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Abstract: Landslide inventory mapping (LIM) is a key prerequisite for landslide susceptibility
evaluation and disaster mitigation. It aims to record the location, size, and extent of landslides in each
map scale. Machine learning algorithms, such as support vector machine (SVM) and random forest
(RF), have been increasingly applied to landslide detection using remote sensing images in recent
decades. However, their limitations have impeded their wide application. Furthermore, despite the
widespread use of deep learning algorithms in remote sensing, for LIM, deep learning algorithms are
limited to less unbalanced landslide samples. To this end, in this study, full convolution networks with
focus loss (FCN-FL) were adopted to map historical landslides in regions with imbalanced samples
using an improved symmetrically connected full convolution network and focus loss function to
increase the feature level and reduce the contribution of the background loss value. In addition,
K-fold cross-validation training models (FCN-FLK) were used to improve data utilization and model
robustness. Results showed that the recall rate, F1-score, and mIoU of the model were improved
by 0.08, 0.09, and 0.15, respectively, compared to FCN. It also demonstrated advantages over U-Net
and SegNet. The results prove that the method proposed in this study can solve the problem of
imbalanced sample in landslide inventory mapping. This research provides a reference for addressing
imbalanced samples in the deep learning of LIM.

Keywords: landslide inventory mapping; fully convolutional networks; focal loss; K-fold cross-validation

1. Introduction

Geological disasters cause major casualties and property losses. Landslides, one
of the most common types of geological disasters, have posed increased concerns and
have been studied intensively [1]. Experts have made significant progress on widespread
identification, deformation monitoring, early warning, and susceptibility mapping of
landslides using multisource earth observations [2]. Landslide inventory mapping (LIM)
refers to recording of the distribution, size, and boundary of landslides in each region
and is a key prerequisite for landslide susceptibility assessments and disaster emergency
rescue [3]. However, landslide inventory mapping is still lacking in terms of features related
to landslide type, size, and distribution [4]. Geologists believe that understanding the past
and present of landslides is key to predicting their future occurrence [5,6].

1.1. Landslide Inventory Mapping in This Study

Landslide inventory mapping is conducted to delineate the location and type of land-
slides. LIM can display the geomorphic information associated with landslides, including
rockfalls, alluvial fans, and other surface erosion features. This study focused on the lo-
cation identification and landslide boundary delimitation once a landslide has occurred.
In this study, we did not make a scientific distinction between the landslide source and
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the affected area. The most important issue is to find the landslide areas. In mechanism
and prevention studies, it is better to distinguish between the landslide source and the
affected area.

1.2. Related Work

Landslide inventory mapping has evolved from field investigations, visual interpreta-
tion of remote sensing images, and comprehensive interpretation of multisource remote
sensing data to the combination of machine learning and deep learning methods [3].

Field investigations can provide detailed data on landslide characteristics, scope, and
shape; however, they are often inefficient and not sufficiently comprehensive [7,8]. The
development of Earth observations provides a new means for LIM [9]. The stereo model
is established through aerial images, and the visual interpretation remarkably reduces
field work. Since the emergence of satellite images, experts have been able to improve
the accuracy of visual interpretation by combining optical images with digital elevation
models of different resolutions [10,11].

Supervised and unsupervised classification methods based on remote sensing data
can improve the efficiency of LIM. They can be divided into pixel-based and object-oriented
methods. Pixel-based LIM is mainly classified according to the radiation characteristics of
ground objects based on the brightness value of each band of each pixel. Unsupervised
classification methods include threshold segmentation [12] and K-means clustering [13].
They also often rely on empirical values and require images with similar acquisition per-
spectives, lighting conditions, and seasonal characteristics. The change detection method
can be used to identify historical landslides due to variations in the surface material before
and after landslides [14]. Machine learning methods, such as decision trees [15], logistic
regression [16], and change vector analysis [17], can obtain good results using multisource
remote sensing data for change detection from images acquired before and after landslide
occurrence. However, pixel-based methods tend to produce severe salt-and-pepper errors,
resulting in low landslide classification accuracy. To overcome these problems, object-
oriented methods have been developed [18], which focus on spatial attributes and assemble
pixels into objects based on their texture and context [19]. Simultaneously, more complex
machine learning algorithms, such as support vector machine (SVM) [20] and random
forest (RF) [21], have achieved better results in LIM [22,23].

