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Abstract: Revealing the land subsidence in Beijing, China, induced by the massive groundwater
extraction in the past three decades, is important to mitigate the hazards and protect the residences
and infrastructure. Many SAR (Synthetic Aperture Radar) datasets have been successfully applied
to reveal the land subsidence over Beijing in previous research, while few works were achieved
on land subsidence revealed by time-series InSAR (Interferometric Synthetic Aperture Radar) with
Gaofen-3 SAR images. In this study, we successfully perform the time-series InSAR analysis with
Gaofen-3 SAR images to extract the land subsidence in Beijing from 2020 to 2021. The Sentinel-1
SAR images were used to assess the accuracy of Gaofen-3 images. The subsidence scale and extent
are consistent in detected major subsidence bowls between the two datasets. The spatial–temporal
evolution and the deceleration of Beijing land subsidence were revealed by comparing with the
Sentinel-1 results from 2017 to 2020. Moreover, we evaluated the interferometric performance of
Gaofen-3 satellite SAR imagery and analyzed the main factors that mostly influence the coherence
and quality of interferograms. Our results proved that the long perpendicular baselines decrease the
coherence seriously over the study area, and the artifacts induced by inaccurate orbit information
reduce the quality of the Gaofen-3 interferograms. Refining and removing the two main artifacts
could improve the quality of interferograms formed by Gaofen-3 SAR images.

Keywords: interferometric performance; Gaofen-3; InSAR; subsidence; Beijing

1. Introduction

Land subsidence is a gradual geohazard that occurs in more than 150 countries; 19%
of the global population may face a high probability of land subsidence by 2040 [1,2]. In
China, more than 20 provinces are suffering serve land subsidence [3], including the land
subsidence in Beijing Plain, where major subsidence bowls have been found in the district
of Chaoyang, Changping, Haidian, and Tongzhou in recent decades. The region of land
subsidence reached 770 km2 during 2016–2018, which accounts for 12.05% of the total area
of Beijing City; due to large–scale groundwater level depression, it has been the main threat
to residences and infrastructure in Beijing. Monitoring land subsidence constitutes a critical
and requisite component of land subsidence mitigation.
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The spaceborne time series InSAR technique is an effective method to detect and
quantify small displacements with wide coverage and high accuracy [4,5], which has
been widely used in monitoring land subsidence [6–8], landslides [9,10], volcanoes [11],
mines [12], and glaciers movements [13]. Several researchers have focused on the spatial–
temporal dynamics of land subsidence over Beijing via InSAR based on varying time series
methods and SAR datasets and have analyzed the causes of land subsidence by natural
factors or anthropogenic activities (Table 1). However, few studies have been conducted
for land subsidence based on Gaofen-3 SAR images using time series InSAR technology.

The Gaofen-3 satellite was launched on 9 August 2016. It is the first fully C–band
polarimetric SAR satellite in China and is capable of acquiring high–resolution and large–
width SAR images. It has been widely used in the application of ocean wind, ship detection,
and terrain survey [14–17]. Wang et al., 2019 made an attempt to use only five Gaofen-3 SAR
images to perform the land subsidence over Beijing using InSAR technology [18]—except
that there is limited research and applications related to land subsidence monitoring based on
Gaofen-3 SAR images via time series InSAR technology due to its imperfect interferometric
performance. Therefore, it is essential to evaluate the interferometric performance evaluation
of Gaofen-3 SAR images over Beijing.

Table 1. Summary of the relevant studies of land subsidence over Beijing using SAR satellites.

