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A B S T R A C T   

The slip-surface geometry and volume of landslides are fundamental for landslide modeling and mechanism 
interpretation. The movement of a landslide, which is generally controlled by the slip-surface geometry, can be 
obtained from interferometric synthetic aperture radar (InSAR) measurements. However, there is a lack of a 
general approach for inferring the slip-surface geometry and volume of landslides through the InSAR-derived 
deformation field. Here we developed a geometry-based method to determine the landslide slip-surface geom-
etry and volume using InSAR measurements and applied it to the Jinsha River Basin, a landslide-prone area that 
poses a significant threat to residents and infrastructure. Through the InSAR-derived displacement, topography, 
and Google Earth images, 50 creeping landslides were identified in the study area. Based on the displacement 
field, the landslide slip-surface slope was inverted under the assumption that the landslide displacement was 
parallel to the slip-surface. Then the two-dimensional slip-surface depths and volumes of selected landslides were 
inferred using the slip-surface slope. Comparisons with the in-situ data suggest that the results obtained in this 
study are reliable. The mapped landslides in the study area have depths of approximately 16–160 m along the 
central axis and volumes ranging from 483,412 to 135,789,944 m3. The derived volume–area relationship and 
2D slip-surface depth suggest that deep-seated landslide is a major landslide type in the study area. We conclude 
that our method can infer the slip-surface geometry of creeping landslides based on InSAR observation and our 
results have improved the understanding of the landslide mechanisms in the Jinsha River Basin, China.   

1. Introduction 

Major natural disasters triggered by landslides cause substantial 
economic losses and claim thousands of lives death every year in the 
world. Landslide identification and monitoring are prerequisites for 
hazard prevention (Zhao et al., 2012). Many studies detected and 
monitored landslides based on the surface displacement (e.g., (Kang 
et al., 2021)), because potential landslides usually experience a longtime 
creeping stage before their final failure, and some can last for years or 
even decades. Surface displacement can also reflect the geometrical 
characteristics of the slip-surface of landslides (Schlögel et al., 2015). 

The geometry of the slip-surface, defined by its direction, depth, and 
shape, provides critical data support for landslide stability analysis and 
mechanism interpretation (Carter & Bentley, 1985; Xu et al., 2022). 
Because the detailed slip-surface slope can also reflect the shape of the 
slip-surface, it has been used in landslide classification (e.g. (Crippa 

et al., 2021; Saroli et al., 2021)). The slip-surface geometry can also be 
used to derive the landslide volume, which is one of the most important 
parameters to control landslide propagation distance, the affected area, 
and potential damages after failure (Jaboyedoff et al., 2020). Decades 
ago, some studies had already inferred the two-dimensional (2D) slip- 
surface geometry based on ground-surface displacement (e.g., (Bishop, 
1999; Carter & Bentley, 1985)). In recent years, remote sensing tech-
nology, which can obtain detailed ground-surface displacement, has 
provided new constraints for slip-surface geometry inversion (Booth 
et al., 2020; Jaboyedoff et al., 2020). As a microwave remote sensing 
technology, InSAR is not only a powerful tool for landslide detection and 
monitoring but also shows the potential in inferring the geometry of the 
slip-surface (Handwerger et al., 2021; Lu & Kim, 2021). For example, 
based on rheology, some studies have used InSAR measurements to 
retrieve the detailed slip-surface depths, which can directly reflect the 
slip-surface geometry (e.g., (Hu et al., 2018)). However, the rheology- 
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based method typically requires prior knowledge about the rheological 
property of the landslide body and depth measurement at one location. 
Under the assumption that the displacement vector of a landslide is 
parallel to its slip-surface, some studies have used a vector inclination 
method to plot the slip-surface along a profile based on InSAR-derived 
three-dimensional (3D) displacements (Intrieri et al., 2020); however, 
this geometry-based method only acquires 2D slip-surface geometry 
along a profile. Several studies have attempted to estimate the slip- 
surface inclination through east-west and vertical (2D) displacement 
derived from InSAR (e.g., (Crippa et al., 2021; Saroli et al., 2021)), but 
this method cannot accurately reflect the actual slip-surface slope. 
Hence, there is a lack of general methods for landslide volume estima-
tion based on InSAR (Jaboyedoff et al., 2020). 

The Jinsha River is located in the upper reaches of the Yangtze River. 
During river cutting in the Jinsha River Basin, many V-shaped canyons 
with large elevation drops were formed (Wang, 2013). Both sides of the 
canyons are eroded by precipitation and rivers, resulting in devastating 
geological disasters including landslides and mudslides (Xu, 2013). 
Many hydropower stations have been built or planned on this river to 

utilize hydraulic resources. We selected a region partly covering the 
reservoir areas of the Wudongde and Baihetan Hydropower Stations as 
the study site (Fig. 1). It is located in the transition zone between the 
mountainous area of southwestern Sichuan Province and the Yun-
nan–Guizhou Plateau belonging to the southeastern margin of the 
Qinghai–Tibet Plateau (Xu, 2013). The topographic relief is too huge, 
with a maximum height difference of 3642 m. The vegetation coverage 
is so uneven that more exposed surfaces are found in the river valleys 
and the flat regions, and more vegetation coverage in the mountainous 
areas. The study area has a subtropical monsoon climate, and precipi-
tation is mainly concentrated in summer (June to October) (Xu, 2013). 