With further development of computer vision technology, deep learning algorithms are
increasingly used in remote sensing image classification [9,24]. LIM is more complex than
object classification from remote sensing images [25,26]. Owing to the wide distribution
range, variety, and different manifestations, accurate interpretation of landslide distribution
over a large area is time-consuming [27]. Therefore, experts have continuously explored
LIM based on network depth [28], network structure [29], and different deep learning
algorithms [30,31].

Data-driven deep-learning algorithms often require many accurate samples to train
the features of the target. However, few historical landslide samples have been released to
date [28,31]. In addition, landslides are rare in object classifications [32]. The low number
of sample sets limits the accuracy of deep learning methods for LIM. In addition, the
number of non-landslide pixels in the sample is much larger than that of the landslide
pixels. In the training process, the loss function is mainly dominated by easy-to-classify
non-landslide samples, which causes the model to deviate from the learning direction.
An imbalanced sample is another important factor affecting the classification results of
deep-learning algorithms.

Ghorbanzadeh et al. [33] initially used convolutional neural networks (CNN) to study
landslide identification and proved that they were superior to traditional machine learning
algorithms [28]. Qi et al. [34] and Liu et al. [35] obtained LIM after an earthquake and
strong rainfall using an improved U-Net network. Gao et al. [36] used fully convolutional
DenseNet (FC-DenseNet) to conduct LIM and explored the importance of different features
affecting it. Shi et al. [37] used the change detection and CNN (CDCNN) method to generate
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an LIM and attempted to extract landslide elements (trajectory, source point, and attribute).
Most studies using deep learning LIM have focused on landslides with complete surface
material changes after earthquakes or heavy rainfall. However, there are few studies on
LIM with complex backgrounds and sparse landslide distributions. Moreover, most of
the studies were conducted based on feature selection and algorithm applicability; the
problems of small sample size and uneven sample sets have rarely been considered.

1.3. Overview of this Study

Landslides are sparsely distributed in the Earth’s surface. For deep learning models,
we need to build sample sets with a balanced ratio between landslides and non-landslides;
otherwise, they will be difficult to identify. Therefore, the number of samples and the
balance of samples are important factors for landslide inventory mapping using deep
learning algorithm.

He et al. [38] proposed focus loss to solve the class imbalance problem between
foreground and background samples in natural image segmentation. Focal loss has also
been used to solve object detection [39] and building extraction [40]. In addition, K-fold
cross-validation may make the samples more effective through multiple training. Therefore,
we proposed an improved focus loss FCN that is trained by K-fold cross-validation for
landslide inventory mapping to solve the problem of imbalanced landslide samples.

This study aimed to address sample imbalance in LIM using deep learning algorithm in
terms of the data source, training model, and prediction result optimization. The landslide
dataset released by Ji et al. [28] in Bijie City, Guizhou Province, was used as the training
data. First, the imbalance ratio (IR) of the dataset was reduced by data augmentation.
Then, an improved fully convolutional network with focal loss (FCN-FL) based on a fully
convolutional network (FCN) [41] was adopted to increase the feature level and reduce the
impact of background loss values, which were easily classified. Finally, an FCN-FL model
trained by 5-fold cross-validation (FCN-FLK) was used to obtain LIM in Fa’er and Jichang.
The classification method for an imbalanced simple landslide was examined in terms of the
data source, loss function, and prediction outcome.

2. Study Area

The Guizhou Province is in Southwest China and has a complex geological environ-
ment and special tectonic stress, as shown in Figure 1. The average annual temperature in
Guizhou Province is about 15 ◦C. The annual rainfall ranges from 1100 to 1300 mm, but the
season of precipitation is unevenly distributed, with 80% of the rain concentrated from May
to October. The fold and fault structures have developed into special karst landforms with
abundant rainfall. In recent decades, intensified anthropogenic activities, such as mining
and infrastructure construction, has led to frequent landslides and debris flows.

The landslide dataset of Bijie City, Guizhou Province, published by Ji et al. [28] was
used as training data in this study (Figure 1). Bijie City is located northwest of Guizhou
Province, adjacent to Liupanshui City, and covers an area of ~26,800 km2. The main disaster
types are collapse, debris flow, and unstable slopes. The landslide dataset of Bijie City
contains data on 770 landslides and 2003 non-landslides, with an image resolution of 0.8 m.