SAR
Datasets Time Range Resolution

Maximum
Subsidence

Velocity
Studies

ERS-1/2 1992–2000 25 m −48 mm/a Zhang et al., 2016 [19]
Envisat 2003–2010 30 m −143 mm/a Chen et al., 2017; Guo et al., 2020; Zhu et al., 2020 [20–22]
ALOS-1 2007–2011 10 m −120 mm/a Du et al., 2021; Liang et al., 2013; Ng et al., 2012 [23–25]

Radarsat-2 2010–2016 30 m −141 mm/a Chen et al., 2020; Zhang et al., 2022; Zhou et al., 2019 [26–28]
TerraSAR-X 2010–2019 3 m −117 mm/a Bai et al., 2022; Chen et al., 2017; Zhou et al., 2022 [20,29,30]

ALOS-2 2014–2017 10 m/60 m −150 mm/a Du et al., 2018; Liu et al., 2021; Ning et al., 2019 [31–33]
Sentinel-1 2014–2020 20 m −135 mm/a Hu et al., 2019; Zhang et al., 2022; Zhu et al. 2020. [22,27,34]
Gaofen-3 2020–2021 3 m −80 mm/a This study

In this study, we evaluate the interferometric performance of Gaofen-3 SAR images
to demonstrate its capability of interferometric and measurements, refine the quality of
Gaofen-3 interferograms, and map the mitigation of land subsidence in Beijing in recent
years based on Gaofen-3 SAR images. We apply the total coherence model to identify
and discuss the major factors that impact the phase coherence and quality of Gaofen-
3 interferograms and refine the artifacts in interferograms induced by inaccurate orbit
information. We use time series InSAR (TS–InSAR) technology to generate high-accuracy
subsidence maps based on the refinement interferograms of Gaofen-3 SAR images to reveal
the mitigation of Beijing land subsidence in recent years.

2. Study Area and Datasets
2.1. Study Area

Beijing, as the capital city of China, is the national politics, culture, and technological
innovation center of China and comprises 16 urban zones. It is located in the northern
part of the North China Plain, 115.7◦–117.4◦E and 39.4◦–41.6◦N, covering an area of about
16,410.54 km2. It is adjacent to the east of Tianjin city. The topography of Beijing is higher
in the northwest and lower in the southeast, with an average altitude of about 43.5 m above
sea level. It is surrounded by hills to the west, north, and northeast. The climate in Beijing
is sub–humid and sub–arid monsoon with abundant rainfall in summer [35,36]. Due to the
smaller swath of high–resolution Gaofen-3 SAR images compared to Sentinel-1 SAR images,
we select the coverage of Gaofen-3 as our study area (indicated by the brown rectangle
in Figure 1), which includes the districts of Changping, Shunyi, Chaoyang, Dongcheng,
Xicheng, Haidian, and Shijingshan.
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Figure 1. Location of the study area, the black lines delineate the boundary of Beijing City. The
coverage of descending Gaofen-3 and ascending Sentinel-1 SAR images are marked by yellow and
blue rectangles. The brown rectangle also indicates the study area.

2.2. Datasets

Since the Gaofen-3 satellite was not designed for InSAR applications, few SAR images
could be used for time-series processing. The dataset includes 8 scenes of Gaofen-3 SAR
images acquired from fine strip I (FSI) mode from June 2020 to March 2021 [15] and
111 scenes of Sentinel-1 SAR images acquired from strip mode (SM) from June 2017 to
April 2021. In total, 17 scenes of Sentinel-1 SAR images from June 2020 to April 2021 were
applied to assess the accuracy of Gaofen-3 SAR images, and 94 scenes of Sentinel-1 SAR
images from January 2018 to August 2020 were used to reveal the subsidence trend over
the study area. The coverage of the two datasets is shown in Figure 1. Both Gaofen-3 and
Sentinel-1 operate C–band, with wavelengths of ~5.5 cm. The details of two SAR data are
shown in Table 2. A 30 m Copernicus DEM was used to remove the topographic phase
from the generated interferograms.

Table 2. Basic parameters of the SAR datasets over Beijing.

