0.08 27.78° 4.41°
Prasad 4.01 0.21 2.86 0.15 18.27° 11.94°

Gamma(2, 2)

Bayesian 3.78 0.06 3.10 0.11 29.88° 2.12°
Fitzgibbon 3.74 0.09 3.08 0.11 26.07° 6.86°
Harker 3.79 0.08 3.04 0.09 23.65° 9.18°
Prasad 4.12 0.34 2.78 0.23 14.12° 16.38°

Table 4
Bayesian, L-function, Bullock, and Taubin circle estimates and Bayesian, Fitzgibbon, and Harker ellipse
estimates for large-rock locations in Block C.

Pattern Method Radius/major Minor Center Angle

Circle

Bayesian 3.66 – (602.88, 384.61) –
L-function 3.62 – (602.67, 384.45) –
Bullock 3.80 – (602.84, 384.50) –
Taubin 3.80 – (602.87, 384.51) –

Ellipse
Bayesian 3.91 3.65 (602.82, 384.48) 128°
Fitzgibbon 4.03 3.51 (602.82, 384.52) 142°
Harker 4.22 3.45 (602.82, 384.52) 167°

5. Block C house rocks structural shape

5.1. Circle and ellipse fits to the Block C house rocks

Table 4 displays the parameters estimated for the circular and elliptical fits to the Block C house
rocks. The Bullock and Taubin et al. circular fits are virtually identical, with estimated radii 3.80 m.
The Bayesian and L-function estimates of the radius are slightly smaller, approximately 3.6 m.

The Bayesian, Fitzgibbon et al., and Harker et al. ellipse parameter estimates are also shown in
Table 4. The Prasad et al. estimates were markedly different from the true parameter values in the
simulations reported in the last section and are not included. There are differences in the parameter
estimates for the major and minor axis lengths and the angle of rotation but all the estimates are
reasonably similar. The next two sections summarize assessments of the various circle and ellipse
fits.

5.2. Reasonableness of model assumptions

Bullock’s (2006) least squares circle fit estimated the radius and center of the Block C large-rock
locations to be 3.8 m and grid coordinates East 602.84, North 384.50, respectively. The fitted circle
is shown in Fig. 8 as the solid curve. The fitted L-function circle is shown as the dashed curve for
comparison. Visually the curves are very similar and appear to capture the center of the curved rock
formation well. The other two circular fits overlap these two fits.
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Fig. 8. Spatial distribution of Block C large rocks with least squares (solid) and L-function (dashed) circle fits superimposed.

The distances of the Block C large-rock locations from the fitted least squares circle appear to be
normally distributed in the histogram in Fig. 9(a). An important interpretive feature of the histogram
is the tapering of the number of rocks in both radial directions from the fitted circle, suggesting the
presence of areas cleared of large rocks on both sides of what was likely the collapsed wall of the
structure. The tapering in the negative direction supports the concept of cleared living surface in the
center of the house, as is to be expected within a dwelling.

The standard deviation of the fitted circle was estimated using the minimum distance from the
center of each rock to the least squares circle. The estimated standard deviation for Block C large-rock
deviations from the fitted circle is 1.04 m. Standard deviation estimates from the other fitted circles
and ellipses were similar.

The quantile plot in Fig. 9(b) also supports the assumption of normally distributed radial large-rock
distances from the fitted circle. Superimposed on the quantile plot is a 95% simulation envelope for
the quantiles. The envelope values were simulated from a normal probability distribution with the
same mean and standard deviation as those estimated using the least square circle fit. The empirical
quantile plot values are on or within the envelope values.

5.3. Simulation envelope comparisons of circle and elliptical fits

One assessment of whether any of the circle or ellipse fits are reasonable can bemade by randomly
simulating rock locations from the various fits using the estimated parameters and then comparing
the actual Block C empirical L-function with 95% simulation envelope limits for each fit. Fig. 10 shows
the envelopes from the various model fits in Table 4 using normal errors having standard deviations
estimated from the fits. As with the simulation envelope for the quantile plot in Fig. 9, if the Block C
empirical L-function is within the simulation envelope for a fit, the corresponding fit exhibits fidelity
to the characterized rock pattern.

The dashed curves in the figures are the 95% simulation envelope limits. The solid curves between
the limits are the means of the envelopes. The circle fits all have upper simulation limits that are
approximately the same as the Block C empirical L-function values for small distances, approximately
1 m or less. The empirical L-function is well within the simulation limits for larger distances and
approximately equal to the mean envelope values for the Bayesian and L-function fits. In contrast, all
of the ellipse fits have upper simulation envelope values that are well below the empirical L-function
values.
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Fig. 9. Summary of Euclidian distances of Block C large rocks: (a) Histogram of distances, (b) Normal quantile plot of distances.

f

Fig. 10. Simulation envelopes for fits to Block C large rocks: (a) Bayesian circle, (b) Bayesian ellipse, (c) Bullock and Taubin
circle, (d) Harker ellipse, (e) L-function circle, (f) Fitzgibbon ellipse.
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6. Discussion

Calculation of the empirical L-function is a powerful method for discriminating between
alternative possible rock patterns. Fig. 5 demonstrates that the L-function provides much more
information than simply a conclusion that the Block C house rock locations are not spatially
homogeneous. The deviations of the L-function from the simulation envelope identify small distances
at which the rock locations are so close to one another they characterize a regular pattern and larger
distanceswhere they appear to be clustered relative to one another around the circular pattern. For the
largest distances, those approaching the radius of the fitted circle, they are once again characterized
as exhibiting a regular pattern. Moreover, Fig. 7 demonstrates that the regularity and clustering in
the L-function for the Block C house rocks can be reproduced through random simulation of the
characterized patterns.

The 253 large rocks within Block C at the Mountaineer site are nonrandom in their distribution,
suggesting they weremoved into position by human activity which, based on the broadly conforming
density and distribution of artifacts, would suggest the presence of a structure. Analysis of circular and
elliptical patterns of the Block C house rocks provides strong evidence that the pattern of the house
structure was circular, roughly 3.8 m in diameter, with its central area cleared of large rocks, which
are instead regularly dispersed at close radii several meters out from the center and likely mark the
collapsed walls of the dwelling.

The demonstrated presence of such a structure in Block C cannot confirm the inference that a like
structure was present in Block A. Nonetheless, the very similar patterning of artifacts and large rocks
in both blocks, along with the telling evidence of structural elements in Block A (e.g. the aspen pole-
impresseddaub fragments),would suggest there aremultiple houses at theMountaineer site. As noted
at the outset, that makes the Mountaineer site an extremely rare – if not unique – example from
this time period of substantial, non-ephemeral and (we presume), labor-intensive built architecture,
implying a longer residence here than is customary among these highly mobile groups. Why that
took place at this location and seemingly no other place on the Late Pleistocene landscape, and what
it represents in terms of the activities (indoors and out) and adaptations of this group of Folsom
hunter–gatherers, can now be better addressed with the spatial statistical demonstration these were
not merely natural rock alignments but purposefully constructed houses.
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