The research area chosen of this study was Shuicheng County of Liupanshui City,
which is a landslide disaster hotspot area in Liupanshui. Figure 1 uses the WGS84 co-
ordinate system. The LIM area is located at latitude 26–27◦N and longitude 104–105◦E.
Shuicheng landslide inventory data from 2019 was obtained from the Shuicheng County
government (http://www.shuicheng.gov.cn/ (accessed on 30 June 2020)). The accuracy of
FCN and FCN-FL models was compared and verified using the landslide sample data of
Bijie City as the training sample. The comparison accuracy of FCN-FL, U-NET, and SegNet
was verified using landslide inventory data from Shuicheng County.

http://www.shuicheng.gov.cn/
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Figure 1. Background of the study area. The locations of Shuicheng County and Fa’er and Jichang
Towns are shown in the figure. The blue point represents the landslide distribution of the Bijie dataset.

Fa’er and Jichang Towns are located in the southwest of Shuicheng County. Destructive
landslides have occurred in this region over the past 3 years. The Jichang Town landslide,
which occurred in July 2019, caused severe casualties and property damage. Furthermore,
the impact of several years of mining in Fa’er has caused partial surface collapse. Various
natural and anthropogenic factors have caused serious geological disasters in this area.
Therefore, these towns were selected as the research object.

3. Methodology
3.1. Content and Process of LIM

Landslide inventory mapping is a complex classification task that recognizes the size,
shape, and distribution of landslides in a certain area using remote sensing image, geo-
knowledge, and deep learning models. The process included three main steps (Figure 2):
data pretreatment, classification, and accuracy evaluation; investigation and verification;
and analysis.

In the first step, remote sensing images and geological data were preprocessed, in-
cluding registration and resampling to the same resolution. Remote sensing images were
preprocessed by atmospheric correction and radiometric correction. Landslides and non-
landslides interpreted by geological knowledge were labels trained by deep learning
models. Remote sensing images and labels were cropped in one-to-one correspondence.
Images and corresponding label pairs were divided into training set, validation set, and
test set. In the second step, images and labels were fed into the deep learning model for
training. The network was mainly tuned by the training set. The loss value after each
training iteration was obtained by the validation set to evaluate network quality. The test
set was used to evaluate the accuracy of the trained network.
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Finally, the results of LIM by image were verified through a field investigation to
ensure accuracy. Simultaneously, the landslide distribution and typical characteristics
were studied.

3.2. Overview of Imbalanced Sample LIM

In this study, the Bijie dataset was divided into training set, validation set, and test
set. The training set was augmented through image processing. The imbalance ratio of
the landslide sample was then reduced by augmentation. The samples and labels of the
training set were flipped at different angles and filtered, blurred, and noisy. Subsequently,
an FCN-FL network with a symmetric connection structure and focal loss was used. We
added the level of network connections to increase feature level and suppress the influence
of non-landslide samples on the model loss value (Figure 3). K-fold cross-validation was
used to train the data to increase the robustness of the model and the utilization of the
training set. The test set in the Bijie dataset was used to evaluate the network and the
original FCN in this study. The landslide in Shuicheng County was used as a test set to
evaluate the network and U-Net and SegNet in this study. Finally, Fa’er and Jichang Towns
were used to obtain landslide inventory maps.

This study used remote sensing images of three areas: Bijie, Shuicheng, and Fa’er and
Jichang. Detailed parameters are shown in Table 1. The Bijie dataset was based on Google
Images published by Ji et al. This dataset included landslide images and corresponding
landslide mask files. Google image was also used in the Shuicheng dataset to verify
the improvement of our method. The Shuicheng dataset contained images and visual
interpretation of landslide patterns. The Sentinel-2 images were used to obtain landslide
inventory maps of Fa’er and Jichang Towns.
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Table 1. Remote sensing image parameters in this study.

Area Image Acquisition Time Resolution

Bijie Google image 2019 0.8 m
Shuicheng Google image 2021 1 m

Fa’er and Jichang Sentinel-2 4 August 2021 10 m

As for the processing of remote sensing images, we obtained Sentinel-2 images from
the European Space Agency (https://scihub.copernicus.eu/dhus/ (accessed on 4 August
2021)). The Sen2Cor software was used for radiometric correction and atmospheric correc-
tion. Then, SNAP software was used for resampling, which was used as the input of the
deep learning network.