Sensor Gaofen-3 Sentinel-1

Wavelength(cm) 5.55 5.54
Central frequency (GHz) 5.400 5.405

Incidence angle (◦) 27.8145 39.1040
Resolution (Azimuth by range m) 1.12 × 2.61 2.32 × 13.93

Number of SAR images 8 111
Acquisition period 9 June 2020–26 March 2021 13 June 2017–4 May 2021

Band C C
Orbit direction Descending Ascending

Acquisition mode FSI SM

3. Methodology

To review the deceleration of land subsidence in Beijing. We first refined the quality
of Gaofen-3 interferograms, and then we carried out the time-series InSAR method for
descending Gaofen-3 datasets. Sentinel-1 datasets are applied to validate the accuracy
of Gaofen-3 datasets in land subsidence measurements. Finally, combing the TS–InSAR
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results of Sentinel-1 and Gaofen-3 datasets reveals the deceleration of land subsidence over
Beijing. The overall workflow is shown in Figure 2.
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It consists of the workflow of Gaofen-3 SAR images interferometry, interferometry analysis, time-
series processing of Gaofen-3 SAR images, and the deceleration of Beijing land subsidence with
Gaofen-3 results.

3.1. Index for Interferometric Performance Evaluation

The coherence of InSAR depicts changes in backscattering characteristics on the scale of
the radar wavelength. It measures the quality of an interferogram, provides information about
the types of the ground surface, and detects the small-scale changes in the scatter distribution.
The coherence of InSAR is generally decreased by long baselines between satellites, long-time
lags between image acquisitions, and random motions of scatters in resolution cells. Several
sources of decorrelation could be expressed by correlation terms [37]:

γ = γthermal ·γbaseline·γrotation·γvolume·γtemporal ·γother (1)

Thermal decorrelation, denoted by γthermal , is due to the thermal noise induced by the
characteristics of the SNR of the radar system [38].

γthermal =
1

1 + SNR−1 (2)

SNR = 10lg(Ps/Pn) (3)

Ps is the average received signal power, PN is the power of thermal noise in the
receiver system, and SNR is the signal-to-noise of the radar system.

Baseline decorrelation is a geometric decorrelation related to the baseline; the larger
the perpendicular baseline, the greater differences between the primer and secondary SAR
images. The baseline decorrelation could be simply defined as,

γbaseline =

{
1− B⊥

Bc
B⊥ < Bc

0 B⊥ > Bc
(4)

Bc =
RBwtan(θinc − α)

f
(5)

where Bc is the critical baseline of the InSAR system, it depends on radar frequency ( f ),
bandwidth (Bw), and topographic slope (α).
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The difference in Doppler centroid frequencies (∆ f DC) induced the geometric decorre-
lation in the azimuth direction, the coherence factor γDC decreases linearly with increasing
differences in the Doppler centroid frequencies, as follows:

γDC =

{
1− ∆ f DC

BA

∣∣∆ f DC
∣∣ ≤ BA

0
∣∣∆ f DC

∣∣ > BA
(6)

where BA is the bandwidth in the azimuth direction [37].

3.2. SBAS-InSAR Method

Our approach for SAR data processing consists of the following steps: first, we
generate a stack of Gaofen-3 and Sentinel-1 SAR images co-registered and resampled
with respect to prior images using GAMMA software. After the fine registration and
spectral offset filtering, we generated 28 Gaofen-3 interferograms based on the strategy
of SBAS algorithms for taking full advantage of available SAR images. The temporal
and perpendicular baseline thresholds of SBAS interferograms were 200 days and 2000 m,
respectively. Then the flat-earth phase and topographic phase were removed in single-
look interferograms. The combined orbit information and interferogram fringe frequency
were applied to estimate the baseline [17,39]. The 2-D quadratic polynomial method
was applied to model the residual phase of the baseline. Finally, the artifacts of residual
orbit and atmospheric were removed from the wrapped interferograms based on the
above method [40].

