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Abstract: Today, synthetic aperture radar (SAR) satellites provide large amounts of SAR data at 
unprecedented temporal resolutions, which promotes hazard dynamic monitoring and disaster mit-
igation with interferometric SAR (InSAR) technology. This study focuses on big InSAR data dynam-
ical processing in areas of serious decorrelation and large gradient deformation. A new stepwise 
temporal phase optimization method is proposed to alleviate the decorrelation, customized for de-
formation parameter dynamical estimation. Subsequently, the sequential estimation theory is intro-
duced to the intermittent small baseline subset (ISBAS) approach to dynamically obtain deformation 
time series with dense coherent targets. Then, we analyze the reason for the unstable accuracy of 
deformation parameters using sequential distributed scatterers-ISBAS t echnology, a nd c onstruct 
five indices to describe the quality of deformation parameters pixel-by-pixel. Finally, real data of 
the post-failure Baige landslide at the Jinsha River in China is used to demonstrate the validity of 
the proposed approach. 

Keywords: sequential deformation; InSAR; intermittent small baseline subset; phase optimization; 
Baige landslide 

1. Introduction
Synthetic Aperture Radar Interference Strategy (InSAR) has been used to detect geo-

physical deformation signals such as landslides [1], volcanoes [2], and land subsidence 
[3], as well as other geological disasters. For InSAR data, the accuracy of its products 
strongly depends on the accuracy of the interferometric phase [4]. However, owing to 
several decorrelation factors, the SAR interferometric phase is often degraded. Many ad-
vanced algorithms have been developed to improve the reliability of InSAR products, 
such as the persistent scatterers algorithm in single-primary interferograms [5–7] and the 
distributed scatterers (DS) algorithm in small baseline (SB) interferograms [8,9]. DS targets 
are characterized by varying coherence and phase stability [10], especially when the in-
terferometric SAR data pairs have long spatial and temporal baselines. 

In multi-temporal InSAR technology, two strategies are usually employed to im-
prove the density of monitoring points. The first is to use spatiotemporal filter technology 
to improve the phase stability [11], and the second is to select appropriate interferometric 
SAR pairs to mitigate the effects of phase decorrelation [8]. 

Within spatiotemporal filter strategies, the averaging of statistically homogeneous 
pixels (SHPs) can improve the phase stability of DS targets, in which SHPs can be deter-
mined by SAR amplitude information [12]. Further, N × (N − 1)/2 non-redundant interfer-
ograms (after averaging SHPs) can be applied to achieve temporal phase optimization 
using the phase triangle inconsistency information [9,13–15]. These methods are more ef-
fective in the case where the surface features are relatively distinguishable or the phase 
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gradient is small. However, for small-scale or larger gradient deformation targets, such as 
landslides and mining collapses, such advanced InSAR approaches have two disad-
vantages. 

First, in the deformation region with dense interferometric fringes, averaging SHPs 
obscures the phase continuity in the spatial domain, especially for large-gradient defor-
mation monitoring, and in the case of using low- and medium-resolution SAR data, such 
as Sentinel-1A/B images [16]. Second, interferograms with longer temporal intervals and 
larger deformation are usually unusable, even with the SHPs filter and temporal phase 
optimization methods. Additionally, dense fringes of interferograms or sparse spatial pix-
els make phase unwrapping challenging. Pepe et al. proposed SB interferograms to per-
form temporal phase optimization by nonlinear optimization in order to reconstruct 
wrapped phase time series [17]. Meanwhile, a sequential temporal filter method was pro-
posed by the subspace clustering of block diagonal technology [15]. Today, SAR satellites 
provide large amounts of SAR images at unprecedented temporal resolutions. Further, 
stepwise temporal phase optimization can promote InSAR dynamical processing and de-
formation monitoring, which is greatly beneficial to disaster mitigation. Therefore, a new 
spatiotemporal filtering strategy is required. 