3.3. Imbalance Ratio

The imbalance ratio parameter was used to measure the degree of sample imbalance,
where D represents the collection of pixels of all training samples and each sample is
represented by (x, y), where y ∈ {0, 1}. In this study, y values of 1 and 0 indicated that
the pixel belonged to landslide and non-landslide, respectively.

Thus, the pixel set P of a landslide can be defined by Equation (1) and the non-landslide
pixel set N as Equation (2). The imbalance ratio (IR) is defined as the ratio of non-landslide
pixel number to landslide pixel number, as shown in Equation (3).

P = {(x, y)| y = 1}, (x, y) ∈ D (1)

N = {(x, y)| y = 0}, (x, y) ∈ D (2)

Imbalance Ratio (IR) =
|N|
|P| (3)

According to Equation (3), IR is inversely proportional to the unbalanced degree of the
dataset. To reduce the degree of imbalance of the dataset, the number of landslide samples
in the data should be increased.

https://scihub.copernicus.eu/dhus/
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3.4. Fully Convolutional Networks (FCN)

Fully convolutional network is an end-to-end semantic segmentation network, which
uses VGG16 as the backbone network and implements network training through feed-
forward calculation and backpropagation. In Figure 4, the blue box represents the convolu-
tion layer of the learning sample features. The green box represents the lower sampling
pooling layer. The green arrow is the upsampling operation, which matches the size of the
feature graph with that of the upper level through upsampling and adds the data through
the overlay operation of the orange arrow. The blue arrow represents the prediction result
of the full-convolution operation. The prediction results of different depths were fused. To
increase the feature level of the prediction, the convolution features of the first and second
downsampling were added to the final prediction image.
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The fully convolutional network undersampled by 5 times and extracted feature maps
with five resolutions. The resolutions of the five downsampled feature maps were 1/2,
1/4, 1/8, 1/16, and 1/32 of the original image. This study added 1/2 and 1/4 of the
feature maps connected to the upsampling compared to the original structure. These two
feature maps with higher resolution provided rich details to distinguish landslide from
non-landslide.

The FCN-FL adopts a fully connected symmetric structure to increase the scale of
landslide feature extraction, which can improve the expression effect of the landslide
boundary. Simultaneously, the focal loss function could be used to improve the contribution
of landslide pixel to the model loss value and solve the problem of imbalanced samples
that affect the accuracy of landslide recognition.

3.5. Focal Loss

Focal loss [42] is based on the cross entropy loss function (CE) [38], as shown in
Equation (4), where Y is the pixel predicted value and 0 and 1 represent non-landslides and
landslides, respectively.
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q ∈ [0, 1] is the predicted value of the pixel. The predicted probability value is inversely
proportional to the loss value.

CE(q, y ) =

{
− log(q) y = 1
− log(1− q) y = 0

(4)

Let CE(q, y ) = CE(qt ), which means − log(qt). The FL introduces two parameters, α
and γ, as shown in Equation (5):

FL(qt) = −α(1− qt)γ log(qt) (5)

The weight contributions of the landslide and non-landslide samples to the total loss
are controlled by setting the value of α. A low α value is used to reduce the weight of the
non-landslide samples. (1− qt)γ is the focusing parameter, where γ ≥ 0. By adjusting γ,
the model focuses on difficult sample training. In this study, α and γ were set to 0.25 and
1.75, respectively.

3.6. K-Fold Cross-Validation

K-fold cross-validation can reduce the negative impact of the training and validation sets
on the model and improve the data utilization rate by taking full advantage of the sample
data to participate in model training [43]. In this study, the original data D was randomly and
averagely divided into five subsets of the same size, namely, D1, D2, . . . , D5, where four subsets
were training sets, one subset was a verification set, and the verification set was not repeated, as
shown in Figure 5. To evenly distribute the landslide and non-landslide samples in each dataset,
labels 1 and 0 were assigned to landslide and non-landslide samples, respectively, during 5-fold
cross-validation to ensure that random data division was based on the proportion of landslide
and non-landslide samples.
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3.7. Accuracy Evaluation

