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1. Introduction

Through different phases of synthetic aperture radar (SAR) data acquired on different
dates and/or at different satellite imaging locations, the interferometric SAR (InSAR) tech-
nique has long been used to map ground deformation or generate global digital elevation
model (DEM) (e.g., [1–3]). Provided that deformation mapping is the signal of interest,
external DEM can be used to estimate the phases raised by topographic heights according
to the SAR imaging geometry. It is obvious that when the external DEM is not accurate, the
induced error will remain in the InSAR phases, degrading the accuracy of the retrieved defor-
mation. In addition, the accuracy of InSAR-derived deformation maps can also be affected
by decorrelation noise, atmospheric artefact, orbit uncertainty, and phase unwrapping error
among others. The recent development of multi-temporal InSAR (MTInSAR) techniques
deals with mitigating these unwanted phase components (e.g., [4]). The pioneering works
include, but are not limited to, the derivation of statistical properties of magnitude and
phase of both distributed and persistent scatterers under the assumption that the backscat-
tered signal of a resolution cell follows complex circular Gaussian distribution [5–7], the
maximum likelihood estimation of the interferometric phase [8], the probability density
function of multilook data [9,10], the phase decorrelation mechanism [11], and the effects
of atmospheric delay [1,12]. These works have provided a solid theoretical basis for the
development of phase enhancement and modelling algorithms used in MTInSAR, e.g.,
filtering [13,14], phase unwrapping [15–20], unbiased estimation of coherence [21,22], atmo-
spheric mitigation [23–25], persistent scatterer (PS) and distributed scatterer (DS) selection
and phase optimization [26–32]. Many of the algorithms have become routine functions in
MTInSAR processing packages, either commercial or open-source.

As an illustration, Figure 1 shows a MTInSAR technical framework including some
representative algorithms. Great accomplishments in the field of MTInSAR have been
made on the selection of scatterers or pixels that can keep high phase quality over a certain
period and the retrieval of deformation phase and topographic error from the original
phase observations or enhanced/filtered phases of the selected points (PS + DS) (Figure 1).

Aiming to address the advances in InSAR imaging and data processing, we initiated
this Special Issue and collected a total of 17 papers that cover a variety of topics, e.g., MTIn-
SAR observation selection and enhancement, phase ambiguity estimation, atmospheric
delay mitigation, advances in SAR imaging and applications. Their key innovations are
summarized in the following sections.
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Figure 1. The technical framework of MTInSAR. 
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ally conducted before they are used for signal retrieval. 

In this Special Issue, there are four papers focusing on dealing with the decorrelation 
noise of MTInSAR observations. In [33], the normalized difference vegetation index 
(NDVI) value was explored to evaluate the decorrelation mechanism in vegetated areas. 
A multi-stage model was developed, which can quantitatively estimate the decorrelation 
noise induced by vegetation. A real-data test conducted in Hunan province, China, veri-
fied the performance of the proposed model. Since the NDVI dataset can be obtained glob-
ally from freely available optical satellite images, the proposed model can be further tested 
in more sites. 

Following recent advances in phase optimization algorithm (POA), Li et al. proposed 
an adaptive weighted phase optimization algorithm based on the sigmoid model for DS 
[34]. In the proposed algorithm, more reasonable weights were assigned to pixels of dif-
ferent quality. Moreover, coherence bias correction based on the second-kind statistics and 
an efficient solution strategy based on eigenvalue decomposition were derived and ap-
plied to achieve optimal phase series retrieval. Therefore, it can efficiently reduce the neg-
ative influence of low-coherence pixels and improve the optimization performance. 

To address the inherent limitation of sparse measurements in non-urban areas in the 
conventional coherent pixels technique InSAR (CPT-InSAR), an adaptive coherent distrib-
uted pixels selection method was integrated into the CPT-InSAR processing chain [35]. 
DS pixels were identified by classical statistical testing and their phases were also opti-
mized by the joint use of the phase triangle algorithm (PTA) and Eigen decomposition-
based maximum likelihood estimator of interferometric phase (EMI) [35]. 

Figure 1. The technical framework of MTInSAR.

2. MTInSAR Observation Selection and Enhancement

The selection of proper observations (including interferograms and coherent points)
is vital to a reliable MTInSAR processing (Figure 1). As a basic input of MTInSAR, both
single-reference and multiple-reference interferogram stacks can be utilized. Once the
interferograms are selected, the coherent points, both PS and DS pixels, are then identified.
For the DS, as their phases suffer decorrelation to some extent, phase enhancement is
usually conducted before they are used for signal retrieval.

In this Special Issue, there are four papers focusing on dealing with the decorrelation
noise of MTInSAR observations. In [33], the normalized difference vegetation index (NDVI)
value was explored to evaluate the decorrelation mechanism in vegetated areas. A multi-stage
model was developed, which can quantitatively estimate the decorrelation noise induced by
vegetation. A real-data test conducted in Hunan province, China, verified the performance of
the proposed model. Since the NDVI dataset can be obtained globally from freely available
optical satellite images, the proposed model can be further tested in more sites.