From appropriate interferometric SAR data pairs strategies, selecting appropriate SB 
interferograms can mitigate the effects of decorrelation in what is known as small baseline 
subset (SBAS)-InSAR processing. Some approaches for selecting optimal SB interfero-
grams have been previously explored, including the minimum spanning tree [18], simu-
lated annealing [17], semi-automatic [19], and error bound algorithms [20], as well as the 
graph theory and variance-covariance matrix [21]. In fact, each pixel has different appro-
priate SB interferograms. Therefore, the intermittent SBAS (ISBAS) technique [22] and var-
iable length deformation time series [23] have been proposed. However, the accuracy of 
ISBAS-derived deformation products is lower than those derived by the original SBAS 
method [24]. Previous studies have explored the accuracy of InSAR deformation parame-
ters with external observations, such as leveling and continuous GPS measurement data, 
residual noise, network configuration, and data gaps [25], as well as using the relative 
error upper bound approach according to the error perturbation theory [26]. The presence 
of adaptive SB interferograms in ISBAS processing directly affects its ability to resist er-
rors. Therefore, a quality assessment method for the ISBAS method is required. 

More recently, in the big SAR era, sequential InSAR deformation time series theories 
have been proposed, such as the complex sequential least squares (SLS) method for pixel 
offset SBAS [27], as well as the SLS [28], robust SLS [29], modified SLS [30], and Kalman 
filter [30–32] methods for InSAR time series. With the increase in SAR data, ground targets 
may be subject to significant change over the long term, meaning that many monitoring 
point targets could become decorrelated. Therefore, it is necessary to extend the sequential 
InSAR methods from the SBAS frame to the ISBAS frame. 

How to use the big SAR data to dynamically promote hazard monitoring? To im-
prove the monitoring capability of InSAR in serious decorrelation, we propose a sequen-
tial DS-ISBAS InSAR deformation parameter dynamic estimation and quality evaluation 
for serious decorrelation scenarios algorithm. The proposed method can obtain reliable 
monitoring point targets in serious decorrelation scenarios and dynamically estimate de-
formation time series. 

Firstly, to improve computational efficiency and promote InSAR dynamic data pro-
cessing, truncated SB interferograms are used to dynamically perform step-by-step tem-
poral phase optimization after multi-look and Goldstein filtering. Secondly, to obtain an 
increased number of monitoring point targets, a sequential ISBAS algorithm is proposed 
to dynamically update the deformation time series, in which the variance-covariance ma-
trix in the Gauss-Markov model is used to evaluate the quality of the deformation param-
eters pixel-by-pixel. The proposed approach is then applied to monitor the post-failure 
deformation of the Baige landslide at the Jinsha River in China, using a stack of 72 Senti-
nel-1 SAR data images collected from 8 November 2018 to 2 April 2021. 
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2. Methodology 
Figure 1 shows the flow chart of the proposed approach, including four steps. First, 

we initialize the interferograms, deformation parameters, and the quality file. Second, 
when we obtain a new SAR image, new filtered SB interferograms are added. Third, we 
execute stepwise SB interferograms filtering. Finally, we update the ISBAS deformation 
time series and its quality. 

 
Figure 1. Flow chart of the proposed approach. 

2.1. Review Phase Triangulation Algorithms 
Any filtering with each interferogram method can be expected to lead to the disclo-

sure phase within the temporal phase triangle. The mathematical framework of phase tri-
angle algorithms can be expressed as in Equation (1) [33]: 

,

= arg max( cos )

( )

N

m,n m,n
m n

m,n m,n m n

w v

v
≠

−π π= Δφ − θ − θ 
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 (1)

where m,nΔφ  is the filtered interferometric phase, and θ is the optimal phase, m and n 
correspond to SAR acquisition dates, and w is the weight. The difference between these 
algorithms (temporal filter or phase triangulation algorithms) is that they rely on different 
weights w [33], such as the weight 1( )m,n

− TΤ   in the SqueeSAR algorithm [9]; 
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T
1 1( )m,n⋅u u  in the EVD algorithm [14], where u is the eigenvector; and 

sum ( )
 m ,n

T
T

 in 

the nonlinear optimization algorithm [17]; as well as the coherence weight m ,nT  [33]. 
Phase linking (PL) is an iterative strategy to perform temporal phase optimization 

[13] and can be expressed as Equation (2): 

1= exp( θ )
N

k k
n m,n m

m n
j −

≠

θ  T( ) ( )  (2)

in which 1j = −  and k is the number of iterations. To avoid the uncertainties and ill-
conditioned problems caused by the coherence matrix inversion operation, we use the 
coherence weight m,nT  in the PL algorithm [11,33,34]. 