A super-large hydropower station (the Wudongde Hydropower Sta-
tion) and several major roads are located in this region (Fig. 1). Land-
slides and debris flows may cause massive damage to the dam, 
threatening the safety of people in the reservoir area (Huang et al., 
2012). Although InSAR-based landslide identification and monitoring 
has been conducted in this area (Zhao et al., 2018), only a few studies 
have investigated the geometric slip-surface information of individual 
landslides based on geological surveys. Therefore, we designed a 

Fig. 1. (a) The location and terrain of the study area. (b) Optical remote sensing images from Sentinel-2 acquired from November 2020 to February 2021; the white 
rectangle shows the SAR coverage. The inset shows the location of the study area. 
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geometry-based strategy to infer the slip-surface geometry and volume 
of the landslide in an area of the Jinsha River Basin by using the InSAR 
measurements. 

2. Methodology 

A set of processes was designed to estimate the slip-surface geometry 
and volume of the landslides in the study area (Fig. 2). Firstly, based on 
the SAR data with ascending and descending tracks, the surface dis-
placements of the research area were estimated through the InSAR 
segment processing (Kang et al., 2021). Then, the active landslides in the 
study area were identified by the InSAR measurements, Google-Earth 
image and Digital Elevation Model (DEM) (Zhao et al., 2018). Finally, 
based on the 3D displacements derived from InSAR, the slip-surface 
geometry and volume of the landslide were estimated under the 
assumption that the displacements are parallel to the slip-surface and by 

using an elliptical paraboloid-based model respectively (Carter & 
Bentley, 1985; Hu et al., 2018). The details of these methods were 
presented as follows. 

2.1. InSAR line-of-sight processing and landslide identification 

In this study, 91 Sentinel-1 images with ascending tracks and 88 
Sentinel-1 images with descending tracks from March 2018 to March 
2021 were collected and processed. We set the thresholds of the tem-
poral and spatial baselines as 36 days and 300 m, respectively to 
generate interferograms avoiding decorrelation. And only the in-
terferograms with relatively high effective coherence ratios were sub-
jected to further processing. The effective coherence ratio refers to the 
percentage of the area in which coherence is higher than a critical 
threshold (Kang et al., 2021). Typically, this threshold can be set as the 
average coherence of the water-covered and shadowed areas. In this 
study, the average coherence of the shadowed areas (0.1) was set as the 
critical coherence, and the effective coherence ratio was set as 0.7, to 
select interferograms of high quality. The configurations of the selected 
interferograms are shown in Fig. 3. The multi-look ratio of the images 
was set to 4:1, which resulted in an image resolution of ~20 m in both 
directions. The 1-arc-second Shuttle Radar Topography Mission (SRTM) 
digital elevation model (DEM) was used to remove the topographic 
phase, geocode the results, and segment the interferograms. 

Because the study area is mountainous, interferograms are often 
disturbed by severe atmospheric noise. To attenuate the impact of at-
mospheric delay, segment processing was used to obtain the linear 
deformation rate (Kang et al., 2021). Since vertically stratified compo-
nents of tropospheric delays are difficult to estimate accurately over 
sizable spatial scales or large elevation variations, the tropospheric 
delay was estimated in local windows/segments (Bekaert et al., 2015). 
The surface displacement was calculated in each segment indepen-
dently, and these segment results were merged (Kang et al., 2021). 

In addition to the atmospheric noise, we found that some interfero-
grams cannot be unwrapped correctly because of the large displacement 
gradients of the landslides in the study area. Therefore, we designed a 
phase-closure method to correct the unwrapping errors in the segment 
processing, and this step was placed after the interferogram segmenta-
tion. As the cumulative movements of creeping landslides gradually 
increase, the unwrapping errors increasingly occur in pairs with longer 
temporal baselines (Wang et al., 2012). Therefore, a phase-closure 
technique based on non-redundant measurements was used to correct 
the unwrapping errors. The main difference between our method and 
the one used in the π-RATE method (Wang et al., 2012) is that a chain of 
interferograms with the shortest possible temporal baselines was 
selected as the redundant measurements to correct the unwrapping er-
rors caused by dense fringes corresponding to large displacement. The 
flow of the proposed method for a generic pixel is described briefly 

Fig. 2. The flow chart of the landslide slip-surface geometry and vol-
ume estimation. 

Fig. 3. The configuration of the temporal and spatial baseline: (a) ascending dataset; (b) descending dataset. The red line represents the non-redundant measure-
ment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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below: 
(i) Non-redundant measurements were selected using the minimum 

spanning tree algorithm (Kruskal, 1956). To avoid the non-redundant 
measurements containing unwrapping errors, a chain of interfero-
grams (red line in Fig. 3) was constructed. 

(ii) The closure of the redundant measurements was constructed 
using the non-redundant measurements (Wang et al., 2012). In our 
method, these residuals ρ = (ρ1 ρ2 ⋯ ρn) were calculated by using the 
following formula based on least squares adjustment for solving time- 
series deformation: 

ρ = φ − Bϕ (1)  

ϕ =
(
BT

nonBnon
)− 1BT

nonφnon (2)  

where ϕ represents a series of cumulative phases estimated from the 
non-redundant interferograms; φ represents the unwrapped interfero-
metric phase; B represents the design matrix, which consists of − 1, 0, 
and 1: this is because the interferometric phase φω,η = ϕη − ϕω, where η 
and ω represent the acquisition time of two SAR images, respectively. 
The subscript non indicates the non-redundant measurements. If the ith 

residual ρi was greater than three times the root mean square error of ρ, 
the measurement φi was considered to contain an unwrapping error and 
the residual ρi was used to correct it. It has been noted that L1-norm can 
be advantageous in suppressing the influences of outliers (e.g., (Lauknes 
et al., 2010)). So, in addition to the least squares, L1-norm can be 
explored to estimate the residual. 