In the LIM task, each pixel was classified as either landslide or non-landslide. Thus, the
four parameters of the confusion matrix were defined as true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). The TP refers to landslide output as
landslide, TN refers to non-landslide output as non-landslide, FP refers to non-landslide
output as landslide, and FN refers to landslide output as non-landslide.
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Accuracy (Equation (6)), recall (Equation (7)), and F1-score (Equation (8)) were used to
evaluate the accuracy of the model, and four parameters of the confusion matrix were used
for the calculation.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Recall =
TP

TP + FN
(7)

F1 score =
2× TP

2× TP + FP + FN
(8)

The mean intersection over union (mIoU) (Equation (9)) was used to evaluate the ratio
of intersection and union between the model prediction results and labels. The higher the
ratio, the higher the accuracy. Here, q is the number of predicted categories. In this study,
this value was 2.

mIoU =
1

q + 1

q

∑
i=0

TP
TP + FP + FN

(9)

4. Results
4.1. Landslide Sample Augmentation

There were 770 landslides and 2003 non-landslides samples collected in Bijie City.
The sample size was resized to 256 × 256 pixels. As the non-landslide samples in the
Bijie landslide dataset had no corresponding labels, labels for non-landslides were added.
The sample imbalance ratio was then calculated by counting the number of landslide and
non-landslide pixels in the Bijie landslide dataset (Table 2).

Table 2. Imbalance ratio comparison before and after landslide sample augmentation.

Before After

Landslide 2× 107 8× 107

Non-landslide 1.6× 108 2.5 ×108

IR 8 3.1

Data augmentation methods include image flipping, blur adjustment, and noise
increase. In this study, a left–right flip with mean filter, an up–down flip with random
gamma stretch, and a mirror flip with random noise were applied to the image. Lines a, b,
and c in Figure 6 correspond to the above three operations. The left and right images in
each group are the original and augmented images, respectively.
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4.2. Prediction Results of FCN-FLK, FCN-FL, and FCN in the Bijie Dataset

In this study, 70 landslide samples were selected as the test data. The remaining
700 samples and enhanced landslide and non-landslide samples were used as the training
data. The training data consisted of a training set and a verification set. A total of 80%
of the original landslide, augmented landslide, and non-landslide samples were used as
training set and 20% as verification set.

For a small sample size of dataset, the FCN-FL model (FCN-FLK) was trained using
the 5-fold cross-validation method to effectively use all the data. The K-fold cross-validation
method randomly divides data into K equal parts, selects one part as the verification set,
and uses the remaining data as the training set. The iterative training for K times can
effectively use all the data to train the model. In this study, the data were evenly divided
into five groups. To evenly divide the landslide and non-landslide data, labels 1 and 0
were assigned to the samples, respectively. The data were then divided according to the
proportion of landslides and non-landslides in the samples.

Accuracy, recall, and F1-score were used to evaluate the model accuracy, and mIoU
was used to evaluate the prediction results.

The performance of the FCN-FLK model was superior to those of the FCN-FL and
FCN models in terms of model accuracy and prediction results (Table 3). Compared to
the FCN model, the recall, F1-score, and mIoU of the FCN-FL model were improved by
0.05, 0.05, and 0.13, respectively. This proves that symmetric connection can improve
the accuracy of the model in identifying landslide boundaries. Compared to the FCN
model, focal loss improved the contribution of landslide samples to the loss value of the
whole model by controlling the weight of the landslide and non-landslide samples. The
classification accuracy was further improved by focusing on the training of hard-to-classify
samples with focal parameters. The recall, F1-score, and mIoU of the FCN-FLK model were
improved by 0.08, 0.09, and 0.15, respectively. The comparison in Figure 7 shows that the
identification results of the FCN-FLK model had high similarity, demonstrating that the
K-fold cross-validated FCN-FL model had better robustness. The FCN and FCN-FL models
could misjudge bare soil and roads with similar characteristics around landslides, while
FCN-FLK had less missed judgment (FP) and less wrong judgment (TN).
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Purple, red, and blue represent true positive, false positive, and true negative, respectively. (a,e,i)
Original images; (b,f,j) results of FCN-FLK; (c,g,k) results of FCN-FL; (d,h,l) results of FCN.
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Table 3. Statistical accuracies of FCN-FLK, FCN-FL, and FCN.