Following recent advances in phase optimization algorithm (POA), Li et al. proposed
an adaptive weighted phase optimization algorithm based on the sigmoid model for DS [34].
In the proposed algorithm, more reasonable weights were assigned to pixels of different
quality. Moreover, coherence bias correction based on the second-kind statistics and an
efficient solution strategy based on eigenvalue decomposition were derived and applied
to achieve optimal phase series retrieval. Therefore, it can efficiently reduce the negative
influence of low-coherence pixels and improve the optimization performance.

To address the inherent limitation of sparse measurements in non-urban areas in the
conventional coherent pixels technique InSAR (CPT-InSAR), an adaptive coherent dis-
tributed pixels selection method was integrated into the CPT-InSAR processing chain [35].
DS pixels were identified by classical statistical testing and their phases were also optimized
by the joint use of the phase triangle algorithm (PTA) and Eigen decomposition-based
maximum likelihood estimator of interferometric phase (EMI) [35].

Recent years have also seen the application of deep learning for phase noise reduction.
In this Special Issue, Pu et al. developed an encoder–decoder network for accurate InSAR
phase filtering [36]. Compared to the existing deep learning-based phase-filtering methods
that are based on local neighboring pixels and local phase information, the proposed
method utilized the encoder–decoder structure and nonlocal feature selection strategy.
Experiments on both simulated and real InSAR data show that the proposed method
significantly outperforms three traditional well-established methods [36].
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3. Phase Ambiguity Estimation

Phase ambiguity behind the direct InSAR measurements (i.e., the wrapped phases)
hinders us from retrieving the absolute deformation with respect to a reference point.
Numerous algorithms have been developed to estimate the phase ambiguities, which
were conducted either in the spatial domain or spatiotemporal domain. In this Special
Issue, three papers contributed to this field. To improve the performance of the multi-
baseline phase unwrapping (MBPU) algorithm over areas with low coherence based on
conventional cluster analysis, Yuan et al. proposed to conduct the block-matching and 3D
filtering (BM3D) algorithm before phase unwrapping and defined four different similarity
measures to evaluate the filtering performance [37]. The work can serve as a reference
when the BM3D algorithm is used in MBPU.

Zhang et al. contributed to this Special Issue with an adaptive square-root unscented
Kalman filter phase unwrapping method aiming to tackle the challenges in regions with
large phase gradients and high noise [38]. By combining a modified phase gradient
estimation (PGE) algorithm and an adaptive square-root unscented Kalman filter, the
proposed method has better accuracy and model robustness compared to the state-of-
the-art, e.g., the minimum-cost flow algorithm (MCF) and statistical-cost network-flow
algorithm (SNAPHU).

Mao et al. proposed another strategy to enhance the success rate of phase unwrap-
ping in noisy areas where hierarchical networking and constrained adjustment were em-
ployed [39]. Both the simulated and real-data tests indicated that, compared with other
traditional 2D phase unwrapping workflows, the proposed method can more accurately
recover the phases of low-coherence regions.

4. Atmospheric Delay Mitigation

When penetrating through the atmosphere, radar waves can be delayed by water vapor
in the tropospheric layer. Such a delay is sometimes clearly visible in an interferogram
and serves as an error source in deformation retrieval. Mitigation of phases raised by
atmospheric delay is challenging, as they could have a similar temporal behavior to non-
linear deformation and their correlation scales vary from place to place in spatial domain.
In this Special Issue, Liu et al. proposed a novel model-based method [40] to mitigate
the atmospheric delay in the data collected by ground-based InSAR (GB-InSAR). Two
experiments with different equipment over two study areas demonstrated that the proposed
method can have a satisfactory performance on heterogenous atmospheric compensation
in the azimuthal and horizontal directions.

5. Advances in SAR Imaging

Besides advances in InSAR data processing, this Special Issue also includes one paper
on a novel imaging radar, i.e., wideband multiple-input-multiple-output (MIMO) radar [41].
MIMO radar utilizes the waveform diversity technique to synthesize a large aperture, which
represents the largest difference from a generic GB-SAR. However, it is vulnerable to some
inherent errors, e.g., element position error and inter-channel error. The paper proposed
a method for estimating and compensating the array errors of wideband MIMO imaging
radar based on multiple prominent targets. The in situ experiment demonstrated that the
proposed method can improve the imaging performance of the wideband MIMO radar.