(iii) Temporal coherence was used to evaluate the effect of the 
correction (Lauknes et al., 2010). If the temporal coherence decreased 
after the correction, the original unwrapped phase was left for subse-
quent processing. 

Following the InSAR segment processing, landslides were identified 
based on their deformation patterns, which can be plotted on DEM and/ 
or optical remote sensing images. In the identification, we used the DEM 
to exclude land subsidence interference (Zhao et al., 2012). The Google 
Earth images are used to roughly depict the extent of the landslides, 
guided by the InSAR measurements (Zhao et al., 2018). Because obvious 
deformation may only occur in some parts of the landslide region during 
a specific InSAR monitoring period, and the boundaries of some land-
slides (groove, crack or discontinuity of stratum) can be identified using 
optical remote sensing images (Wang et al., 2011). 

2.2. 3D displacement inversion 

As it is limited by the imaging geometry of SAR satellites, spaceborne 
InSAR is not sensitive to north–south displacements (Hu et al., 2018). 
Therefore, some basic assumptions are proposed for multi-dimensional 
displacement inversion over landslides (Hu et al., 2018; Liu et al., 
2021). In InSAR-based landslide 3D displacement inversion, some 
studies assume that the slip-surface is parallel to the ground surface (Liu 
et al., 2021), which makes the 3D displacement of landslides derived 
from InSAR measurements entirely parallel to the ground surface. 
However, not all landslides have a slip-surface parallel to the ground 
surface (e.g., rotational and multiple rotational landslides). When 
inverting the 3D displacement of a landslide based on datasets with both 
ascending and descending tracks, rather than assuming the slip-surface 
is parallel to the ground surface slope, we only assume that the landslide 
movement in the horizontal direction is consistent with the slope aspect 
(Hu et al., 2018). Hence, the transverse deformation of the landslide in 
the computation was neglected (Baum et al., 1998; Hu et al., 2018). 
Under this assumption, the 3D displacement can be inverted using the 
following equation. 

L

⎡

⎣
vN
vE
vU

⎤

⎦ =

⎡

⎣
vasc
vdec
0

⎤

⎦ (3)  

whereL = [ lasc ldec sτ ]
T, v indicates the displacement, the subscripts 

E, N, and U indicate north, east and vertical directions, respectively; the 
subscripts asc and dec indicate the ascending and descending tracks; l =

[ sinθsinα − sinθcosα cosθ] , where θ is the incidence angle and α is the 
satellite heading angle; sτ =

[
sinβasp − cosβasp 0

]
, where 

βasp represents the slope aspect. In addition, to reduce the interference of 
local topographic relief, we set the average slope aspect of each creeping 
body as its horizontal sliding direction. The condition number of the 
design matrix L can be used to evaluate the sensitivity of the linear 
equations in Eq. (3) to the noise. A large condition number usually 
means that the inverted result is unreliable. We calculated the condition 
numbers of Eq. (3) for different slope aspects. As shown in Fig. 4, when 
the landslide moves in a near north–south direction, the condition 
number is huge, which indicates that Eq. (3) still cannot be used to invert 
the 3D displacement of a landslide sliding in a near north–south direc-
tion. Therefore, it is necessary to evaluate the precision of the 3D 
displacement of the landslides. According to the error propagation law, 
the uncertainty of the Quasi-3D displacement can be obtained by: 

M3D = L− 1MLOS
(
L− 1)T (4)  

in which M indicates the covariance matrixMLOS = Λ
(

m2
asc m2

dec 0
)
, 

Λ represents a diagonal matrix, and m is the standard deviation of the 

Fig. 4. The logarithm transformed (log10) condition number versus with the 
slope aspect. 

Fig. 5. The conceptual model for inverting the slope of a slip-surface. The 
downslope direction is parallel to the slip-surface. We stipulate that when the 
horizontal line rotates downward to be tangent to the slip-surface, the slope of 
the slip-surface is positive (δ1). In contrast, when the horizontal line rotates 
upward to be tangent to the slip-surface, the slope of the slip-surface is nega-
tive (δ2). 
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linear deformation rate in the line-of-sight (LOS) direction. 

2.3. Slip-surface slope inversion 

Under the assumption that the displacement vector is parallel to the 
slip-surface, Carter and Bentley (Carter & Bentley, 1985) inferred 
landslide thickness along a profile using surface displacement. They 
found that the accuracy of the inferred thickness could reach approxi-
mately 2% of the distance between ground measurements (Carter & 
Bentley, 1985). Baum et al. (Baum et al., 1998) verified that the 
displacement at the ground surface was roughly parallel to the slip- 
surface of the landslide. It should be noted that, in this study, the 
ground-surface slope was not used in the 3D displacement inversion (as 

shown in Section 2.2). In addition, for landslides with small length- 
depth ratios, the depth-averaged landslide velocity vector is typically 
proportional to the ground-surface horizontal velocity vector (Hand-
werger et al., 2021). Therefore, the detailed slope of the slip-surface can 
be estimated using the inverted 3D displacement, under the assumption 
that the displacement vector is parallel to the slip-surface. The concep-
tual model of the slip-surface slope inversion is shown in Fig. 5; if the 
landslide body slides along a continuous slip-surface and the displace-
ment in the downslope direction is much larger than the displacement in 
the slope-normal directions (the direction normal to the slip-surface), 
the angle between the horizontal and vertical displacement is inferred 
as the slope of the slip-surface. Then the slope of the slip-surface can be 
calculated as, 