2.2. Stepwise SB Phase Optimization 
The increasing number of SAR satellites provide large amounts of SAR images at 

unprecedented temporal resolutions, which require a large amount of interference phase 
and make temporal phase optimization very time-consuming. Although strategies involv-
ing SB interferograms [17] and block interferograms [15] have been proposed, they cannot 
dynamically implement the temporal phase filter to improve the phase stability step-by-
step in cases when a new SAR image is obtained and new interferograms are generated. 
It makes temporal phase optimization very time-consuming. 

Inspired by the truncated SB interferograms to dynamically deal with real-valued 
unwrapped triangular error using the SLS method [30], the temporal phase filter can be 
considered as a network adjustment with complex value. This strategy is suitable for ex-
isting phase triangulation algorithms, such as PL, SqueeSAR, and EVD. Therefore, we use 
the truncated SB interferograms algorithm to dynamically implement the temporal phase 
under the PL. To maintain the integrity of interferometric fringes in interferograms with 
dense interferometric fringes, we use the small multi-look number and implement the 
Goldstein filter [11,35] in the frequency domain to improve the phase stability, instead of 
averaging the SHPs. Phase triangle algorithms are dependent on a redundant phase. Con-
ventional SB interferograms are used to perform temporal phase optimization, as shown 
in Figure 2A [17]; thus, we use adequate redundant SB interferograms to perform PL, as 
shown in Figure 2B. 

 
Figure 2. SB interferograms. (A) Conventional SB interferograms; (B) adequate SB interferograms. 

In addition, we use a vector calculation strategy for the PL algorithm, which is very 
fast and does not need to loop for each pixel; however, this strategy consumes more 
memory. The proposed strategy includes spatial domain filtering (i.e., multi-look), fre-
quency domain filtering (i.e., Goldstein filter), and time domain filtering (i.e., PL). 
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Redundant interferograms make the optimization processing of temporal SB inter-
ferograms meaningful. For the archived SAR data, to obtain more redundant SB interfer-
ograms, we set the K nearest SAR to generate SB interferograms K × (K − 1)/2 to perform 
PL. When we obtain a new SAR image, new K − 1 interferograms are generated with K-1 
nearest SAR. Then, the appropriate multi-look and Goldstein filters are used for each new 
SB interferogram. Next, we use the optimized SB interferograms (K − 1 SAR related) and 
new K − 1 interferograms to update the related optimized interferograms and optimize 
new SB interferograms by the PL method with the sliding window (truncated SB interfer-
ograms network) with one SAR data step, as shown in Figure 3. Note that when we obtain 
a new SAR image and related interferograms, in the block interferograms, the first column 
and first row interferograms are deleted and the new interferograms are added in the end 
column and end row. 

 
Figure 3. Stepwise SB interferograms temporal phase optimization. 

2.3. Review Sequential SBAS InSAR Deformation Parameter Dynamic Estimation 
For the archived SAR data, by setting the spatiotemporal baseline thresholds, N ar-

chived SAR images can generate M1 interferograms. After obtaining the spatiotemporal 
optimized phase, we perform two-dimensional phase unwrapping in the space domain; 
for example, using minimum cost flow (MCF) [36]. The topography-related atmospheric 
phase is removed from the best-fitting linear relation between the phase delay and topog-
raphy [37]. The digital elevation model error-caused phase can then be estimated using 
the relationship between the perpendicular baseline and phase [38]. We model M1 redun-
dant unwrapped interferograms using the Gauss-Markov model as 1 1 1 1= − ΔAV X ψ  , 

and estimate the deformation time series as (1) T 1 T
1 1 1 1 1 1( )−= ΔA P A A PX ψ . The subscript 

1, 1A , 1Δψ , 1P , (1)X , and (1)X
Q  represent the related archived data, design matrix, ob-

servations data, weight matrix, estimated deformation time series, and its cofactor matrix, 
respectively. The superscript T represents the transposition of a matrix. 