6. Applications
6.1. Geohazard Detection

It has long been recognized that, due to the dense vegetation, it is very challenging
for the InSAR technique to detect slope movement over forested terrains, especially with
current spaceborne radars which work on X-, C- and L-bands. Considering that longer
waves have better penetration ability, Xu et al. experimented by using repeat-pass airborne
P-band SAR data to detect geohazards over densely vegetated regions in Oregon and Cali-
fornia (USA) [42]. The result shows that P-band interferograms have far better coherence
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compared with L-band over densely vegetated areas, indicating that P-band InSAR could
be a revolutionary tool for studying geohazards under dense forest canopies.

Besides the SAR wavelength, the processing strategy can also affect the performance
of InSAR on geohazard identification over vegetated areas. Zhang et al. conducted a
comparison between stacking and small baseline subset (SBAS) InSAR processing methods
over a mountainous region in Southwestern China using Sentinel-1 images [43]. The results
indicate that although stacking method may miss a few active slopes with small spatial
scales, it outperforms SBAS over the study area and could be a fast and powerful method
to qualitatively and effectively identify potential landslides in mountainous areas.

6.2. Deformation Mapping

InSAR has been proved as a promising tool for deformation mapping thanks to its
unique abilities, e.g., wide coverage, fine resolution and high precision. Numerous success-
ful applications have been conducted in the past several decades, where unprecedented
measurements significantly enriched our understanding of the causal mechanism behind
the events.

In this Special Issue, there are six papers that detailed InSAR applications in different
fields. Qu et al. mapped the recent vertical crustal deformation of Weihe Basin (China)
using Sentinel-1 and ALOS-2 images, revealing that vertical movement dominates the
deformation of the Weihe Basin [44]. They also refined the fault traces using InSAR-derived
displacement mapping, most of which are consistent with the existing inventory.

Bao et al. focused on ground deformation pattern analysis and evolution prediction
of Shanghai Pudong International Airport [45], where Sentinel-1A images were processed
by the Stanford method for persistent scatterers (StaMPS) package and the long short-term
memory (LSTM) neural network was used for the short-term prediction of the deformation.
The time-series observations and prediction results are expected to provide references for the
airport expansion project to minimize ground subsidence and the impact to infrastructure.

Zhang et al. conducted underground goaf parameters estimation by cross-iteration
with InSAR measurements [46]. Compared with conventional methods which are labor
intensive, low efficiency and expensive, InSAR technology possesses unique advantages
for goaf detection. They proposed a cross-iteration method for accurate inversion of un-
derground goaf parameters. The reliability of the method was verified through simulation
and real-data experiments.

Liao et al. investigated the ground subsidence of Yan’an, a western city in the loess
plateau of China using Sentinel-1A time series images [47]. The spatial distribution charac-
teristics and the time-series evolution trend of the subsidence over Yan’an New District
(YAND) were retrieved. The results indicate that the YAND is relatively stable in general,
with deformation rates mainly in the range of −10 to 10 mm/yr, while three significant
subsidence funnels existed in the fill area, with a maximum subsidence rate of 100 mm/yr.

In [48], Yang et al. attempted to retrieve coseismic displacement associated with the
2016 Kumamoto earthquake from ALOS PALSAR-2 images acquired in both the right- and
left-looking observation modes. As left-looking satellite SAR images were rare, their contri-
bution to coseismic fault slip distribution should be evaluated. The authors concluded that
the left-looking SAR data can complement the right-looking data in ground deformation
mapping and enhance source model inversion. With the anticipated NASA-ISRO SAR
(NISAR) satellite mission in early 2024, left-looking L-band SAR images will be globally
available for Earth monitoring (https://nisar.jpl.nasa.gov/, accessed on 20 May 2022).

The Special Issue also included a paper on detecting rock glacier displacement in the
Central Himalayas using MTInSAR [49]. To ensure a comprehensive measurement of rock
glaciers, Zhang et al. evaluated the quality of all possible Sentinel-1 interferograms over
the areas of interests and constructed a multi-baseline interferogram network according to
coherence. They then applied a robust method to estimate the glacier displacements from
the selected interferograms. The results indicate that the line-of-sight (LOS) deformation of
rock glaciers in the central Himalayas ranged from −150 mm to 150 mm.

https://nisar.jpl.nasa.gov/
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7. Conclusions

The recent increase in SAR satellites has resulted in a golden age of SAR data of various
wavelengths and resolutions, providing important input for exploring multi-dimensional,
multi-temporal InSAR analysis. The large amount of SAR data coupled with innovative
spatial–temporal analyses are improving InSAR data processing methods. The advanced
processing techniques then enable the extraction of geospatial information (especially
deformation) at ultra-fine or extremely large scales, allowing for innovative applications
on Earth monitoring. The papers in this Special Issue reflect the technical advances in
decorrelation noise reduction, phase ambiguity estimation, atmospheric delay mitigation,
and innovative applications in geohazard detection and deformation monitoring. There is
no doubt that, equipped with innovative algorithms, the MTInSAR technique will play an
important role in more and more exciting applications where big SAR data are turned into
big insight.
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