Fig. 6. Results for two landslides with large displacement in the study area. (a, d) Linear displacement rates without unwrapping error correction; (b, e) Linear 
displacement rates acquired from the interferograms corrected by the phase-closure technique; (c, f) Linear displacement rates acquired from manually selected 
interferograms that have a lower probability of phase unwrapping errors; (g, h) Cross-sections of the displacement rates and the terrain. 
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Fig. 7. (a) Linear displacement rate in line-of-sight (LOS) direction from the ascending track. The landslides in the dashed rectangle were not numbered. (b) Linear 
displacement rate in the LOS direction from the descending track. (c) The location and number of the detected landslides. In the figure, red (negative) and blue 
(positive) indicate movement away from and toward the satellite, respectively. The size of the circle reflects the area of the landslide, and the blue lines represent the 
Jinsha River and its tributaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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δ = arctan
(

− vU

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2
N + v2

E

√ )

(5) 

The landslide direction has a significant impact on the precision of 
the inverted 3D displacements (shown in Section 2.2). Specifically, the 
precision becomes unacceptable when it slides in a near north–south 
direction. Therefore, it is necessary to evaluate the precision of the slip- 
surface slope inverted from 3D displacement. The standard deviation of 
the slip-surface slope is estimated based on the error propagation law: 

m2
δ =

(
∂δ

∂vN

)2

m2
N +

(
∂δ
∂vE

)2

m2
E +

(
∂δ

∂vU

)2

m2
U (6)  

where m indicates the standard deviation. Subsequently, we obtain the 
following equation, based on Eq. (5) and Eq. (6): 

m2
δ =

(
vUvN

(v2
N + v2

E + v2
U)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2

N + v2
E

√

)2

m2
N +

(
vUvE

(v2
N + v2

E + v2
U)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2

N + v2
E

√

)2

m2
E

+

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2

N + v2
E

√

v2
N + v2

E + v2
U

)2

m2
U

(7) 

Eq. (7) shows that the precision of the slip-surface slope is related to 
the magnitude and precision of the 3D displacement. Therefore, it is 
difficult to obtain a reliable slip-surface slope for the landslides in a near 
north–south direction. 

2.4. 2D basal-surface and volume estimation 

Based on the vector inclination method, the 2D slip-surface can be 
inferred using the 3D landslide displacement (Carter & Bentley, 1985; 
Intrieri et al., 2020). This method uses the location of the backscarp or 
the toe of the rupture surface of the landslide to infer the depth of the 
entire slip-surface (e.g. (Baum et al., 1998; Intrieri et al., 2020)). The 
back-scars and toes of the landslides can be identified based on 
displacement, DEM, and Google Earth images. Unlike the traditional 
method based on discrete measurements, in this study, continuous 3D 
displacement fields were used to infer the slip-surface. Based on the slip- 
surface slope along the central axis of the landslide, the elevation of the 
slip-surface along the profile can be estimated by the integral, starting 
from the bottom or the top of the landslide: 

Zs,i = Zt −
∑i

top
Ptanδ or Zs,i = Zb +

∑i

bottom
Ptanδ (8)  

where Z represents the elevation; P is the horizontal spacing of the 
pixels; and the subscripts s, t, and b indicate the slip-surface, top, and 
bottom of the landslide, respectively, i indicates a position in the hori-
zontal direction. Therefore, two potential slip-surfaces can be inferred 
from Eq. (8), independently. However, the slip-surface of some land-
slides may not be completely interconnected at the toe or tail (e.g., 
(Kang et al., 2019)), and there may be identification errors in the 
landslide toe and backscarp. Therefore, the slip-surfaces integrated from 
the bottom and the top may not coincide. In this study, an optimal slip- 
surface (below the ground-surface, and close to the ground-surface at 
the two sides) was chosen from the two results. 

Many studies have inferred the volume of a landslide using slip- 
surface geometry (e.g., (Handwerger et al., 2021; Jaboyedoff et al., 
2020)). Some of them assume a semi-ellipsoid shape for the slip-surface 
and infer the volume based on the length, width, and thickness of the 
landslide (Cruden & Varnes, 1996). Some studies have found that, 
instead of a semi-ellipsoid, an elliptic paraboloid can reflect the shape of 
the failure surface more realistically (Jaboyedoff et al., 2020). There-
fore, after the landslide depth of the central axis was acquired, an 
elliptical paraboloid-based model was used to infer the landslide 
volume. 

V =
π
8

WrLrhhmax (9)  

where V is the landslide volume and Wr, Lrh, and hmax represent the 
width, horizontal length, and maximum vertical depth of the landslide, 
respectively. Because the elliptical paraboloid is symmetrical, we set 
hmax as the maximum vertical depth at the landslide central axis. 