FCN-FLK FCN-FL FCN

Accuracy 0.93 0.92 0.87
Recall 0.76 0.73 0.68

F1-score 0.62 0.58 0.53
mIoU 0.68 0.66 0.53

4.3. Comparison of FCN-FLK, SegNet, and U-NET Models

A landslide inventory map of Liupanshui City from 2019 was obtained. The Bijie
landslide data are RGB images with a resolution of 0.8 m. To match the sample data, Google
images from 2021 with a resolution of 1 m were selected. A total of 146 landslide points were
obtained from the landslide data of Shuicheng County. Landslide points with indistinct
geomorphic features and vegetation-covered surfaces were deleted. Simultaneously, new
landslide points that have occurred since 2019 were added. Figure 8 shows the distribution
map of the landslide points in Shuicheng County.
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Figure 8. Landslides distribution in Shuicheng County.

The FCN-FLK model was used to obtain landslide data from Shuicheng County to
verify the generalization of the model. Meanwhile, the U-Net [44] and SegNet [45] models
were trained using the training data and validation data introduced in Section 3.2, and the
same VGG16 network as the FCN was used as the backbone network. The accuracy, recall,
F1-score, and mIoU of the four models were calculated, as shown in Table 4.
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Table 4. Comparison of accuracy for FCN-FL, U-Net, and SegNet.

FCN-FLK U-Net SegNet

Accuracy 0.93 0.90 0.89
Recall 0.76 0.68 0.64

F1-score 0.62 0.53 0.44
mIoU 0.68 0.63 0.59

The FCN-FLK model outperformed the traditional SegNet and U-Net networks, with
recall and F1-score being significantly better than SegNet [46] (Table 4). The segmentation
accuracy mIoU of the FCN-FLK model was also improved. Figure 9 shows that the
shape of the FCN-FLK segmentation was closer to that of the label boundary of the visual
interpretation. The SegNet model missed more parts of the segmentation, whereas the
U-Net [35] model suffered from serious misjudgment.
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Figure 9. Prediction of landslides in Shuicheng County using FCN-FL, U-Net, and SegNet. Brown,
red, and yellow represent true positive, false positive, and true negative, respectively. (a,e,i) Original
images; (b,f,j) results of FCN-FLK; (c,g,k) results of U-Net; (d,h,l) results of SegNet.

4.4. LIM of Fa’er and Jichang Towns

The images of the study area (Figure 8) were input to test the performance of the
FCN-FLK model in the regional LIM. Sentinel-2 images acquired on 4 August 2021 were
preprocessed for radiometric correction and atmospheric correction. To maintain the same
image resolution as the Bijie landslide samples, Sentinel-2 images were resampled to 1 m in
green, blue, and red (2/3/4 band).

Figure 10 shows the LIM obtained using FCN-FLK (Figure 10a) and U-Net (Figure 10b).
Shuicheng County is the area with the most serious geological disasters in Liupanshui,
whereas Fa’er and Jichang Towns have experienced large landslides every year from 2018 to
2021. Therefore, this area was selected as the research subject for the LIM test. The false and
missed detections of the FCN-FLK model were less than those of U-NET, indicating that the
FCN-FLK model was more efficient in the large-scale landslide inventory map (Figure 10).
According to the visual comparison in the blue box in Figure 10, the FCN-FLK model had
a low misjudgment rate in the non-landslide area, which could reduce the workload of
visual interpretation to remove misjudgment and improve the efficiency of LIM.
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Figure 10. Landslide inventory maps of Fa’er and Jichang Towns using FCN-FLK and U-Net. (a,b) are
the prediction results of FCN-FLK and U-Net, respectively. Blue boxes indicate false detections.
Symbol I to III are the details of three remote sensing images, as shown in Figure 11.
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(c,d) GF-2 image of landslide I; (g,h) photo of landslide II; (k,l) photo of landslide III.