To maintain a high-quality correlation of interferograms, we applied a coherence
threshold of 0.4 to select the interferograms for time series processing. We dropped some
interferograms based on the mean coherence, the difference in Doppler centroid frequency,
and some other artifacts from the refined wrapped interferograms. Only 9 of the 28 inter-
ferograms satisfied the criteria for SBAS-InSAR processing. Subsequently, we performed
a time-series analysis using the SBAS-InSAR module in the software of StaMPS-InSAR
(Standard Method for Persistent Scatters) [41,42].

The SBAS-InSAR technique employs all possible interferograms with small spatial
and temporal baselines to improve the temporal sampling rate while maintaining high
coherence. The SBAS algorithm in StaMPS was selected for time series processing, as
this methodology could detect land subsidence by InSAR without prior information on
land subsidence [43]. It could also identify the SDFP (slowly decorrelating filtered phase)
pixels that surround by pixels that completely decorrelate on single-look images at the
highest resolution [44]. The SDFP pixels candidates are initially selected by the amplitude
difference dispersion index, as shown in Equation (6) [45,46],

D∆A ≡
σ∆A
µA

(7)

Equation (7) is used to select the SDFP’s candidates’ pixels represented by D∆A, where
D∆A is the threshold value, σ∆A is the standard deviation of amplitude difference between
the primer image and the second image, µA is the mean of a series of amplitudes values.
The spectral filtering is then applied to multi-prime small baseline interferograms for
SDFP pixel candidate selection. The decorrelation noise γx is estimated by subtracting
the spatially correlated term and spatially uncorrelated term from the interferograms,
calculating the variance of the residuals for the SDFP candidate pixels. The SDFP pixels are
identified based on γx from amidst the pixels candidates.

γx =
1
N

∣∣∣∣∣ N

∑
i=1

exp
{√
−1
(

ψx,i −
∼
ψx ,i − ∆φ̂u

θ,x,i

)}∣∣∣∣∣ (8)

where N is the number of interferograms, ψx,i is the wrapped phase of pixel x in the ith

interferogram,
∼
ψx ,i and ∆φ̂u

θ,x,i are the estimated spatially correlated term and spatially
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uncorrelated look angle error term [47,48]. Once the SDFP pixels are selected, the 3-D
phase unwrapping method and deformation to phase solution are applied to the SDFP
pixels [46,49,50].

4. Gaofen-3 Interferometry Analysis and Refinement
4.1. Gaofen-3 Interferometric Analysis

The InSAR coherence is a key factor in estimating the quality of interferograms which
is related to the amount of phase error in interferograms. To understand the sources
of decorrelation in the Gaofen-3 interferograms over Beijing, the interferograms from
27 January 2021 to 25 February 2021 of Gaofen-3 images (Figure 3a) were selected to analyze
their interferometric performance. We also included the interferograms between 23 January
2021 to 28 February 2021 of Sentinel-1(Figure 3b) to assist in the analysis of Gaofen-3 SAR
images (the details in Table 3). It can be seen from Figure 3 that the coherence performance
and value of Sentinel-1 interferogram are better than those of Gaofen-3, especially in main
urban distracts, and Figure 4 shows the histograms of coherence value for Gaofen-3 and
Sentinel-1 interferograms represented by marigold color and green colors, respectively. The
majority of coherence values for the Gaofen-3 interferogram fall within the range from
0.2 to 0.7, while the values of Sentinel-1 interferograms range from 0.3 to 0.9.
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Table 3. The characteristic parameters for phase decorrelation analysis.