When we obtain a new SAR image, M2 new interferograms are generated by combin-
ing the new SAR image with recent acquisitions using the spatiotemporal baseline thresh-
olds. Then, after two-dimensional phase unwrapping and error correction for the new M2 
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interferograms, we model the new M2 unwrapping interferograms and dynamically esti-
mate the deformation time series using Equation (3), where the weight matrix is 2P  and 
the design matrix is extended to A2 and B [28]: 
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(3)

where (2)X  is the updated archived deformation time series, Y  is the new cumulative 
deformation, 

( 2)[ ; ]X Y
Q  is the new cofactor matrix, and xJ  is the gain matrix. 

2.4. Sequential ISBAS Deformation Time Series and Quality Assessment 
For one generic pixel, conventional sequential SBAS InSAR techniques require each 

SB interferogram to contain qualified pixels to retrieve the deformation time series. If an 
interferogram does not meet the requirement, the pixel will be discarded, reducing the 
number of available monitoring points. To obtain more monitoring targets and avoid the 
selection of interferograms, the adaptive SB interferogram (i.e., ISBAS) is introduced into 
the sequential InSAR processing. It should be noted that, unlike in the conventional se-
quential SBAS InSAR method, in sequential ISBAS, the archived unwrapping interfero-
gram 1Δψ   and its design matrix 1A  , as well as the new unwrapping interferogram 

2Δψ  and its design matrix [ ]2A B , are adaptively processed for each pixel. This means 
that the design matrix and observation data are variable for each pixel. 

The condition number of the design matrix (SB interferograms) for each pixel is used 
to identify network connectivity and reliable monitoring point pixels. A very large num-
ber of conditions means that the SB interferograms is so ill-conditioned that the pixel will 
be discarded, while more than one SB subset will lead to the lack of deformation datum, 
resulting in bias of deformation time series. 

In the concept of adaptive interferograms, i.e., the ISBAS method proposed by [22,23], 
the accuracy of the ISBAS-derived deformation results is lower than that of the SBAS-
derived results by statistical analysis, as was performed by [24]. In InSAR data processing, 
phase decorrelation, mis-selected pixels, and unwrapping error will inevitably lead to the 
uncertainty of the deformation parameters. 

Next, adaptive SB interferograms are employed for each pixel to obtain deformation 
parameters. Redundant interferograms can reduce the influence of the error phase and 
improve the stability of deformation parameters, which is a key step to determine the 
number of final monitoring points and the accuracy of deformation parameters. In geo-
detic network adjustment, residual noise/error can be expressed as Equation (4) [39,40]: 

T 1

1
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M

i ij i
j=

−

= −
−

= −

R
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V

Δ

Δ

 
(4)



Remote Sens. 2023, 15, 2097 7 of 18 
 

 

where the R matrix is determined by the SB interferograms (design matrix A), Δ is the 
noise, and I is the identity matrix. ( )r diag= R  represents the number of redundant ob-
servations for SB interferograms. The residual error 

iV is determined by the matrix ijR
and noise iΔ  . ii iir = R   is the redundant observation component ( 0 1iir≤ ≤  ). More re-

dundant observations result in a higher iir  value. When iir  = 0, the number of redun-
dant observations is 0, which is a chain SB interferograms. All noise of observations is 
transferred to the deformation parameter, resulting in the fluctuation of the deformation 

time series. When iir  = 1, the observation error is totally transferred to the residual error, 
which means the observation is unnecessary. 

We performed 1000 simulations of the relationship between the residual noise per-
centage of the deformation parameter and the number of redundant observations, and the 
average of the results is shown in Figure 4. The blue line is the residual noise percentage 
in the estimated deformation parameter and the green line is the redundant observation 
component. Figure 4 illustrates that the more redundant the SB interferograms are, the 
smaller the noise content in the deformation time series is. 