3. Results and analyses 

3.1. InSAR measurements and identified landslides 

To verify the effectiveness of the unwrapping error correction 
method designed in this study, we manually selected the correctly 
unwrapped interferograms of two landslides with large displacements in 
the study area. We then estimated the linear displacement rate of these 
two landslides based on the original, corrected, and selected interfero-
grams. As shown in Fig. 6, our method can effectively detect and correct 
unwrapping errors and reduce the impact of unwrapping errors on the 
results in the study area. However, it should be noted that the phase- 
closure-based method fails when the displacement of the landslide is 
too large to be unwrapped, even with the shortest temporal baseline. 
Therefore, this method often requires prior knowledge. We can judge the 
applicability of this method by checking the unwrapped phase of the 
interferograms with the shortest temporal baselines. For example, we 
checked that the phases of most landslides in the study area could be 
correctly unwrapped for a time separation of 12 days. 

Through the segment processing, the InSAR measurements from the 
ascending and descending datasets were acquired (Fig. 7). Based on the 
line-of-sight (LOS) linear displacement rates, SRTM, and Google Earth 
images of the study area, 50 creeping landslides were identified and 
numbered. The areas of these delineated landslides were then estimated 
(Fig. 7). The largest landslide area was 1.402 km2, and the smallest one 
was 0.0518 km2. It should be noted that there is an evident displacement 
in the area outlined by the dashed rectangle in Fig. 7 where a cluster of 
landslides exist; however, owing to the dense and continuous displace-
ment in this area, it is difficult to distinguish the boundaries of the in-
dividual landslides. Therefore, we did not number the landslides in this 
area. 

Many landslides occur along the Jinsha River Valley, where large 
elevation variations in the river valley and severe river erosion make it 
prone to landslides. Besides, the landslides exhibit the spatial distribu-
tion characteristics of small-scale clusters (2–4 landslides gathered in 
each region), which may result from similar geological and topograph-
ical conditions. Some of the identified landslides were also detected by 
Zhao et al. (Zhao et al., 2018) based on ALOS data, including the Dacun- 
Fujiapingzi landslide (No. 14), Dapingdi landside (No. 16), Jinpingzi 
landslide (No. 19), Shuanglongtan debris flow (No. 20), and Pufu 
landslide (No. 24). However, we revealed several landslides that were 
not identified previously. The improvement in our results can be 
explained by two main reasons: (1) In this study, both ascending and 
descending tracks Sentinel-1 data were used for landslide identification, 
allowing more landslides to be detected than only single track SAR 
images; and (2) the SAR acquisition periods are different, and landslides 
often experience different activity in different periods. Therefore, multi- 
track and long-term SAR datasets are critical to detect more complete 
landslides through InSAR. 

3.2. 3D displacement 

The 3D displacement of a landslide provides crucial data support for 
the inversion of the slip-surface slope. The precision of the 3D 
displacement directly affects the slip-surface slope estimation (Eq. 7). 
Thus, using Eq. (3) and (4), we calculated the 3D displacements and 
their corresponding standard deviations, respectively. The 3D 
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Fig. 8. (a-c) 3D displacement of exemplary landslides. (d-f) Standard deviation of the 3D displacement. (a, d) East-West displacement, with eastward positive. (b, e) 
North-South displacement, with northward positive. (c, f) Vertical displacement, with the upward positive. The arrow indicates the sliding direction of the landslide. 
The background is DEM, and the displacements outside the landslide are masked out. The landslide number is shown beside the landslide. 

Fig. 9. East-west displacement of (a) Daopo and (d) Shangxintian landslides, with eastward positive; north-south displacement of (b) Daopo and (e) Shangxintian 
landslides, with northward positive; vertical displacement of (c) Daopo and (f) Shangxintian landslides, with the upward positive. The background is DEM, and the 
displacements outside the landslide are masked out. The circle indicates the location of the borehole. 
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displacements of most landslides are continuous in space, and the ver-
tical displacement is typically smaller than the horizontal displacement. 
In addition, when the slip direction of the landslide was closer to the 
north–south direction, the uncertainty becomes larger. For example, the 
slip direction of landslide No. 7 is closer to the north–south direction 
than those of surrounding landslides (approximately 164◦). The stan-
dard deviations of the displacements in north–south direction were 
significantly higher than those of the surrounding landslides (Fig. 8). 
Moreover, the relative standard deviations of the landslide displace-
ments in other directions were larger than those of the surrounding 
landslides. 

3.3. Evaluation of inferred results 

To evaluate the inferred slip-surfaces, we collected and digitized the 
geological sections of the two landslides in the study area from Hu (Hu, 
2014) and Teng (Teng, 2022). These are the Shangxintian (landslide No. 
15) and Daopo landslides (landslide No. 17), and their 3D displacements 
are shown in Fig. 9. We found that some areas outside the Shangxintian 
landslide extent obtained from geological surveys displayed remarkable 
deformation; therefore, the landslide boundary was refined based on 
InSAR measurements. 

We compared the slip-surfaces inferred by InSAR with those inferred 
from geological surveys (borehole and field investigation) (Fig. 10). The 
borehole data revealed that the Daopo landslide had multiple slip- 
surfaces. Our results were in good agreement with the upper slip- 
surface of this landslide. Based on the displacement results, we infer-
red that this is because the Daopo landslide mainly slid along the upper 
slip-surface during the monitoring period. For the Shangxintian land-
slide, the slip-surface inferred in this study is generally consistent with 
that acquired by the geological survey. However, our method did not 

reveal the secondary slip-surface at the front of the landslide. In com-
parison, we suggest that the method proposed in this study can acquire 
reliable geometric information on the active slip-surface. However, for 
landslides with multiple slippages, the proposed method cannot detect 
all slip-surfaces. 