Sensor Gaofen-3 Sentinel-1

Date of interferogram 27 January 2021–25 Febuary
2021

23 January 2021–28 Febuary
2021

Coherence 0.4153 0.5138
NESZ (SNR−1) −22.0 dB −21.3 dB

Baseline of interferograms 1156 m 45 m
Critical baseline (Bc ) 10 km 6.6 km
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A total coherence model is introduced to analyze the phase noise in the Gaofen-3
interferograms. According to the total coherence model (Equation (1)), the coherence of
thermal noise was estimated by the value of the Signal Noise Ratio (SNR), where the Noise
Estimation Sigma Zero (NESZ) as SNR−1 is used to estimate the coherence of thermal
γthermal . The maximum NESZ is−21.3 dB and−22 dB for Gaofen-3 and Sentinel-1 satellites,
respectively, so the SNR−1 is 10−21.3 and 10−22, respectively [15,51]. The coherence of
thermal γthermal is close to 1 for both Gaofen-3 and Sentinel-1 based on Equation (2). Thus,
the thermal noise is not the dominate inducement of the noise in Figure 3. Due to the similar
time span of the two interferograms, the noise induced by temporal decorrelation γtemporal
is also excluded. We also observed the difference in Doppler centroid frequency based
on the parameters of the Gaofen-3 SAR data, where the difference in Doppler centroid
frequency in this interferogram reached 19 Hz, and the azimuth bandwidth was 1482.5 Hz.
Therefore, the decorrelation caused by the difference in the Doppler centroid is minimal
and only takes up nearly 1% of the γDC decorrelation based on Equation (6).

The decorrelation of the baseline is the result of the difference in the incidence angle, the
perpendicular, critical baseline (Bc), and the topographic slope of the earth’s surface according
to Equation (4) [37]. We derived the critical baseline (Bc) from the parameters of two satellites,
which are approximately 10 km and 6.6 km for Gaofen-3 and Sentinel-1 based on Equation (5)
(assuming there is no topographic slope). The larger the perpendicular baseline, the more
serious the phase decorrelation to SAR interferograms over the study area.

Figure 5 shows that the perpendicular baselines of Gaofen-3 images range from 134 m
to 1926 m, and most of them are more than 500 m, while the perpendicular baselines of
Sentinel-1 images range between 2 m and 196 m. The maximum perpendicular baselines
of Gaofen-3 are nearly ten times the perpendicular of the Sentinel-1 SAR data during the
observation period. The perpendicular baseline is 1156 m for the interferogram of the
Gaofen-3 images, which leads to the correlation of γbaseline decreasing to around 0.1156.
While the perpendicular baseline is 45 m for the interferogram of the Sentinel-1 SAR
images, the perpendicular baseline error to the coherence of the Sentinel-1 interferogram is
negligible. Therefore, our results indicate that the Gaofen-3 SAR images own the capability
of interferometric over Beijing city to a certain degree. However, the coherence is seriously
contaminated by long perpendicular baselines, which limit the application of the Gaofen-3
images in ground surface monitoring.
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4.2. The Refinement of the Orbit-Related Artifacts

Figure 6 shows that when compared to the orbit track of the Sentinel-1 satellite,
the orbit track of the Gaofen-3 satellite was unstable while observing the study area on
different image acquisition dates. This instability led to a significant orbit error in range
and azimuth direction. Due to the inaccurate orbit information of Gaofen-3, the accuracy of
the perpendicular baselines calculated by orbital parameters could not reflect some changes
in the azimuth.
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Sentinel-1 satellite observing the study area.