 
Figure 4. Relationship between the residual noise percentage and the number of redundant obser-
vations. 

The temporal coherence of least squares residual was proposed to measure the qual-
ity of the phase unwrapping [41]. The accuracy of the estimated parameters is not only 
affected by residual error, but also by the SB interferograms. Inspired by geodetic network 
adjustment, we assessed the accuracy of the estimated parameters using the variance-co-
variance matrix in the Gauss-Markov model. It contains the number of redundant inter-
ferograms, the residual error, and the SB interferograms network structure. The variance-
covariance matrix was used to describe the accuracy of geodetic network adjustment. 
Therefore, it is appropriate to assess the accuracy of sequential ISBAS InSAR-derived de-
formation parameters. For archived SAR data, the variance-covariance matrix of the de-
formation time series (1)D

X
 is written as Equation (5): 

(1) (1) (1)

(1)

2 2 1 2 T 1
0 0 0 1 1 1

T
2 1 1 1
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where (1)
2
0

σ
，X  is variance of unit weight. When we obtain a new SAR image in Equation 

(3), the variance-covariance matrix of the deformation time series 
( 2)[ ; ]X Y

D  is written as 

Equation (6): 
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(2)

2 2 1
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The accuracy of the estimated deformation parameters can be assessed through the 
variance-covariance matrix, which consists of two parts: ( 2 )

2
0 [ ; ]X Y

σ
，

  and 

( 2 ) ( 2 )
1

[ ; ] [ ; ]X Y X Y
= −Q P . In unit weight variance, the sum of the squares of the residual phase is 

an absolute precision index of the deformation parameters, which determines their relia-
bility. The weight or cofactor matrices of the estimated deformation parameters can then 
be obtained by error propagation, which determines the relative accuracy among the de-
formation time series vector from the observation (unwrapping interferograms). 

We use five indices to describe the quality of the deformation parameters in sequen-
tial ISBAS processing, described as follows: 
(1) The number of redundant interferograms 1 2M M N+ −  is used to describe adaptive 

SB networks pixel-by-pixel; 
(2) The sum of the residual T (2) (1) T (2) (1)

2 2 2 1 1 1 1 1( ( ) ) ( ( ) )+ − + − +P A P AV V X X V X X V   is 
used to describe the phase unwrapping error, which is the absolute precision index 
of deformation parameters; 

(3) The average trace value of the cofactor matrix ( 2 )[ ; ]
( ( ))

X Y
mean diag Q  is used to de-

scribe the relative accuracy of the deformation parameters; 
(4) The average of the standard deviation (STD) (2)[ ; ]

( ( ))
X Y

mean diag D  is used to de-

scribe the quality of the deformation rate; 
(5) The STD 

( 2)[ ; ]
( )

X Y
diag D  is used to describe the accuracy of the deformation time se-

ries. 

3. Study Area SAR Dataset 
InSAR monitoring of creeping landslides is a challenging task in mountainous re-

gions because of decorrelation [42,43]. To test the proposed approach, we take the Baige 
landslide as an example, which occurred on the left bank of the Jinsha River in China over 
two separate days, on 10 October and 3 November 2018. The failed material (approxi-
mately 25.13 × 106 m3) rushed into the Jinsha River and a total of 67,449 inhabitants were 
affected [44,45]. The post-failure of the Baige landslide was mapped from 8 November 
2018 to 9 December 2019 using multiple radars; however, the resulting spatial-temporal 
deformation pattern is incomplete due to the large deformation gradient and decorrela-
tion [46]. We employ 72 Sentinel-1 SAR data images acquired from 8 November 2018 to 2 
April 2021 to demonstrate the applicability of the proposed approach and investigate the 
deformation pattern of the Baige landslide. 