Owing to the complex background of historical landslides, some false detections
occur in the bare soil. These areas are similar in shape to landslides, leading to false
detection. False detections can be eliminated by visual interpretation in the final result.
Most landslides occur in areas with slopes greater than 15◦. The LIM results might have
been better if the non-landslide in the Bijie dataset included DEM data.
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Figure 11 shows the comparison of the model identification and visual interpretation
results of the three landslides in the study area in 2018, 2019, and 2021. Landslide I is the
Jianshanying landslide, in which landslide (a) occurred in 2018. The landslide boundary
of landslide (a) can be clearly seen by comparing the two GF-2 images from March 2018
and December 2018 in Figure 11c,d. In Figure 11a, landslide (a) was completely identified,
whereas only part of the area was identified in Figure 11b. The identification result of
landslide (b) in I was relatively inaccurate because landslide (b) was potentially caused by
mining. The surface of (b) was relatively broken and in the stage of continuous massive
deformation under the action of underground mining. As there was no large-scale overall
slip, the surface features were relatively complex, resulting in poor identification results.
Landslide II was a large landslide in Jichang Town on 23 July 2019, which caused huge
property losses. It can be seen from Figure 11j,h that a large amount of material migration
occurred on the surface of the landslide with a clear boundary. The identification results
in Figure 11e are good, whereas those in Figure 11f are inaccurate. Landslide III is the
landslide in Jingtou Village, Jichang Town, that occurred on 15 July 2021. Owing to timely
warning and successful avoidance, no casualties occurred. Figure 11k,l shows that although
the landslide caused material damage, the toppled houses were still in the original area.
Therefore, some regions were not identified in Figure 11i, whereas they were not identified
at all in Figure 11j.

4.5. Field Investigation

To verify the results of landslide inventory, the research team conducted a field survey
of the Jianshanying landslide (landslide I in Figure 11) in Fa’er Town in September 2021.
Figure 12a,b shows the tableland of the landslide. As shown in Figure 12a, there were
evident tensile cracks on the tableland of the landslide. Figure 12b shows the fractured
surface caused by the slope movement. Figure 12c shows an overall picture of the landslide
taken at the foot of the slope, where there are residential buildings and the risk of landslides
is high.
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5. Discussion

It has been proven that the convolutional neural network approach significantly out-
performs traditional machine learning methods in landslide inventory mapping. However,
there still exist sample problems in the application of convolutional neural network in
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landslide inventory mapping. The convolutional neural network needs a large number of
samples to improve the robustness of the network. However, in most cases, the number
of landslide samples is not enough. At the same time, they are sparse in the distribution
of natural features. To this end, we proposed a 5-fold cross-validation method to improve
the sample utilization rate. The focus loss increased the contribution value of landslide
samples in the loss function and made the network focus on the learning of landslide
samples. In Sections 4.2 and 4.3, we proved that our proposed focus loss FCN (FCN-FL)
outperformed the traditional FCN network and two common semantic segmentation net-
works (U-Net [1] and SegNet [2]). In the experiment, the proposed method could improve
the sample utilization rate and obtained better landslide inventory mapping of Fa’er and
Jichang Towns (Section 4.4).

6. Conclusions

In this study, a landslide inventory method for sample disequilibrium was proposed.
The validity of the method was verified by the data source, model optimization, and training
methods. The full CNN was adopted as the basic model, which adds the corresponding
channels of the feature map to increase the information content of the feature map. It
is better suited for historical landslide cataloguing with fuzzy boundaries and complex
backgrounds. The focus loss function, which focuses on the training of difficult samples,
inhibits the loss value contribution of negative samples to the model and improves the
accuracy of the model. Results showed that the accuracy of the FCN-FL model was
better than that of the FCN model. The training method of 5-fold cross-validation further
improved the robustness of the model and the data utilization rate of the landslide dataset
with small samples. The 5-fold cross-validation ensured that 20% of the dataset was used
as the validation set, which avoided the influence of the accuracy of the validation set and
the loss function value on the model in the training process. It was further verified that the
5-fold cross-validation model was more robust than FCN-FL.

Here, data augmentation was used to reduce the degree of sample imbalance. In
addition, the 5-fold cross-validation improved the robustness of the model. By comparing
the prediction accuracy of the FCN and FCN-FL models in the Bijie dataset, it was found
that the FCN-FL model could improve the recognition accuracy of the landslide boundary
by adding feature layers. The recognition image was more complete than that of FCN. The
FCN-FL model had better generalization and segmentation accuracy than the SegNet and
U-NET models for landslide data recognition in Shuicheng County. The FCN-FL model was
also relatively complete for the boundary extraction of landslides. This research provides a
reference for addressing imbalanced samples in the deep learning of LIM.

In this study, landslide sites were easily detected in areas with large vegetation cov-
erage. However, detection remains a challenge in areas with little vegetation cover. The
boundary between landslides and bare soil is not obvious and is even difficult to interpret
visually. Further research will focus on the diversity of landslide samples and the extension
of the model.
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