The spatial baseline errors usually increase the phase density and decreases the accu-
racy of phase unwrapping. The accuracy of baseline refinement will influence the quality of
the interferograms. The conventional method uses orbit parameters to calculate the initial
baseline, which assumes that the spatial baseline does not vary with time, which is suit-
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able for parallel baseline estimation. Figure 7 shows that the high-density interferometric
fringes in most of the wrapped interferograms resulting from initial baseline calculations
are inaccurate by the errors in state vectors of orbit. In contrast, the interferogram itself
could be used to improve the accuracy of perpendicular baseline estimation based on the
interferogram fringe frequency. Therefore, we estimate the perpendicular baseline using the
frequency information of the interferogram. Since the main frequency of the interferogram
is not at the zero frequency, FFT (Fast Fourier Transformation) techniques were applied to
shift it to zero frequency without assistance from the GCPs (Ground Control Points) and
accuracy DEM.
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Due to the method of combined orbit information and interferogram fringes frequency
without considering the detailed characteristics of the interferograms, the residual phase
from the baseline errors still remained in wrapped interferograms. Furthermore, the
baseline-induced error is often combined with atmospheric artifacts. Subsequently, the
2-D quadratic polynomial method is applied to model the residual phase of the baseline.
After removing the phase-related interferometric baseline of the topographic, the height
dependence of the atmospheric phase was modeled by a linear regression method. Then
the residual orbit error and atmospheric are removed from the wrapped interferogram. As
shown in Figure 8, the number of fringes was reduced greatly after removing the artifacts
that related to inaccurate orbit information from the wrapped interferograms. However, the
orbital phase is still obvious in some interferograms since we could not obtain the precise
orbital information of the Gaofen-3 satellite during the observation period, and the orbital
phase could not be estimated precisely.

There were no obvious baseline artifacts in the 10 interferograms that were processed
using the StaMPS-InSAR technique. Therefore, the quality of the interferograms generated
by the Gaofen-3 images is influenced by the artifacts with inaccurate orbit information.
As for the artifacts related to the orbit in Gaofen-3, the interferograms serve more than
those in other SAR satellites. Refining and removing the artifacts with inaccurate orbit
information could assist the Gaofen-3 SAR images in achieving high-accuracy subsidence
over the study area.
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5. Gaofen-3 Time Series Results Analysis and Comparison
5.1. The Subsidence Results Acquired from Gaofen-3 Images

Since the incidence angles of the Gaofen-3 and Sentinel-1 SAR images are different,
all the los (Line of Sight) velocities derived from the two datasets were converted into
vertical direction by dividing the corresponding factor cosθinc (θinc is the incidence angle) to
avoid incidence angle interference [25]. A map of mean velocity derived from the Gaofen-3
SAR images over the study area from September 2020 to April 2021 is shown in Figure 9.
The negative velocities represent the subsidence (red color) that moves away from the
sensor, and the positive velocities represent the uplift (blue color) that moves towards the
sensor. According to the InSAR-derived results from the Gaofen-3 SAR images, the average
subsidence rate ranged from −80 mm/a to 30 mm/a in the vertical direction in the study
area. For most metropolitan areas over Beijing, the land subsidence velocity ranged from
−15 mm/a to 15 mm/a. It can be seen from Figure 9 that the observed subsidence mainly
occurred inside the Chaoyang District and Haidian District (red dashed lines in Figure 9).
The primary large-scale subsidence bowl is observed at the northeastern part of Chaoyang
District with ~−80 mm/a, where cumulative subsidence was as high as about 40 mm from
September 2020 to April 2021, as shown in the time-series results map of the feature points
(black star in Figure 9) in Figure 10. There was another subsidence bowl with a relatively
lower subsidence velocity at ~−73 mm/a at the northwestern part of Haidian District. The
most severe subsidence bowls in Beijing have subsided up to−40 mm from September 2020
to April 2021. As shown in Figure 9, the uplift areas are distributed randomly and caused
by some phase noise, and they could not be removed completely from the interferograms
due to the limited interferograms for time-series processing.
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5.2. The Comparison with the Results from Sentinel-1 Images