Multi-look SB interferograms have bias [47–50]. Redundant interferograms can facil-
itate the identification and correction of the phase inconsistency and bias. In this study, 
we use block-shaped SB interferograms to mitigate the bias by the PL algorithm, in which 
full interferograms are generated for each block SAR data. Redundant interferograms 
characterized by a not so small temporal baseline can mitigate the effect of the bias, to 
some extent. The mitigation of the bias is proportional to the number of redundant inter-
ferograms. In fact, the dense fringes or sparse spatial pixels make phase unwrapping chal-
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lenging. How to select the size of block-shaped SB interferograms for stepwise phase op-
timization? It is a compromise strategy, in which we should consider both the availability 
of the optimized phase and computational efficiency. 

In the experiment, because of the large deformation gradient and decorrelation in the 
post-failure of the Baige landslide area, we set the K = 4 nearest SAR (i.e., 40 days in Sen-
tinel-1) to generate 210 redundant SB interferograms, as seen in Figure 5. In which, each 
SAR data connect the nearest six SAR data and generate six interferograms. 

 
Figure 5. Chart showing 210 redundant SB interferograms. 

4. Experiment 
4.1. Stepwise SB Interference Phase Optimization Analyses 

We show the performance of the proposed stepwise temporal phase optimization 
method from two aspects. Increasing the SAR data made the computational burden 
through the conventional PL approach using N × (N − 1)/2 interferograms heavy. Figure 6 
shows the number of interferograms using the full, SB, and truncated SB strategies from 
72 SAR images to perform temporal phase optimization (the PL method). 

Firstly, from the perspective of efficiency, Figure 6 shows that the truncated SB strat-
egy can significantly reduce the magnitude of data processing. As the amount of SAR data 
increases, the number of truncated SB interferograms is constant; however, the number of 
full and SBAS interferograms increases. In addition, the truncated SB interferograms strat-
egy can dynamically implement the temporal phase filter, which promotes big InSAR pro-
cessing before sequential ISBAS. 
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Figure 6. Chart showing the number of interferograms using full, SB, and truncated SB strategies in 
temporal phase optimization method. 

We use multi-look filtering (1:4), the Goldstein filter, and the PL method to improve 
phase stability, as shown in Figure 7, where the first, second, and third lines correspond 
to interferograms with time spanning 12, 24, and 36 days, respectively. The first column 
(Figure 7A,F,K) shows the original interferograms. The second column (Figure 7B,G,L) 
shows the interferograms filtered by SHPs [51]. The third column (Figure 7C,H,M) shows 
the filtered interferograms by SHPs and PL. The figures in the fourth column (Figure 
7D,I,N) show the Goldstein-filtered interferograms. The fifth column (Figure 7E,J,O) 
shows the filtered interferograms by Goldstein and PL. Compared with the spatial aver-
aging of SHPs, the Goldstein filtering could maintain the detailed features of the interfer-
ometric fringes very well in the large gradient deformation areas. The interferometric 
fringes are clearer after Goldstein filtering and the PL method, as shown in Figure 7E,J,O. 

Secondly, from the perspective of phase accuracy, the single interferometric phase, 
as shown in Figure 7, indicates that the proposed method (Goldstein and PL) can obtain a 
more complete and smoother phase in the dense interference fringe. 

We use the truncated SB interferograms to dynamically perform temporal phase op-
timization to improve the phase stability. When we obtain new SBAS interferograms, the 
multi-look and Goldstein filtering are used for new SB interferograms. In the block inter-
ferograms, the first column and first row interferograms are deleted and the new interfer-
ograms are added in the end column and end row, as previously shown in Figure 3. Then, 
we iteratively conduct the PL approach 20 times. 
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Figure 7. Comparison of interferograms filtered by different methods. (A,F,K) are original interfer-
ograms; (B,G,L) are interferograms filtered by SHPs; (C,H,M) are interferograms filtered by SHPs 
and PL; (D,I,N) are Goldstein-filtered interferograms; (E,J,O) are interferograms filtered by Gold-
stein and PL. 