As shown in Table 1, the landslide volumes estimated in this study 
were compared with those estimated through geological surveys. Most 
traditional methods estimate the volume of the creeping landslide based 
on its geometric information (such as length, width and thickness), thus 
researchers may obtain different results even for the same landslide. The 
difference between the two results is not significant, which shows that 
our method can reveal the landslide volume to a certain extent. 

3.4. Slip-surface geometry and volume 

Based on Eqs. (5) and (7), we inverted the slip-surface slopes of the 
landslides and their corresponding standard deviations. We found that 
the slip-surface slopes of most of the landslides were continuous in 
space, and the spatial characteristics of the slip-surface slopes varied 

Fig. 10. The sections of (a) Daopo and (b) Shanxintian landslides; the red curve shows the slip-surface inferred from the geological survey, the blue curve represents 
the sliding surface inferred from the InSAR results, and the green rectangle represents the geological borehole. The locations of the profiles CC’ and DD’ are shown in 
Fig. 9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
The Landslide Volume inferred by InSAR and geologic survey.  

Number Landslide 
Name 

InSAR-based (m3 

× 104) 
Geologic Survey (m3 × 104) 

15 Shangxintian 1678 1500 (Teng, 2022), 2000 ( 
Tian, 2009) 

16 Dapingdi 7603 6160 (Tian, 2009) 

17 Daopo 1627 
2460 (Teng, 2022), 2580 ( 
Tian, 2009) 

19 Jinpingzi 3473 2700 (Wang et al., 2014)  
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among landslides (Fig. 11). And some of the landslides’ slip-surfaces 
were approximately parallel to the ground surface. There were differ-
ences of tens of degrees between the slip and ground surfaces in some 
areas (Fig. 11). Many of the slope differences were much larger than the 
standard deviations of the slip-surface slopes (as shown in Fig. 12), 
which certify that slip-surface cannot be parallel to ground-surface. 
Hence, the traditional projection of InSAR measurements in the 
ground surface gradient direction as done in most of the previous studies 
is inaccurate. 

In some landslides, the slip-surface slope became negative at the toe 
of the landslide (Fig. 12). According to the conceptual model (Fig. 5), a 
negative slope indicates that the slip-surface is curved upward. While, in 
some other landslides, the slip-surface slope changes little in space, 
indicating that the slip-surface was approximately an inclined plane. 

Owing to the great uncertainty in the slip-surface slopes of some 
landslides facing north-south, 30 landslides were selected for further 
processing. We inferred the depths of the slip-surfaces of these landslides 
using Eq. (8) (some of the results are shown in Fig. 12). The maximum 
and average vertical depths along the central axis of these landslides 
ranged from 30 to 249 m and from 16 to 160 m, respectively. The vol-
umes of these landslides were inferred using Eq. (9), which ranged from 
483,412 to 135,789,944 m3. 

The 2D slip-surface also shows potential in landslide classification. 
An upward curved (or spoon-shaped) slip-surface is a typical feature of a 
rotational landslide, whereas a typical feature of a translational land-
slide is that the slip-surface is approximately parallel to the ground 
surface. As shown in Fig. 11 and 12, for landslide No.19, the profile of 
the slip-surface was similar to an inclined straight line, and the slope of 
the slip-surface was similar to that of the ground surface. Therefore, we 
deduced that landslide No. 19 was a typical translational landslide. For 
landslide No. 46, the slip-surface slope was larger than the surface slope 
in the rear section and smaller than the surface slope in the front section. 
The entire slip-surface profile of landslide No. 46 is an upward curved 
arc (spoon-shaped), indicating that it is a typical rotational landslide. 

4. Discussion 

4.1. Uncertainty analysis 

4.1.1. Displacement precision 
The precision of the displacement has a direct impact on the quality 

of the inverted slip-surface geometry. As shown in Fig. 13, the mean 
standard deviations of the displacement rates from all the datasets were 
<5 mm/year. As the incidence angles of the InSAR measurements from 
the ascending and descending tracks are similar in the study area, the 
deformation difference between the ascending and descending datasets 
in the flat region (the region with a slope angle smaller than 5

◦

in this 
study) was used to form the histograms. The standard deviation of the 
deformation difference was 8.7 mm/year (Fig. 13). The above analysis 
on precision shows that our InSAR results are reliable. 

However, even if high-precision measurement can be acquired by 
InSAR, it is still difficult to invert the accurate three-dimensional dis-
placements of the landslide when the slip direction of the landslide is 
closer to the north–south direction. This is because the design matrix in 
Eq. (3) is ill-conditioned when the slope aspect is closer to the north-
–south direction, which amplifies the error in the InSAR observation. 
Compared with other directions, more accurate 3D displacement can be 
inverted by Eq. (3) when the slope aspect is close to the east-west di-
rection. In addition, the slope aspect was used to restrict the slip di-
rection of the landslide in the 3D displacement inversion. However, it 
remains possible that the slope aspect is not consistent with the aspect of 
the failure surface in some cases (Ren et al., 2022). Thus, the error of the 
inversion model affects the accuracy of the results as well. Therefore, we 
suggest that more InSAR measurements with independent LOS geometry 
(e.g., the left-looking NASA-ISRO Synthetic Aperture Radar (NISAR) are 
needed for the accurate inversion of 3D displacements. 