To access the accuracy of InSAR results derived from Gaofen-3 images, both Gaofen-
3 and Sentinel-1 SAR images were available over the study area from September 2020
to April 2021. The SBAS-InSAR results derived from the two datasets could be used to
cross-validate for the precision of our InSAR results of the Gaofen-3 dataset. As shown in
Figures 9 and 11, due to the similar spatial distribution of the subsidence signatures derived
from the two independent SAR datasets, the subsidence rates of the Gaofen-3 images
agree well with the observations of the Sentinel-1 images. The largest subsidence velocity
reached ~−98 mm/a, located at Chaoyang District, but most of the subsidence velocities
of the two datasets ranged from ~−80 mm/a to 30 mm/a. To validate the precision of
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our InSAR results of the Gaofen-3 images, the subsidence velocity maps were selected to
compare the difference between the two independent SAR datasets in vertical directions.
Figures 12 and 13 demonstrate the correlation between the Gaofen-3 and Sentinel-1 annual
velocity maps, with most of the difference values between the two datasets ranging from
−10 to ~10 mm/a, indicating a similar subsidence pattern.
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5.3. The Spatial and Temporal Evolution of Land Subsidence during 2017–2021

Characterizing the variation of Beijing’s land subsidence is important not only to warn
of and mitigate disasters but also to understand the temporal evolution of land subsidence
in Beijing. The Gaofen-3 images could assist in evaluating the spatial and temporal variation
of subsidence over Beijing in recent years while comparing them to the measurements
derived from Sentinel-1 from 2017 to 2020. Figure 14 highlights the deformation from 2017
to 2020 and from 2020 to 2021 that was calculated with Sentinel-1 and Gaofen-3 SAR data,
respectively. Five major subsidence bowls were identified from 2017 to 2021, including
three large-scale subsidence bowls located east of the Chaoyang district and northwest of
the Haidian district and two relatively small subsidence bowls in the Changping district.
The main subsidence bowls show a strong spatial correlation between the period from
2017 to 2020 and from 2020 to 2021, and the subsidence patterns of every subsidence bowl
decreased gradually, all of which have experienced significant decelerating in subsidence
rates and areas in recent years. The decorrelation may be attributed to the uplift of the
groundwater from the South-to-North Water Diversion Project (SNWDP) that has been
operating in recent years [21].

The magnitude of the land subsidence inside the three large subsidence bowls de-
creased gradually during the observation period. We observed that the highest subsidence
velocity occurred northeast of the Chaoyang subsidence bowls during both periods, with a
maximum value of −122 mm/a from 2017 to 2018, which is much higher than the subsi-
dence velocity from 2020 and 2021, of −80 mm/a. Similar subsidence trends are observed
at the Haidian subsidence bowls, and the two small subsidence bowls in Changping dis-
trict have disappeared since 2019. Even though the extent and scale of all the subsidence
decreased gradually, the subsidence bowls inside the district of Chaoyang and Haidian
remained subsidence during the observation period, indicating that the land subsidence
areas require more attention.
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6. Conclusions

In this study, high-resolution Gaofen-3 SAR images were utilized to measure the land
subsidence over the main urban district of Beijing by time series InSAR analysis. Sentinel-1
SAR images were applied to assess the accuracy of subsidence measurements derived from
Gaofen-3 SAR images. The subsidence scale and extent are consistent with the detected
major subsidence bowls for the two independent SAR datasets, which demonstrates the
high accuracy of Gaofen-3 SAR images for measuring the subsidence over the study area.
The InSAR results derived from the Gaofen-3 SAR images also revealed the deceleration
pattern of the land subsidence over the study area by merging the results derived from the
Sentinel-1 SAR images from 2017 to 2020. It is essential for monitoring active subsidence
bowls located in the northeastern Chaoyang district.

Our results have demonstrated the Gaofen-3 SAR images’ capability of interferometric
analysis over the study area, primarily restricted by a long perpendicular baseline and
inaccurate orbit information. The long perpendicular baselines decrease the coherence of the
interferograms derived from the Gaofen-3 SAR images, while the artifacts with inaccurate
orbit information reduce the quality of the interferograms. Refining and reducing the
artifacts related to longer perpendicular baselines and inaccurate orbit information from
wrapped interferograms will improve the quality of the interferograms of the Gaofen-
3 images and assist us in characterizing and revealing the spatial-temporal subsidence
patterns over the study areas.
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