4.2. ISBAS Deformation Parameter Quality Assessment Analyses 
After obtaining optimized SB interferograms and two-dimensional phase unwrap-

ping (i.e., MCF), the atmospheric error and residual topography error phase are corrected 
by the best-fitting linear relation between the phase delay and topography. Then, we per-
form the sequential ISBAS to update the deformation parameter, in which the variance-
covariance matrix in the Gauss-Markov model is used to describe the quality of the defor-
mation rate and time series. 

Figure 8 shows the line-of-sight direction cumulative deformation by different ap-
proaches. Traditional ISBAS can obtain dense monitoring pixels; however, due to the lim-
itation of the Goldstein filtering ability, the maximum deformation information cannot be 
obtained, as shown in Figure 8A. Using DS-SBAS technology is challenging under large 
gradient deformation areas and the monitoring points are sparse, as shown in Figure 8B. 
The figure shows that the adaptive selection of interferograms for each pixel is a key step 
for obtaining dense monitoring pixels. Due to the SHPs filtering method damaging the 
interferometric fringes, complete deformation can be completely inversed, as shown in 
Figure 8C. However, the proposed approach of DS-ISBAS with Goldstein filtering and the 
PL method, instead of SHPs filtering and the PL method, can significantly increase the 
density of monitoring points with higher accuracy. 
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Figure 8. Cumulative deformation by different approaches. (A) Traditional ISBAS method with 
Goldstein filtering; (B) DS-SBAS method with Goldstein filtering and the PL method; (C) DS-ISBAS 
method with the SHPs filter and PL method; (D) DS-ISBAS method with Goldstein filtering and the 
PL method. 

To determine what causes the low-quality monitoring point targets, we plotted dif-
ferent parameters from the variance-covariance matrix in the Gauss-Markov model for 
phase unwrapping. Figures 9A–D show the sum of the residuals, the average value of 
trace of the cofactor matrix, the number of redundant interferograms, and the STD of the 
deformation time series, respectively. 

From Figure 9, we find that low-quality monitoring points are mainly concentrated 
in the center of the landslide. The large residual error region corresponds to the sparse SB 
interferograms and unstable weight matrix. STD is a fusion quality index, including the 
number of redundant observations, the residual error, and the weight matrix of parame-
ters through error propagation theory. Instead of directly deleting low-quality point tar-
gets, we evaluated the quality pixel-by-pixel. 
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Figure 9. Quality assessment of deformation parameters. (A) Sum of the residual; (B) average value 
of trace of cofactor matrix; (C) number of redundant interferograms; (D) average of the STD of the 
deformation time series in the Markov model for phase unwrapping. The winding polygon is the 
Jinsha River. 

Phase decorrelation, mis-selected pixels, and unwrapping errors are inevitable in 
each interferogram. In the ISBAS InSAR processing, each pixel uses different SB interfer-
ograms to estimate the deformation time series, meaning that each SAR data point has a 
different number of redundant observations. According to geodetic network adjustment 
[39,40], each pixel has a different ability to reduce the influence of the error phase. There-
fore, the quality evaluation is indispensable in ISBAS processing. 

After removing the STD of the phase unwrapping error, the remaining STD repre-
sents the residual phase caused by residual atmospheric and residual DEM errors, as 
shown in Figure 10. Because the experimental area is relatively small, the atmospheric 
error is not significant. Figures 9D and 10 show that phase unwrapping error is a key 
factor leading to quality uncertainty in DS-ISBAS processing. 
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Figure 10. Average STD of the deformation time series in the Markov model after subtracting phase 
unwrapping. 

5. Discussions 
Figure 11 shows the enlarged Baige landslide deformation from the black rectangular 

marks the area of Figure 9D, in which Figure 11A,B illustrates the line-of-sight direction 
deformation rate and quality evaluation index (i.e., STD) of the proposed approach. In 
Figure 11, the blue polygon indicates the collapsed area in November 2018, and shows 
that the south side of the landslide is being deformed. 

The comparison of InSAR- (red dot) and GPS LOS-projected (blue dot) deformation 
time series is shown in Figure 12, which is located at pixel P3 in Figure 11A. To some 
extent, the results demonstrate the reliability of InSAR to obtain deformation in the Baige 
landslide. 