4.1.2. Slip-surface geometry uncertainty 
In addition to the displacement errors, the change in landslide 

Fig. 11. (a-c) Inverted slip-surface slopes for typical landslides. The landslide number is shown in each landslide. (d-f) Corresponding Standard deviations of these 
slip-surface slopes, where the arrow indicates the slip direction of the landslide. 
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thickness is another factor affecting the accuracy of the inferred slip- 
surface geometries. This is because Eq. (5) does not consider landslide 
thickening and thinning. We need to evaluate the extent to which slope- 
normal deformation (thickening and thinning) affects the inverted slip- 
surface slope (Baum et al., 1998; Jaboyedoff et al., 2020). Some re-
searchers have reported that landslides may exhibit periodic thickening 
and thinning. For example, Hu et al. (Hu et al., 2016) found that a slight 
periodic vertical deformation exists in the Crescent Lake landslide 
through GPS and InSAR measurements. They suggested that it could be 
an elastic loading deformation caused by the accumulated mass of 
infiltrated rainfall (Hu et al., 2016). Kang et al. (Kang et al., 2021) also 
found that landslides in the Eldorado National Forest may exhibit slight 
upward or downward deformations owing to unloading and loading 
effects caused by precipitation. In addition, a periodic dilation (up to a 
few centimeters of vertical deformation) is expected in clay-rich shear 
zones in seasonal landslides (Booth et al., 2020; Iverson, 2005), and the 
recovery of this dilation may be attributed to the dry season soil 
consolidation and desiccation (Iverson, 2005). To address these fluctu-
ations, the linear deformation rate that suppresses the effect of periodic 
deformation was estimated and used in this study. 

Moreover, with these movements, a landslide thins irregularly in the 
stretching areas and thickens in the shortening areas (Baum et al., 1998). 
Therefore, to explore the deformation caused by the stretching and 
shortening of the landslides, based on the 3D displacements derived by 
Eq. (3), we calculated the 2D dilation and shear rates for the landslides 
using Eqs. (10) and (11), respectively. 

eS =
1
2

(
∂vN

∂E
+

∂vE

∂N

)

(10)  

eD = eN + eE =
∂vN

∂N
+

∂vE

∂E
(11)  

where eS indicates the 2D shear rate and eDindicates the 2D dilation rate. 
In the study area, we selected several landslides with relatively large 
displacements to reveal the strain characteristics (Fig. 14). 

The shear strain mainly occurs along the two side boundaries, which 
is similar to that of strike-slip faulting. The front section of the landslide 
tends to be compressed and the rear section tends to be dilated. Based on 
the 2D strain, the thinning/thickening caused by the stretching/short-
ening of the landslides could be inferred. We assume that a landslide is 
sliding along a slip-surface, and the schematic diagram of the thickness 
changes of a vertical prism above the slip-surface is shown in Fig. 15. 

The volume of the landslide can be assumed to be constant during the 
creeping, which has been verified in many cases (e.g. (Booth et al., 2020; 
Handwerger et al., 2021)). The ΔE and ΔN represent the spacing of the 
prism in the east-west and north-south directions. Then, the e.q. (12) can 
be derived, 

ΔE⋅ΔN⋅h = (ΔN + eNΔN)(ΔE+ eEΔE)⋅(h+Δh) (12)  

where h is the thickness of the prism, △h indicates the thickness changes 
in the vertical direction, and eEΔE and eNΔN represent the stretching/ 
shortening of the prism in the east-west and north-south directions. In 
this study, ΔE = ΔN ≈ 15(m), and eNeE ≈ 0, then the e.q. (13) can be 
derived, 

Δh =
h

1 + eD
− h (13) 

We found that, in most of these landslides, the stretching/shortening 
was much smaller than the downslope sliding (displacement) of the 
landslide. For example, the maximum longitudinal stretching/short-
ening rate of the Dapingdi landslide was approximately 3 cm/year 
(Fig. 14), and the stretching/shortening in most areas of this landslide 
was <1 cm/year. However, the maximum sliding rate of this landslide 
reached 40 cm/year. As the thickness of a landslide is tens of meters, we 
infer that length changes may cause annual millimeter- or centimeter- 
level vertical thickening and thinning in most sections of the landslide. 

To provide a quantitative evaluation of the results, we assume that 
the slip-surface slope of a landslide was 30◦. The sliding rate along the 
slip-surface was 20 cm/year and the maximal annual thinning reached 2 
cm at the rear of the landslide. We then inferred that the slope of the slip- 
surface was 35.7◦ using Eq. 5. For a horizontal distance of 15 m (about 
one-pixel spacing), this slope error (5.7◦) will cause an error of 2.1 m in 
the slip-surface depth estimation. Considering that the obvious thick-
ening and thinning mainly occurred in localized regions, we concluded 
that the thickness changes have limited influence on the estimated slip- 
surface geometry in this study. 