 
Figure 11. Post-failure Baige landslide deformation. (A,B) are the linear deformation rate and aver-
age STD of deformation time series, respectively. The blue polygon indicates the collapsed area in 
November 2018 and shows that the south side of the landslide is being deformed. The pixels P1 and 
P2 indicated by the arrows are shown in Figure 13. 
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Figure 12. Comparisons of InSAR- (red dot) and GPS LOS-projected (blue dot) deformation time 
series. 

The deformation time series of pixels P1 and P2 are shown in Figure 13, in which 
Figure 13A,B is the deformation time series with different STD (51 and 3 mm, respec-
tively), and Figure 13C,D shows the redundant observation components with different 
number interferograms (61 and 136, respectively). 

The STD of deformation time series is similar to the method described by [52]. The 
deformation time series of point P1 fluctuated, while that of P2 was smooth. P1 had sparse 
SB interferograms, as can be seen in Figure 13C,D. If the redundant observation compo-
nent is zero, any noise or error phase may lead to the deviation of the subsequent defor-
mation time series [39,40]. 

 
Figure 13. First and second columns correspond to pixels P1 and P2 of Figure 11A. (A,B) are the 
deformation time series; (C,D) are the redundant observation components. 
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The proposed method includes two key steps, which are to improve the big InSAR 
dynamic processing and obtain the deformation time series with dense coherent targets 
in areas of serious decorrelation. Firstly, the frequency domain filtering method [11,35] 
can maintain the phase integrity, avoiding obscuration of the phase continuity by averag-
ing spatial SHPs [51], which are shown in Figure 7. In the stepwise SB phase optimization, 
we generate redundant candidate SB interferograms to improve the quality of the inter-
ferometric phase through the PL method, in which we should set a compromised thresh-
old K ≥ 3 to generate block interferograms. As the amount of SAR data increases, com-
pared to SBAS and full-based interferograms methods [9,17], the number of interfero-
grams in the proposed method remains consistent, which avoids having large amounts of 
interferograms and improves the computational efficiency in temporal phase optimiza-
tion. In addition, we use vector calculation for the PL algorithm, in which all pixels can be 
processed without iteration for each pixel. Although this process consumes more memory, 
it still improves the efficiency of large-scale SAR data processing. 

Secondly, in the big SAR era, the stepwise SB phase optimization method facilitates 
sequential ISBAS processing. Compared with the conventional sequential SBAS-InSAR 
method [28], the proposed sequential DS-ISBAS method avoids the selection of interfero-
grams. In this experiment, we set one subset of adaptive interferograms to update the 
deformation time series. In special cases, such as missing SAR data, we set multiple sub-
sets of adaptive interferograms. Although the conventional ISBAS method can improve 
the density of monitoring points, its reliability needs to be evaluated. Meanwhile, the qual-
ity assessment method is applicable to the SBAS processing process. For the large gradient 
deformation, Massonet proposed the maximum deformation gradient that InSAR can 
monitor, which is the ratio of half the wavelength to the pixel size [53]. 

6. Conclusions 
This study proposes a sequential DS-ISBAS InSAR deformation time series dynamic 

estimation and quality assessment method for serious decorrelation and large gradient 
deformation areas. From testing the method, it was found that dynamic temporal phase 
optimization and adaptive SB interferograms can restore the complete deformation field 
and improve the applicability of the InSAR technology. In the big SAR era, the truncated 
SB interferograms and sequential estimation theory not only improved the efficiency of 
phase optimization, but also promoted InSAR dynamic processing capabilities. As SAR 
data increases, efficiency significantly improves. We analyzed the main reasons affecting 
the accuracy of sequential DS-ISBAS and employed variance-covariance in the Gauss-
Markov model to evaluate the quality of the deformation parameters pixel-by-pixel. In 
terms of applicability in the big SAR era, the proposed approach can be used to dynami-
cally obtain reliable monitoring point targets in areas of serious decorrelation and large 
gradient deformation. Furthermore, it can also be used to assess the quality of SBAS-de-
rived deformation parameters. 
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