4.2. Landslide statistics 

We calculated the average slope of the ground surface, the average 
slip rate, and the area of the 50 creeping landslides. The average 
downslope sliding rate of these landslides ranged from 2.4 to 26.6 cm/ 
year, and the average downslope sliding rate of most of them was <10 
cm/year. InSAR is limited by noise and it is therefore difficult to detect 
landslides with very small deformation. In addition, we masked out the 
measurements in the shadow and layover regions where accurate InSAR 
observations cannot be obtained. Therefore, there may be landslides in 
the shadow and layover regions or with lower average slip rates that 
have not yet been found in this study. As shown in Fig. 16, the number of 
landslides peaked at an average slip rate of 5 cm/year, and the number 
of landslides with an average slip rate of 5–25 cm/year gradually 

Fig. 12. Cross-sections of terrain and slip-surface elevations, and ground- 
surface and slip-surface slopes. The locations of these profiles are shown in 
Fig. 11. The error bars represent 2 standard deviations of the slip-surface slope. 
The legend in subfigure (a) applies to all the subfigures. 
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decreased. The average ground-surface slopes were mainly distributed 
between 30◦ and 35◦. The minimum and maximum average ground- 
surface slopes were 14◦ and 40◦, respectively. However, steep ground- 
surface slopes can cause shadows or layovers owing to the SAR imag-
ing geometry; therefore, there may be extra sections of landslides with 

larger ground-surface slopes. The areas of many landslides were be-
tween 5 × 104 and 3.6 × 105 m2. We did not find any apparent rela-
tionship between the surface slope and slip rate or any clear relationship 
between the ground-surface slope and the slip rate. 

Fig. 13. (a-c) The histogram of the standard deviation of the InSAR measurements. (a) Descending datasets; (b) Ascending datasets on the west side; (c) Ascending 
datasets on the east side; (d) Displacement rate difference between ascending and descending datasets in the flat regions. 

Fig. 14. Maps of (a-c) 2D shear strain rate and (d-f) 2D dilation strain rate computed from the 3D displacement field of some exemplary landslides with relatively 
large displacements in the study area. The arrow indicates the sliding direction of the landslide. The background is DEM, and the strain rates outside the landslide 
are masked. 
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4.3. Scaling of landslide area and volume 

Many scholars have attempted to use a power-law function to 
describe the relationship between landslide volume and area. The pa-
rameters of the power-law function are crucial for quantifying regional 
landslide erosion and understanding landslide mechanisms: 

V = k×Aα (14)  

where V represents landslide volume, A represents landslide area, k is a 
constant, and α is an exponent. Based on the volume and the area of the 
30 selected landslides, we can obtain the best-fitting function V =

0.002× A1.744. We collected some empirical relationships from the 

literature and compared them with our findings (as shown in Fig. 17). 
Guzzetti et al. (Guzzetti et al., 2009) used a worldwide catalog of 
landslides to acquire the relationship V = 0.074 × A1.450 (straight red 
line in Fig. 17). Most of the landslides in this study tend to have larger 
volumes per area compared with this model. This phenomenon can be 
explained by the fact that most of the landslides identified in this study 
were deep-seated landslides, which was verified by their inferred slip- 
surface depths. In addition, the area–volume relationships of several 
identified landslides showed good agreement with those of the bedrock 
landslides in Larsen et al. (Larsen et al., 2010). This phenomenon may 
indicate that some landslides detected in this study are deep-seated 
bedrock landslides. 

5. Conclusions 

To acquire slip-surface geometries and volumes of landslides in an 
area of the Jinsha River Basin, a set of processing strategies using InSAR 
have been developed. A phase-closure-based method was designed to 
correct the InSAR phase-unwrapping errors caused by the large gradient 
displacement in the study area. InSAR segment processing was used to 
determine the local surface displacement over the mountainous area and 
steep gorges in the Jinsha River basin. Based on the InSAR measure-
ments, Google Earth images and topography, 50 creeping landslides 
were detected. Subsequently, the 3D displacements of the landslides and 
the corresponding standard deviations were estimated. Based on the 
assumption that the landslide displacement is parallel to the slip-surface, 
we designed a method to invert the slip-surface slope of the landslides 
through 3D displacement and discussed the accuracy and precision of 
the inversion. The results show that there may be a significant difference 
between the ground-surface slope and slip-surface slope in some land-
slides and that the characteristics of the slip-surface slope can reflect the 
slip-surface geometry to a certain extent. Using the slip-surface slope 
data and an ellipsoid paraboloid model, the slip-surface depths and 
volumes of the 30 selected landslides were estimated. A comparison 
with the in-situ data suggests that the slip-surface and volume acquired 
in this study are reliable. However, our method cannot reveal all the slip- 
surfaces of a landslide with multiple slippages. The average depth of the 
central axis of these landslides was 16–160 m, and the landslide volumes 
ranged from 483,412 to 135,789,944 m3. 

We found that the average slip rates of the identified landslides were 
mainly distributed at approximately 5 cm/year, the average ground- 
surface slopes were mainly distributed between 30◦ and 35◦, and the 

Fig. 15. The schematic diagram of the landslide thickness changes caused by 
the stretching/shortening of the landslide (modified after (Baum et al., 1998)). 

Fig. 16. (a) Comparison of the ground-surface slope, average slip rate, and area of landslides. The colour indicates the landslide area and the unit of the colour bar is 
m2. (b) The histogram of the average slip rate of the detected landslides. (c) The histogram of the ground-surface slope of the detected landslides. 
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areas of the landslides were mostly <3.6 × 105 m2. In addition, a power- 
law function was used to describe the relationships between landslide 
area and volume in the region. Compared with the relationships ob-
tained in other studies, we suggest that deep-seated landslide is the main 
landslide type in the study area. Further, the area extents, volumes, slip- 
surface geometries of the landslides obtained in this research are critical 
to enhance the understanding of the landslides in the study area and 
provide new insights into landslide mechanisms. 
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